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Abstract 

Herbicides are regularly applied in horticultural production systems and may migrate off-site, 

potentially posing an ecological risk to surface waterways. However, few studies have 

investigated the levels and potential ecotoxicological impact of herbicides in horticultural 

catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 

sites, over a five-month period in horticulturally important areas of the Yarra Valley in south-

eastern Australia. Seven of the 10 herbicides were detected in the streams, in 39% of spot water 

samples, 25% of surface sediment samples, and more than 70% of the passive sampler systems 

deployed. Few samples contained residues of two or more herbicides. Simazine was the herbicide 

most frequently detected in water, sediment and passive sampler samples, and was found at the 

highest concentrations in the water (0.67 g/L), and sediment (up to 260 g/kg dry weight). 

Generally the concentrations of the herbicides detected were several orders of magnitude lower 

than reported ecotoxicological effect values, including those for aquatic plants and algae, 

suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an 

ecological risk. However, little is known about the combined effects of simultaneous, low level 

exposure of multiple herbicides of the same mode of action on Australian aquatic organisms, nor 

their contribution when found in mixtures with other pesticides. Further research is required to 

adequately assess the risk of pesticides in Victorian aquatic environments. 

 

Keywords: herbicides; horticultural catchment; surface water; sediment; environmental risk 
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1. Introduction 

Herbicides are widely used in Australian agricultural productions systems for the suppression of 

unwanted plants (weeds) before and during crop growth. In monetary and volume terms, 

herbicides are the top ranked category of pesticides sold in Australia (based on 2010-11 data: 

2130 products, A$1,252 million), more than twice that of insecticides (1098 products; A$362 

million) and five times the sales of fungicides (619 products; A$231 million; APVMA 2012). 

The herbicide use regime employed by a farmer is largely influenced by the different weed 

threats faced by the crops being produced. For example, there are a greater number of herbicides 

registered for use on wheat (40) than potatoes (22), and a relatively low number of herbicides 

registered for use in some horticultural systems (e.g. lettuce (6), zucchini (3)) and on nut crops 

(e.g. almonds (9), walnuts (7)). Consequently, there is likely to be a substantial load of herbicides 

being applied in many agricultural production catchments. There are over 120 herbicides (active 

ingredients) registered for use in Victoria, although the number and amount of herbicides used by 

farmers in the state is unknown because, while farmers and other users must keep written records 

of pesticide use, there is currently no requirement to report pesticide use to either local or 

centralised authority (Wightwick and Allinson, 2007).   

 

Despite the potential environmental risks, herbicides have received little attention in Australian 

waterways compared to other jurisdictions (Wightwick and Allinson, 2007). The presence of 

herbicides in the dissolved state in the aquatic environment has been extensively studied 

internationally and levels in the g/L and sub- g/L range reported in drinking and surface water. 

For instance, in North America the United States Geological Survey’s large, nation-wide surveys 

of pesticide residues in surface and ground waters produced a wealth of data for use in the 

environmental risk assessment of herbicides (Gillom et al., 2006). However, prior to this study, 

there had been no significant studies investigating herbicides in surface waters in Victoria since 
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the 1990s, although in northern Australia a number of recent studies have detected residues of 

some herbicides, including atrazine, diuron, hexazinone, and simazine, in the water column in a 

relatively high percentage of samples (Shaw et al., 2010; Lewis et al., 2009; Bainbridge et al., 

2009; Bengston Nash et al., 2006).  

 

While the measurement of nutrients and salts in surface and groundwater is now routine and 

offered cheaply by many commercial laboratories, this is not so for other contaminants of 

concern, including many pesticides. Measurement of pesticides in waters and sediments can be 

expensive in Australia, which inhibits monitoring by water authorities (as providers of water), 

catchment management authorities (as custodians of the natural environment), and consumers 

(e.g. irrigators, industry and household and domestic water users), potentially resulting in 

increased risk to the natural environment. Grab (or spot) samples are commonly used to 

characterise pesticide residues in surface waters, although there are a number of modified or new 

approaches for sampling which facilitate cost-effective monitoring of pesticide concentrations in 

waterways, one of which is integrative sampling with passive samplers (or passive sampling). A 

‘passive sampler’ can be defined as a device that is able to acquire a sample from discrete 

location without the active media transport induced by pumping or purge techniques (ITRC 

2006). Hence, most passive samplers consist of a receiving phase with high affinity for organic 

contaminants, separated from the aquatic environment by a diffusion limiting membrane. Some 

of the most commonly used devices that rely on diffusion and sorption to accumulate analytes in 

the sampler are semi-permeable membrane devices (SPMDs) and passive in-situ samplers (such 

as the Chemcatcher™ system (CC)). One of the first studies in Victoria using passive samplers 

occurred during the 2004-05 and 2005-06 irrigation seasons, when Rose and Kibria (2007) 

deployed SPMDs containing trimethyl pentane at fifteen sites within six irrigation areas in 

northern Victoria. The monitoring found three insecticides (endosulfan, chlorpyrifos and 
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parathion methyl) in the passive sampler solvents, but no herbicides. Elsewhere in Australia, a 

number of relatively recent studies have detected residues of some herbicides in rivers and 

estuaries on the eastern seaboard of Australia using CC passive sampling systems, including 

atrazine, diuron, hexazinone, and simazine (Escher et al., 2006; Lewis et al., 2009; Muller et al., 

2008; O’Brien et al., 2011; Shaw et al., 2009, 2010; Stephens et al., 2009), but prior to this study, 

there had been no significant studies investigating herbicides in surface waters in Victoria using 

the CC system.  

