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Aβ amyloid beta 

 

AD         Alzheimer’s disease  
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Abstract 
 

 
 The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal 

disorder world wide that lasts for decades.  The human gut harbors a diverse population of 

microbial organisms which is symbiotic and important for well being.  However, studies on 

conventional, germ-free, and obese animals have shown that alteration in normal commensal gut 

microbiota and an increase in pathogenic microbiota - termed “dysbiosis”, impact gut function, 

homeostasis, and health.    Diarrhea, constipation, visceral hypersensitivity, and abdominal pain 

arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune 

communication.  Dysbiosis in IBS is associated with gut inflammation.  Gut-related inflammation 

is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation.  A significant 

proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and 

fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, 

and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, 

and dysfunctional bidirectional “Gut-Brain Axis” pathways.  Pathogenic gut microbiota-related 

systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and 

barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions 

including hippocampus and cerebellum.  These as well as dysfunctional vago-vagal gut-brain axis 

may promote cognitive impairment.  Indeed, inflammation is characteristic of a broad spectrum of 

neurodegenerative diseases that manifest demntia. It is argued that an awareness of 

pathophysiological impact of IBS and implementation of appropriate therapeutic measures may 

prevent cognitive impairment and minimize vulnerability to dementia.    

 
 
 
 

Key words:   Irritable bowel syndrome; dysbiosis; endotoxemia; neuroinflammation;  

 gut-brain axis dysfunction; cognitive impairment; dementia 

 

           Running Title: Irritable bowel syndrome, neuroinflammation and gut 

                     brain axis dysfunction 
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1. Introduction  

 Gut microbiota is a major topic of interest in gastrointestinal biology.  Here, the terms microbiota, 

microbiome, and microflora are used interchangeably.   The human gut contains ~1,000 different bacterial 

species with 99% belonging to about 40 species [1]. The bacterial density increases progressively along the 

small bowel ranging from ~10
4
 in the jejunum to 10

7
 colony-forming units per gram of luminal content at 

the ileal end (with a predominance of gram-negative aerobes and some obligate anaerobes) [2].  In the 

colon, the bacterial count may reach around 10
12

 colony-forming units per gram (predominant being 

anaerobes).  Estimations show that 60% of the fecal mass is accounted for by bacteria [2]. The gut 

microbiome and its pathogens change during ontogeny in humans [3] and animals [4, 5].  The proximity of 

trillions of microbes with the mucosa and gut lymphoid tissue helps explain the importance of a balanced 

microbiota in preserving mucosal health, whereas an unbalanced composition resulting in dysbiosis may 

increase various diseases not only of the gut mucosa but also within the entire body.  These may include 

obesity, colon cancer, autoimmune disorders, allergy, and indeed the inflammatory bowel disease (IBD) 

[6]. 

 Apart from effective digestion and absorption of food, healthy gastrointestinal (GI) tract (GIT) has 

normal and stable commensal intestinal microbiota, and an effective immune status.   The GI barrier 

adjacent to the microbiota plays an important role in maintaining this health.  However, an impairment of 

this barrier in GIT may enhance the risk of developing infection and inflammation; in addition, it may 

promote extraintestinal conditions such as immune-mediated and metabolic disorders.  Indeed, these have 

been shown to occur in functional GI diseases.  The gut microbiota, therefore, is an important 

environmental factor that affects host metabolism through several mechanisms - including increased energy 

harvest from the diet, altered endocrine function, and upregulated inflammation (both within the gut and 

systemic) [7, 8, 9].  Hence, GI enteric microbiome is dynamic and plays cardinal roles in nutritional, 

immunological, and physiologic status of the host.   Further, microbiota is modulated by various factors 

including consumption of alcohol, non-steroidal anti-inflammatories (NSAIDs), prebiotics, probiotics, and 

macronutrients viz. fat and protein [10, 11].  Some recent interesting papers can be consulted on gut 

pathology and immune homeostasis-related topics [12-15].   

 Important data from germ-free animals (mice) and humans exposed to pathogenic bacterial 

infections, and the effect of probiotic bacteria, clearly indicate a role for the gut microbiota in the regulation 

of mood, anxiety, depression, pain and cognition [9, 16].  Accumulating evidence further reveals that the 

gut microbiota also communicates with CNS through neural, endocrine and immune pathways [9, 16-23].  

Thus, in gut pathologies, gut-brain axis may influence brain function and behavior [24, 25].     
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 The irritable bowel syndrome (IBS) patients carry a significant burden of comorbidity also [26-

28].  Further, IBS patients are treated only symptomatically, regarding IBS as just a functional condition.  

This paper has analyzed the complex and dynamic role of intestinal gut microbiome and gut epithelial 

reactions in innate immune signaling, and the neurological dysfunctions in IBS.  Consequently, the current 

approach has underlined insights and provides a comprehensive understanding of the role of gut 

dyshomeostasis, gut-brain axis dysfunction, and neuroinflammation in triggering cognitive decline – thus 

enhancing vulnerability to dementia.  The root cause(s) of dementia remains elusive, and at present, there is 

no cure. Thus, identifying risk factors and strategies for preventing or delaying the onset and progression of 

cognitive decline/dementia is of utmost importance.  Indeed, gut inflammation-related pathological impact 

may provide an important piece of the puzzle related to impairment of cognition.  