 

There has been less attention paid to levels of herbicides in sediment than in the water column, 

despite the potential effects they may have on benthic organisms. Noppe et al. (2007) were the 

first to report on the occurrence of triazines (e.g. atrazine, simazine) in suspended solids and 

sediment because up to that point, they contend, it had generally been assumed that these 

chemicals are mainly in the dissolved phase (as a group, the triazines are relatively polar (i.e. 

with an octanol-water partition coefficient, log Kow typically < 2.5) with good water solubility 

(up to 30 mg/L)). Chemical sorption, however, is also influenced by the organic carbon and clay 

content of sediments which may combine to increase the capacity of sediments to act as 

reservoirs for some chemicals. This in part may explain the wide variation in concentrations 

observed for compounds such as atrazine in sediments, e.g. up to 9.9 g/kg in Belgium and the 

Netherlands (Noppe et al. 2007), up to 170 g/kg in Pakistan (Maqbool et al. 2008) and up to 600 

g/kg in the Fraser River valley in Canada (Wan et al. 2006). In Australia, Duke et al. (2005) 

reported atrazine, ametryn and diuron in mangrove sediments, with higher diuron concentrations 

in sediments where there were greater numbers of common mangrove (Avicennia marina) 

showing signs of toxicity. 
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To in part address the paucity of information on herbicides in Victorian waterways, in 2008 – 09 

we examined the presence and concentration of 10 synthetic organic herbicide compounds plus a 

number of metabolites/breakdown products, in the water column and sediments at 18 surface 

water sites over a five month period within Victoria’s Yarra River Catchment, in south-eastern 

Australia. The objective of this study was to generate new data on the environmental levels and 

possible ecological impact of herbicides used in horticultural production systems. The study 

included both intensive spot water and sediment sampling and time-integrated sampling via 

deployment of passive water samplers. To our knowledge this was the first study of its kind 

undertaken in horticultural catchments within Victoria. 
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2. Materials and methods 

 

2.1 Study area 

Eighteen sites were monitored in Victoria’s Yarra River catchment for this study, which was 

conducted as part of a larger, multi-disciplinary study of waterways in and around Melbourne. In 

that context, this manuscript is a companion piece to the paper by Wightwick et al (2012), and 

Wightwick et al (2013) who reported the levels of 25 fungicides and trace metals in the surface 

waters and sediments, respectively, at the sites in the Middle and Upper Yarra catchment area 

used for this study (Figure S1). For full details of the study area, readers are directed to the 

Supplementary Information. 

  

2.2 Water and sediment sampling 

Water and sediment samples were collected from each of the 18 sampling sites every four weeks 

from September to December 2008 and again in February and March 2009. Water temperature, 

pH, and electrical conductivity (EC) were measured in-situ at the time of sampling using a field 

meter. The total organic carbon (TOC) content of water samples was determined according to 

American Public Health Association (APHA) method 5301B (APHA, 2005). Sediment samples 

were analysed for organic carbon (OC) using the Walkley and Black method (Rayment and 

Lyons, 2011, Method 6A1). The range and the mean of these water quality parameters for each of 

the monitoring sites was as follows: temperature (15.5 – 18.6
o
C; mean 16.8

 o
C); pH (6.2 – 7.4; 

mean 6.7); EC (81 – 741 S; mean 300 S); TOC water (4.6 – 20 mg/L; mean 8.0 mg/L); sediment 

OC (2.0 – 7.3 %; mean 3.8 %).  For full details of spot water and sediment sampling methods, 

readers are directed to the Supplementary Information.  
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2.3 Passive water sampling 

Two types of passive sampler were used in this study, namely trimethyl pentane passive samplers 

(TRIMPs), a type of SPMD to target non-polar chemicals with log Kow > ~3.5, and the 

Chemcatcher™ passive sampler system (CC) fitted with an Empore™ SDB-XC disk (3M, MN, 

USA) as the receiving phase and a polyethersulfone (PES) membrane as the diffusion-limiting 

membrane, to target polar chemicals with log Kow < ~3.0. The two types of sampler were 

deployed for time-integrated monitoring to allow firstly a qualitative assessment (i.e. 

presence/absence) and then, where possible, a semi-quantitative assessment (i.e. based on 

estimated time-weighted average water concentrations) of herbicides in the catchment. For full 

details of the passive sampling methods, readers are directed to the Supplementary Information. 

 

2.4 Analytical Testing Methods: Pesticides 

 

Analysis included 10 different herbicides and selected associated degradates registered for use in 

Victoria (Table 1) from the following classes: benzamide, dinitroaniline, triazine/triazinone, and 

urea herbicides. No one analytical method is appropriate for the measurement of all of the 

herbicides investigated in this study. Several different methods based on solid-phase extraction 

(SPE) were used to prepare the different sample matrices and chemicals (see Supplementary 

Information). These SPE methodologies were validated and accredited by the National 

Association of Testing Authorities, Australia (NATA) to ISO 17025 standard. The final extracts 

from the SPE clean-ups were used in several different analysis programs: volatile nitrogen 

containing herbicides concentrations were measured using gas chromatography-nitrogen 

phosphorus detector (GC-NPD), triazines with liquid chromatography-tandem mass spectrometry 

(LC-MS/MS), and a range of other polar herbicides using a multi-residue LC-MS/MS screen (see 

Supplementary Information for details of extraction methods and instrument parameters, and the 
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herbicides determined with each program). The results were not corrected for recovery, which 

was determined by spiking randomly selected samples of each analytical batch of water and 

sediment samples (typically the 24 sites) with each reported herbicide.  
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3. Results and Discussion 

 

3.1 Herbicides in water, passive sampler, and sediment samples 

 

Out of the 10 herbicides included in the analytical screens, 7 were detected in one or more water, 

passive sampler (TRIMPs or CC) and/or sediment samples (Table 2). Herbicides were not 

detected in any samples collected from the reference sites, but were detected in 39% of water 

samples (8 herbicides), 25% of the sediment samples (4 chemicals), 2% of the TRIMP solvents (2 

chemicals), and 73% of CC disk eluates (3 chemicals) from the remaining sites. Simazine was the 

most frequently detected herbicide in water (47% samples), sediment (18% samples) and CC 

(73% samples). All other detected herbicides were present in no more than 10% and generally 

less than 5% of samples. Simazine was also found to have the highest concentrations in the water 

samples (0.67 g/L), with the majority of concentrations of the other herbicides detected in the 

water samples < 0.1 g/L. Simazine was also detected at relatively high concentrations in the 

sediment samples (up to 260 g/kg), and a high concentration of propyzamide was also observed 

on one occasion (180 g/kg).  

 

Experimentally determined sampling rates for the herbicides detected in the TRIMPs are 

currently not available to derive time-weighted average water concentrations (TWAWCs). 

However, it was possible to estimate such TWAWCs based on predicted sampling rates (i.e. 

based on log Kow values). These estimates provide semi-quantitative data for which to compare to 

the concentrations detected in water samples. In that context, the results for the TRIMPs do not 

agree with those of the water samples in that the TRIMP-derived TWAWCs of terbutryn were 

higher than those of pendimethalin, whereas measured pendimethalin water concentrations were 

much higher than the single observation of terbutryn (Table 2).  
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Sampling rates for the herbicides in the CCs were determined experimentally in a flow through 

system using a mixed dose of triazines at 1 g/L (see Supplementary Information). The sampling 

rates (Rs) were: atrazine, 12.0; cyanazine 14.8; metribuzin 6.8; prometryn 10.6; simazine 8.3 and 

terbutryn 10.1 mL/day. It is natural to wonder how the sampling rates derived experimentally in 

this study compare with published information. There appears to be some variability (factor of 

10) in reported Rs depending on calibration conditions, including whether the receiving phases, 

i.e. the disk, are used ‘naked’ or with rate limiting membranes, length of exposure and the 

temperature and flow of the water in the calibration system. For instance, the sampling rates 

reported by Shaw et al (2009) for atrazine and simazine of 140 ml/day are an order of magnitude 

higher than those observed in this study, perhaps due to their use of a different disk (Empore  

SDB-RPS with a PES membrane). Vermeirssen et al. (2009) also reported sampling rates for a 

range of agrochemicals that were higher than observed in this study. In that case, including 

atrazine (Rs, 120 ml/day), DEA (Rs, 100 ml/day), and terbutryn (Rs, 110 ml/day) on Empore  

SDB-RPS disks plus PES membrane. As noted by Gunold et al. (2008) the SDB-RPS phase 

contains more sulphonic acid functional groups than the SCB-XC disk that may improve mass 

transfer compared to the SCB-XC disk. This in turn may explain the higher sampling rates. 

However, high sampling rates may result in a shorter linear uptake phase of the sampler. Thus the 

advantage of employing an Empore  SDB-XC disk would be a longer exposure period until 

equilibrium is reached. Obviously, the best comparison is between sampling rates generated by 

groups using similar set ups. In that context, we can say that the sampling rates generated for the 

triazine herbicides for this study (Rs, 8-15 ml/day) are similar to those reported by Tran et al. 

(2007) who suggest that the uptake of five non-ionized polar herbicides (including simazine and 

atrazine) onto an Empore  SDB-XC disk plus PES membrane, in a laboratory continuous-flow 

system was linear over a 21 day period, with Rs between 21 - 26 ml/day. Of the chemicals for 
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which experimental sampling rates were generated, only atrazine and simazine were observed on 

the CC disks in this study. The TWAWCs generated using those experimentally determined 

sampling rates are about five times higher than those observed in water samples (Table 2), and, 

although the maximum estimated concentrations were an order of magnitude higher than 

observed in water samples, overall the TWAWCs broadly agree with those of the water samples 

in that the simazine and TWAWCs were much higher than those of atrazine (Table 2). 

Hexazinone was not included in the calibration experiment, so the average sampling rates for 

these triazine/triazone compounds was used to generate TWAWCs in agreement with those of the 

water samples (in that the hexazinone concentrations were lower than those of atrazine; Table 2). 

 

The sampling rates of chemicals into passive samplers are dependent on a range of factors, both 

intrinsic to the passive samplers themselves, and extrinsic factors (Leonard et al 2002). Intrinsic 

factors that may affect uptake include the polarity of the contaminant (as measured by its log 

Kow), the diffusivity of the molecules that have to pass through the aqueous boundary layer, 

sampler design, exposure time, and concentrations of chemicals in the surrounding water. In the 

laboratory, a passive sampler is immersed in water spiked with the molecules of interest. The 

exposure media is typically controlled (temperature, agitation, contaminant concentrations, and 

physico-chemical parameters). All of these factors may change in the field, and one way to 

overcome some of the perceived issues with laboratory-derived uptake factors is to use field-

derived sampling rates. By averaging the field spot water detections of simazine at deployment 

and retrieval across the monthly deployments, and using the relationship between the 

concentration of a chemical in the receiving phase and in the related waterbody after an exposure 

time during this linear sampling phase (see Supplementary Information for relevant equations), a 

field sampling rate was determined for each month of the survey (Table 3). Only simazine was 

observed in water samples sufficiently often to make this process appropriate, and although the 
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field Rs contains significant variation, the mean sampling rate for simazine in field samples 

ranged from 43 to 63 mL per day, or a factor of five higher than the experimentally determined 

CC sampling rate. This is consistent with Ibrahim et al. (2013), who observed a four-fold 

difference between field- and laboratory-derived sampling rates derived for atrazine and simazine 

for the POCIS passive sampler system. The TWAWC for simazine (0.08 g/L) generated using 

the average field sampling rate (55 mL/day) was much closer to the actual mean simazine 

concentration (0.12 g/L; Table 2). This implies that elevated transient pulses of herbicides 

missed by the infrequent spot water samples may have been contributing to material sorbed onto 

the CC disks, producing the high TWAWCs from experimentally determined sampling rates, a 

possibility that has been previously reported for endosulfan in irrigation water (Rose and Kibria 

2007).  

 

Fewer herbicides were expected to be detected in sediments and TRIMPs than water and CC as 

the sediments and TRIMPs are suited to monitoring for non-polar chemicals (i.e. log Kow > 3.5) 

and most of the herbicides included in this study have log Kow < 3.5. Also, the limits of reporting 

in sediment samples are in the order of 100 times higher in sediment compared to water for most 

analytes. Interestingly however, around half of the herbicides that were detected in sediments 

were relatively non-polar (log Kow < 3.5) (Table 2) indicating that this matrix is able to capture a 

wide range of chemicals. That said, the more polar herbicides detected were less prevalent in 

sediments and TRIMPs compared with water samples and CCs (Table 2), consistent with the 

theory that chemical accumulation in sediments and TRIMPs is based on log Kow / log Koc 

characteristics.  

 

The preponderance of simazine detections across the study make it difficult to assess temporal 

changes in herbicide residue detections but overall the frequency at which the herbicides were 
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detected in the waterways by both spot water and passive sampling was lowest in February and 

March 2008, and greatest in October to December 2009 (Table 4). An increase in the presence of 

herbicides in the Victorian Spring (October to December) was expected as this reflects the most 

intensive period of domestic, commercial and horticultural applications. Otherwise, there were no 

clear temporal trends in the concentrations of the herbicides detected in water, passive sampler or 

sediment samples. 

 

This study was designed to provide an initial broad screening level investigation of herbicides in 

the study catchment. That simazine was detected in such a high proportion of the collected 

samples is a clear indication that simazine applied in the study catchment are migrating off-site. 

This is not to say farmers are using this chemical inappropriately, rather the results from this 

study suggest that the regular application of simazine can result in loading of these compounds in 

catchments where herbicides are a significant agricultural input. We did not target specific rain 

events or spray applications so it is not possible to elucidate whether or not the simazine and the 

other herbicides were entering the waterways diffusively or via episodic pulse events or to 

identify point sources of contamination. However, that the estimated TWAWCs of herbicides in 

CCs tended to be higher than in the spot water samples perhaps suggests that the CCs sampling 

may have integrated high pulse exposure concentrations of herbicides.  

 

Our results are consistent with other Victorian data, albeit that until recently, there has again been 

very little monitoring of pesticides in receiving waters, e.g. rivers, streams, lakes, wetlands, in 

Victoria. For instance, as discussed in Radcliffe (2002), Chapman and Stranger (1993, 1994) 

observed atrazine, and metribuzin in surface water samples from sites within vegetable 

production areas of Gippsland between 1992 and 1994 but only at concentrations (3.2 and 0.28 

g/L, respectively) below relevant ANZECC and ARMCANZ (2000) water quality guideline 
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trigger values. The Gippsland studies did however highlight the potential for low level 

contamination of surface streams located in close proximity to areas of horticultural production, 

i.e. as in this study. Elsewhere in Australia, much of the focus of published studies of herbicide 

residues has been on chemicals in rivers draining the eastern seaboard of Queensland and with 

potential to impact on the Great Barrier Reef (Table 5). For instance, Lewis et al. (2009) found a 

range of triazine/triazone herbicides in the Tully-Murray, Burdekin-Townsville, and Mackay 

Whitsunday regions (atrazine up to 7.8 g/L; hexazinone, up to 5 g/L; and simazine, up to 0.18 

g/L). 

 

Our data is also consistent with levels reported internationally in the past 5 years. There have 

been a significant number of studies of herbicides in surface waters since the inception of this 

study, many of which have reported positive detects of one or more of the ten herbicides 

observed in the Yarra River and its tributaries (Table 5). While specific chemical targets reflect 

local land-use concerns and/or the research interests and technical capabilities of researchers, the 

most commonly reported herbicides are atrazine and simazine. Interestingly, in Europe, atrazine 

and simazine continue to be observed in water samples at concentrations similar to those 

observed in this study, despite the ban on their use in many countries (e.g. see Meyer et al. 2011; 

Silva et al. 2011; Thomatou et al. 2013; Table 5). There has been much less attention paid 

recently to levels of herbicides in sediment, despite the potential effects they may have on benthic 

primary producers. Although it is often assumed that polar chemicals such as the triazines are 

mainly found in the dissolved phase, chemical sorption to sediments is influenced by the type and 

amount of organic carbon and the clay content of sediments which may combine to increase the 

capacity of sediments to act as reservoirs for some chemicals. This, in part, may explain the wide 

variation in contaminant concentrations reported internationally in sediments for the ten 

herbicides screened in this study (Table 6). Sediment sampling methodology is another factor 



 

 

16 

affecting reported concentrations, e.g. whether the whole sediment is extracted, or, as in this 

study, only the 64 m fraction, but despite this, our data is broadly consistent with the 

concentrations of herbicides reported internationally in sediments in the past 5 years (Table 6), 

where, again, the most commonly reported herbicides are atrazine and simazine. 

 

Passive sampling has some advantages over grab water sampling in that the samplers need little 

attention apart from deployment and collection, and they also integrate and average exposures 

over time, thus enabling identification of events that may be missed by grab sampling. The major 

disadvantage of these methods is that the concentration data from the sampler may not be directly 

comparable to toxicity data based on water concentrations, and water concentrations may have to 

be extrapolated through the use of field or laboratory derived sampling rates, few of which are 

available (Gagnon et al., 2007). In addition, some chemicals may be missed, as may not readily 

partition into the sampler. From a practical perspective, in natural waterways samplers may be 

subject to periodic high-energy flows, which can wash away the samplers, and be the subject of 

human inquisitiveness, which may see the samplers removed from the waterway; both these 

externalities can reduce the integrity of a sampling program and both were experienced in this 

study. However, our data is also consistent with the concentrations of herbicides reported 

internationally using passive samplers in the past 5 years (Table 7); again the most commonly 

reported herbicides are atrazine and simazine. 

 

Many studies investigating pesticides in surface waters where mixtures of chemicals are 

commonly detected at sampling sites (e.g. see Gillom et al. 2006; Gregoire et al. 2010), but in this 

study there were few instances of multiple herbicides in water samples, with three different 

herbicides the most detected at a single site. A similar trend was found in relation to the sediment 

samples, where only two samples contained residues of two different herbicides. The lack of 



 

 

17 

multiple herbicide detections in the waterways was somewhat unexpected as different herbicidal 

compounds are likely to have been applied to control the different weed problems in the variety 

of crops present in the study catchment (Table 1). Indeed, Wightwick et al. (2012) reported that 

multiple fungicides were detected in Yarra Valley water sample (e.g. 31 % of the water samples 

contained residues of two or more fungicides, and 17 % containing residues of three or more 

fungicides). Whilst a relatively high number of common herbicides were included in this study it 

is recognised that there are many more herbicides registered for use in Victoria that were not 

included in the analytical screens, and that some of these chemicals are very commonly used in 

Victoria (such as glyphosate, paraquat and diquat, and some of the phenoxy acid and sulfonyl 

urea herbicides). Unfortunately, resource limitations prevented measurement of those chemical 

groups. Moreover, information on the type and quantities of herbicides being applied by the 

farmers was not available as it was outside the scope of this study to survey chemical use 

practices in this large catchment area. So it is not known how well the herbicides analysed 

corresponded with those being used in the catchment, and the lack of multiple residues detections 

may simply reflect the screening of a sub-set of the herbicides being used in the upper Yarra 

Valley. 

 

3.2 Ecotoxicological risks of herbicides detected 

Ecological risks of chemicals detected in the environment are often derived by comparisons with 

environmental quality values and reported ecotoxicological effects values for key sentinel aquatic 

species, and in Australia these are collated in the ANZECC and ARMCANZ (2000) water quality 

guidelines. In that context, only atrazine and simazine are in water quality guidelines, and no 

trigger values have been defined for any of the studied herbicides in sediments (ANZECC and 

ARMCANZ 2000). Because there are few formally recognised water quality guideline values 

available with which to compare data from this study, data on the ecotoxicological effects of 
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herbicides has been taken from the IUPAC Pesticides Properties Database (University of 

Hertfordshire 2013; as summarised in Table 8). The ecological risk of pesticides is preferably 

quantified based on probabilistic methods using cumulative frequency distributions for effect and 

exposure concentrations. However, in the case of this study it was not necessary to go these 

lengths because the concentrations in water and sediment (exposure concentrations) were clearly 

lower than the most sensitive chronic ecotoxicological effect value for each of the herbicides 

(Table 8). Indeed, the concentrations detected in the waterways of this study were generally 

several orders of magnitude lower than ecotoxicological effect values and the few ANZECC and 

ARMCANZ (2000) trigger values.  

 

Although few of the water samples in this study contained mixtures of herbicides, the presence of 

multiple pesticides in surface water is common in monitoring programs (Gillom et al., 2006; 

Gregoire et al., 2010). These mixtures of different chemicals have the potential for additive, 

synergistic or antagonistic effects on toxicity (ANZECC and ARMCANZ 2000). There is an 

increasing acknowledgement that toxic effects can occur at much lower concentrations where 

chemicals are present as mixtures (Baas et al., 2009). For example, a recent study has reported 

that the pyrethroid insecticide -cypermethrin was up to 12 times more toxic to Daphnia  magna 

in the presence of the fungicides prochloraz, epoxiconazole and propiconazole (Nørgaard and 

Cedergreen, 2010). In this study most of the herbicides were photosystem II (PSII) inhibitors, and 

having the same mode of action, the mixtures of PSII herbicides are likely to have additive 

effects on algae and aquatic plants; however it is unclear what effect mixtures of herbicides with 

different modes of action will have on toxicity.  

 

The study has shown the presence of residues of herbicidal compounds in the surface waters of a 

horticultural production catchment. Moreover, this study was conducted in a relatively dry season 
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where total rainfall was approximately 40% lower than the long term mean in the catchment 

during the study period (BOM, 2010). Thus the risks may be greater in wetter seasons, as greater 

quantities of herbicides are likely to be applied and the frequency and extent of surface run-off 

events increased. Based on frequency of detection and concentrations, simazine is the priority 

herbicide of concern for the catchment studied, although we acknowledge that some commonly 

used herbicides (such as glyphosate, 2,4-D and MCPA) were not screened in this study. The 

detection of residues at so many of the surface water sites, and across sampling periods, indicates 

that the risks posed by this herbicide are more likely to be long-term (chronic) rather than short-

term (acute). However, the concentrations detected were relatively low and mostly several orders 

of magnitude below reported ecotoxicological effect and hazardous concentration values 

(although there are some suggestions that herbicides may cause acute risks due to high pulse 

exposure concentrations and this should be examined in future studies). Whilst the findings from 

this study indicate that individually herbicides are likely to pose a low ecological risk, the toxicity 

of individual herbicides and herbicidal mixtures represents a significant research gap. This study 

provides valuable information for policy and decision-makers, both in Australia and other regions 

of the world, to assess the likely risks that the use of herbicidal compounds in horticultural 

production systems poses to aquatic ecosystems. To progress towards a more thorough 

assessment of the ecological risks posed, future research should focus on gaining a better 

understanding of the ecotoxicological effects of priority herbicides and herbicidal mixtures, 

particularly to the lower trophic levels of aquatic ecosystems. 
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Table 1 Summary of partitioning properties of the herbicides investigated and their registered use in Victoria 

Active 
Chemical 

Group 

Log 

Kow 
a
 

Log 

Koc
b
 

Half-life 

water 

(days) 
c
 

Number 

registered 

products 
d
 

 

Registered use 
d
 

atrazine triazine 2.7 2.0 86 73 

Legumes (lupins), roots and tubers (potatoes), cereal grains (maize, sorghum, wheat), 

oilseeds (canola), pasture (grass pasture, lucerne), control of sedges and woody weeds 

in forestry 

cyanazine triazine 2.1 2.3 s 7 
Bulb vegetables (onion), legumes (bean, chickpeas, field pea), roots and tubers 

(potatoes) 

hexazinone triazinone 1.2 1.7 56 27 
Control of sedges and woody weeds in forestry, spot killing of weeds in pasture, 

commercial and industrial 

linuron urea 3.0 2.9 1460 5 
Bulb vegetables (onion), cereal grains (barley, maize, oats, soybean, wheat), roots and 

tubers (potatoes, carrots, parsnips), coriander  

metribuzin triazinone 1.7 1.8 s 40 
Asparagus, barley, chickpeas, faba beans, lentils, lupins, oats, pea, potatoes, soybeans, 

tomatoes, vetch, wheat 

pendimethalin dinitroaniline 5.2 4.2 s 32 

Sunflowers, barley wheat, peas, chickpeas, faba beans, lupins and safflower, canola, 

carrots, avocadoes, bananas, citrus, deciduous fruits, grapevines, lychees, macadamia 

nut, mangoes, nuts, Eucalypt forestry plantation, turf 

prometryn triazine 3.3 2.6 s 14 Carrots, celery, pastures, perennial grass seed crops, potatoes 

propyzamide benzamide 3.3 2.9 s 46 Turf, lettuce, pasture (lucerne, clover), legume seed crops, 

simazine triazine 2.3 2.1 96 93 

Algae (in swimming pools, ponds and aquaria), canola, fab beans, commercial and 

industrial, asparagus, berry fruits, citrus, gladioli, hops, roses, chickpeas, strawberry, 

lucerne pastures, lupins, apples and pears, vines, forestry 

terbutryn triazine 3.7 3.4 s 17 Barley, pastures, some varieties of oats and field peas, triticale, wheat 
 

a, log Kow, logarithm of octanol-water partitioning co-efficient; b, log Koc, logarithm of organic carbon adsorption coefficient   c, data from Wightwick and Allinson (2008b), updated using 

University of Hertfordshire (2010); d, products registered for use in Victoria, Australia, data from APVMA website; e, includes cantaloupe, cucumber, honeydew and muskmelon, pumpkin, 

squash, rockmelon, watermelon; f, includes chrysanthemums, geraniums, iris and other ornamental flowers; g, brassica vegetables, includes broccoli, Brussels sprouts, cabbages, cauliflowers;, s, 

stable to hydrolytic degradation in water (University of Hertfordshire 2013); DEA, desethyl atrazine; DIA, desisopropyl atrazine 
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Table 2 The frequency of detection and concentrations of herbicides detected in water, sediment samples and passive sampler extracts  

Active 

Water  

 (n = 106) 

Sediment 

 (n = 106) 

TRIMPs  

(n = 127)c 

CC 

(n = 89) d   

FODa Meanb Med Min Max FOD a Mean Med Min Max FOD a Mean Med Min Max FOD a Mean Med Min Max 

 ( g/L) ( g/kg dry weight) ( g/L) ( L) 

atrazine 6 0.01 0.01 0.01 0.02 1 2    0     4 0.07 0.05 0.04 0.13 

cyanazine 0      0     0     0      

hexazinone 1 0.01    0     0     10 0.03 0.03 0.02 0.05 

linuron 1 0.003    1 3.5 3.5 2 5 0     nm      

metribuzin 0     0     0     0      

pendimethalin 5 0.03 0.02 0.01 0.04 0     1 0.002    nm      

prometryn 0     0     0     0      

propyzamide 0     1 180    0     nm      

simazine 47 0.12 0.05 0.01 0.67 18 19 4 2 260 0     73 0.52 0.20 0.03 3.20 

terbutryn 1 0.001    0     2 0.005 0.005 0.005 0.005 0      

DEA 1 0.001    0     0     0      

DIA 1 1.3    0     0     0     

HA 0     0     0     0     

n, number of samples analysed; 
a
 FOD, frequency of detection (%) = (number of samples in which chemical detected / total number of samples analysed) x 100; 

b
, mean and 

other reported data is for detects only; 
c
, except for propyzamide, where n = 98; nm, not measured; 

d
, concentration data derived using laboratory generated uptake factors. 
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Table 3 Field determined sampling rates for simazine 

 

Field sampling rate 

  Oct-08 Nov-08 Dec-08 Mar-09 

 (mL/day) 

mean 63 70 45 43 

CV% 88 123 65 76 

count 
a
 10 8 9 4 

a
 count, number of sites simazine detected in water samples at both deployment and retrieval of CC 

 

 

 

 

 

 

Table 4 Temporal trends in the frequency in which three most commonly observed 

herbicides were detected in water samples 

Active Frequency of Detection (%) 
a
 

 2008 2009 

 September October November December February March 

atrazine 0 0 0 6 17 0 

pendimethalin 0 17 6 4 0 31 

simazine 56 33 50 50 17 13 
a
 FOD (%):  (number of samples chemical detected / total number of samples collected) x 100 
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Table 5 Selected recent studies in Australia (post-1990) and overseas (post-2009) in which residues of one or more of the herbicides examined in this 

study have been reported in surface waters (freshwater wetlands, creeks, rivers and lakes).  

Country Region Herbicides concentration  

(max; g/L) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 

Australia   

Victoria Yarra valley 0.02  0.01 0.003  0.04   0.67 0.001 This study 

Gippsland 0.92          Chapman and Stranger (1993) 

 3.2    0.28    0.61  Chapman and Stranger (1994) 

New South 

Wales 

South-west 4.4          Bowmer et al. (1998) 

Mcintyre, Namoi, Gwydir R 4.0     0.2 4.0  0.3  Muschal and Warne (2003) 

Queensland Mackay region 0.047  0.261      0.016  Duke et al. (2005) 

 Hervey Bay basin 0.110        0.050  McMahon et al. (2005) 

 Mackay Whitsunday 4.1  1.0        Mitchell et al. (2005) 

 Brisbane R 0.009  0.002      0.043  Bengston Nash et al. (2006) 

  1.0  3.6        Bainbridge et al. (2009) 

 eastern 7.8  5.0      0.18  Lewis et al. (2009) * 

Tasmania  53000 5.2 478  1.3   3.3   Davies et al. (1994) 

International   

Argentina  0.434          Bonansea et al. (2013) 

Brazil Santa Catarina      0.38     Freitas et al. (2012) 

Canada Québec 0.053 0.004       0.022  Garcia-Ac et al. (2009) 

 British Columbia 0.053  0.017 1.050 0.002    0.896  Woudneh et al. (2009) 

 Great Lakes 0.061          Kurt-Karakus et al. (2010) 

 Ontario 3.91          Byer et al. (2011) 

 Ontario 0.037   0.004 0.023 0.008     Kurt-Karakus et al. (2011) 

 Maritime region    0.028 0.11      Xing et al. (2013) 

China Heilongjiang 0.4        0.1  Yu et al. (2010) 
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Table 5 (cont
d
) 

Country Region Herbicides concentration  

(max; g/L) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 
France Midi-Pyrénées    0.9  0.2     Taghavi et al. (2010) * 

 Save R, Gascogne 0.08 0.02 0.03 0.04  0.01   0.02  Polard et al. (2011) 

 Gascogne    1.65       Taghavi et al. (2011) 

 Rhone R, Gard 0.014        0.004  Ibrahim et al. (2013 * 

Germany R Leine, Göttingen 0.003          Nödler et al. (2010) 

Greece Evros R basin 0.6      0.05  0.6  Vryzas et al. (2009) * 

 Lake Amvrakia 0.328     0.020 0.094  0.056  Thomatou et al. (2013) 

Luxembourg  0.118   0.020     0.038  Meyer et al. (2011) 

Kenya River Kuywa 0.15  0.65        Muendo et al. (2011) 

Japan Kose R, Fukuoka         0.03  Phong et al. (2010) 

Lebanon       0.010     Kouzayha et al. (2013) 

Portugal Alentejo         0.82  Silva et al. (2011) 

Spain Ebro R 0.039   0.015     0.667  Köck et al. (2010) 

 Catalonia 0.017        0.013 0.054 Matamoros et al. (2010) 

 Llobregat R, Barcelona 0.0001   0.327     0.0054  Ricart et al. (2010) 

 Llobregat R, Catalonia 0.002        0.005  ck-Schulmeyer et al. (2011) 

 Llobregat R, Catalonia 0.010 0.009       0.038  ck-Schulmeyer et al. (2012) 

 Guadalquivir R basin 0.022        0.405 0.049 - . (2013) 

 Guadalquivir R basin 2.1        6.7  Hermosin et al. (2013) 

Thailand Mae Sa R basin 0.4          Sangchan et al. (2012) 
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Table 5 (cont
d
) 

Country Region Herbicides concentration  

(max; g/L) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 

USA IA, DC, MD, WY 26.2          Battaglin et al. (2009) 

 California         0.004  Lavado et al. (2009) 

 Cedar Ck, Indiana 90        30  Smiley et al. (2009) 

 Choptank R 1.8        1.9  Whitall et al. (2010) * 

 South Florida 12  1.3  0.071    7.3  Pfeuffer (2011) 

 Nebraska 191          Vogel and Linard (2011) 

 Texas      11.3     Anderson et al. (2013) 

 California      1.02   0.10  Ensminger et al. (2013) 

 upper Potomac R basin 0.071        0.053  Kolpin et al. (2013) 

 

ATR, atrazine; CYN, cyanazine; HEX, hexazinone, LIN, linuron, MZN, metribuzin; PEN, pendimethalin; PRM, prometryn, PRO, propyzamide, SIM, simazine; TER, terbutryn; *, estimated from author 

figures; ‘up to’, used when method determination limit not definable because not clearly reported in paper; Information obtained by searching the Scopus database using the search terms “herbicide AND 

river OR lake” in article title, keywords or abstract; only positive detections of one or more of the herbicides screened for in this study in the citations reported, non-detects and other herbicides in the 

listed citations, and studies where no herbicides were examined/detected are not reported. 
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Table 6 Selected recent studies in Australia (post-1990) and overseas (post-2009) in which residues of one or more of the herbicides examined in this 

study have been reported in sediment (freshwater wetlands, creeks, lakes, rivers and estuaries). 

Country Region Herbicides concentration 

(max; g/kg) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 

Australia   

Victoria Yarra valley 2   5    180 260  This study 

Queensland Mackay region 0.2          Duke et al. (2005) 

 Mackay region 1.3  1.5   4.5   0.6  Magnussen et al. (2013) * 

International 
  

China Songhua River basin 42          Sun et al. (2013) * 

France s.w France  2651  73     201  Devault et al. (2009a) 

 s.w. France 850 3620  3630     640  Devault et al. (2009b) 

India Delhi      53     Kumar et al. (2011) 

Kenya  740  390        Muendo et al. (2011) 

Spain Llobregat R, Barcelona 0.86        0.81  Ricart et al. (2010) 

Thailand Nan Province 230          Thitiphuree et al. (2013) 

USA San Joaquin R, CA      3000     Hladik et al. (2009) 

 Coldwater R, MS 921 6.3         Knight et al. (2009) 

 Beasely Lake, MS 227 23.7    1.2     Lizzotte et al. (2010) 

 South Florida 50          Pfeuffer (2011) 

 Texas 37     900     Belden et al. (2012) 

ATR, atrazine; CYN, cyanazine; HEX, hexazinone, LIN, linuron, MZN, metribuzin; PEN, pendimethalin; PRM, prometryn, PRO, propyzamide, SIM, simazine; TER, terbutryn; *, estimated from 

author figures/tabulated data;  ‘up to’, used when method determination limit not definable because not clearly reported in paper; information obtained by searching the Scopus database using the 

search terms “herbicide AND sediment AND river OR lake” in article title, keywords or abstract; only positive detections in the citations reported, non-detects in the listed citations and studies where 

no herbicides were examined/detected are not reported. 
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Table 7 Selected recent peer-reviewed studies in Australia (post-2005) and overseas (post-2009) that have used passive samplers for the 

detection of one or more of the herbicides examined in this study in surface waters (freshwater wetlands, creeks, rivers, lakes and estuaries).  

 

Country Region Type of 

sampler 

Reporting 

mode 

Herbicide Concentrations 

(max; g/L or ng) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 

Australia    

Victoria Yarra Valley CC TWAWC 0.13  0.05      3.2  This study 

 Yarra Valley SPMD TWAWC      0.002    0.005 This study 

Queensland Wet Tropics region CC TWAWC * 0.0003  0.00045      0.0025  Shaw et al. (2005) 

 
Noosa National Park CC TWAWC *         0.015  Escher et al. (2006) 

 
Russell-Mulgrave R CC TWAWC * 0.035  0.004        Shaw et al. (2009) 

 
Moreton Bay CC ng/sampler 14        41  Stephens et al. (2009) 

 
Wet Tropics region CC TWAWC * 0.045  0.04        Shaw et al. (2010) 

 
South-east Qld CC TWAWC * 0.03          O’Brien et al (2011) 

New South 

Wales 

Murrumbidgee 

Irrigation Area 

SPMD TWAWC * 0.1          Hyne and Aistrope (2008) 

International     

France Ruiné and Charente 

R, west France 

POCIS TWAWC * 0.02        0.02  Mazzella et al (2010) 

 Ruiné R, west France POCIS TWAWC * 0.012   0.005     0.042  Lissalde et al (2011) 

 Ruiné R, west France POCIS TWAWC * 0.04        0.085  Pesce et al (2011) 

 Rhone R, Gard POCIS TWAWC * 0.008        0.005  Ibrahim et al. (2013) 
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Table 7 (contd) 

Country Region Type of 

sampler 

Reporting 

mode 

Herbicide Concentrations 

(max; g/L or ng) 

Reference 

ATR CYN HEX LIN MZN PEN PRM PRO SIM TER 

Spain south east POCIS TWAWC * 0.0015        0.0009 0.0001 Martínez Bueno et al (2009) 

UK Portsmouth Harbour CC ng/sampler 6.0          El-Shenawy et al (2010) 

 River Thames estuary PTF TWAWC * 0.065    0.11 0.00004     St. George et al (2011) 

 n.e. Scotland SRS ng/g sampler 2.7 1.5    25 1.6  2.4 6.4 Emelogu et al. (2013) 

USA Nebraska POCIS TWAWC * 0.98          Bartelt-Hunt et al (2011) 

  

ATR, atrazine; CYN, cyanazine; HEX, hexazinone, LIN, linuron, MZN, metribuzin; PEN, pendimethalin; PRM, prometryn, PRO, propyzamide, SIM, simazine; TER, terbutryn; CC, Chemcatcher  passive 

sampler system; POCIS, polar organic chemical integrative samplers; SPMD, semi-permeable membrane device; PTF, polymer thin film device; SRS, silicone rubber samplers; TWAWC, time 

weighted average concentrations obtained from passive samplers ( g/L); N.D., not detected; *, estimated from author figures;
 
Information obtained by searching the Scopus database using the 

search terms “passive sampler AND herbicide” in article title, keywords or abstract; only positive detections in the citations reported; non-detects in the listed citations and studies where no 

herbicides were examined/detected are not reported. 

. 

.  
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Table 8 Summary of ecotoxicological effect data for the herbicides detected 

Active 

 

 

 

Mode of toxic action 

 

 

 

Ecotoxicological effect value 
a Maximum 

concentration in 

this study 
Fish  Aquatic 

invertebrates 

Aquatic 

plants 

Algae 

 
 ( g/L) 

atrazine PS II inhibitor 2000 250 19 100 0.02 

hexazinone PSII inhibitor - 50000 72  0.005 

linuron PSII inhibitor 100 180 17 10 0.003 

pendimethalin Inhibits mitosis / cell division 6 15 12  0.04 

simazine PSII inhibitor 700 2500 300 600 0.67 

terbutryn PSII inhibitor   -  -  - -   0.001 
 

a
 Data from IUPAC Pesticide Properties Database (University of Hertfordshire 2013). Fish and aquatic invertebrates, 21 day NOEC; aquatic plants, 7 day EC50 (biomass); 

algae, 96 hour NOEC (growth).  
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Figures 
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Figure 1 Approximate locations of the 18 monitoring sites (indicated by the circles) 

in the Yarra River catchment, Victoria, Australia  
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