 One theme that continues to emerge is that dementia (be it Alzheimer’s disease (AD) or other 

type) is a multi-factorial-multisystem condition, and inflammation plays a central role [29-40].  Recently, 

there has been a significant focus on the role of diverse modulatory mechanisms including systemic and 

neuroinflammation that underpin cognitive decline/dementia [41-49].  Emphasis has been placed on the 

matrix of upstream interaction; these disparate key mechanisms/factors may have the “synergistic-additive 

impact”, and promote an array of pathophysiological effects including memory dysfunction [46-49].  The 

focus of this paper, however, is to present a hitherto unappreciated, yet ubiquitous, neuro-modulatory 

pathophysiological mechanism that originates from the inflamed dysfunctional gut, and may be extremely 

important in triggering cognitive decline and triggering dementia.  The current rationalization of the gut-

related prolonged neurotoxic insult underscores the neurophysiological and metabolic dyshomeostasis of 

yet another important body system that may be a precursor to cognitive dysfunction and dementia.  The 

hope here is that therapeutic strategies to ameliorate gut inflammation and dysfunctional “Gut-Brain axis” 

may attenuate memory-breaking processes, and foster memory-making mechanisms.  Fortunately, such 

strategies may be fairly simple, straightforward, and easily exploitable.  The approach underscored here, 

therefore, may offer a new option and an addition to our armamentarium for preventing/ameliorating, and 

possibly treating dementia. 

2. Irritable Bowel Syndrome (IBS): A Chronic Functional Gastrointestinal Disorder   
 

 IBS is one of the most common chronic functional gastrointestinal disorders (CFGD) World wide 

and is reported to occur in 10–20% of the general population [50].  In some Scandinavian communities, it 

can be as high as 25-28% [51].  IBS currently lacks an adequate treatment.  The current thinking is that the 

cause of IBS is multifactorial, involving host, gut microbiota and the environment - these interact to induce 

mucosal inflammation [52, 53].  Inflammation can commence via several sources including infection, 

stress, food allergy and dysbiotic changes in gut microbiota.  Post-infective IBS is heralded by low-grade 

mucosal inflammation that occurs in the terminal ileum and throughout the colon (for many months) after 

an attack of acute gastroenteritis.  There is prolonged gut permeability in the small as well as large bowel in 

both post-infective IBS and diarrhea-predominant IBS.  The IBS pathophysiology is therefore complex.  
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Several factors, including central, peripheral, and psychosocial, as well as abnormal visceral 

hypersensitivity, GI motility, and secretion are considered to contribute to the symptom-complex of IBS.  

GI motor function may differ in different IBS patients; hence based on their bowel pattern, IBS patients 

may be grouped into constipation- predominant, diarrhea- predominant, or mixed. 

   

 In comparison with normal controls, IBS patients showed a significant increase (72%) in mucosal 

immune cells [54].  IBS patients show increased numbers of CD3+, CD4+, and CD8+ T cells and mast 

cells (compared with controls). Interestingly, compared to male IBS patients, female IBS patients possess 

greater numbers of mast cells.  Further, mucosal infiltration of mast cell/immunocytes in IBS patients was 

significantly correlated with abdominal bloating and dysmotility-related dyspepsia symptoms [54]. 

 

 The IBS patients harbor altered proportions of commensal bacteria in the gut. The postinfectious 

IBS category is considered to be initiated following enteric infection by the enteropathogen [55].  

Compared with fecal flora of healthy persons, the IBS patients undergo definable alterations with 

significant variations [56-58].
  
High counts of Veillonella and Lactobacillus are found in patients with IBS; 

they are correlated with higher levels of fatty acids, and implicated in clinical symptoms of IBS [59].  

Further, upregulated cytokine levels and TLR activity contribute to inflammation in IBS patients [60].  

Their gut flora influences not only immune system, but sensory and motor dysfunctions also that interact 

with higher brain centers.  Indeed, this neurophysiological interaction is the so-called “gut–brain axis” [61] 

(also see below).  
 
 

 IBS is a functional multifactorial disease characterized by diarrhea, abdominal pain, erratic bowel 

habit, bloating, and several metabolic alterations [62].  Sugar malabsorption in the bowel leads to bloating, 

cramps, diarrhea and other symptoms of IBS including malabsorption of other nutrients.  The gas produced 

by bacteria anywhere in the gut in IBS [63] can cause gas-related symptoms such as bloating and 

abdominal distension.  About 35 % of the IBS patients have chronic pelvic pain [64].  ~ 44% of these 

patients have small intestinal bacterial overgrowth with microscopic colitis (SIBOM).  However, diarrhea 

happens to be the main symptom in these patients with SIBOM, although the presence of abdominal pain, 

bloating and flatulence are quite prominent as well [65, 66].  In IBS, various comorbid symptoms may 

include headache, dizziness, palpitations, sleep disturbances, musculoskeletal, urinary, and gastro-

esophageal reflux [51, 69], as well as myositis, arthritis [67], and Ménière disease– to name a few [68].  

Further, a high proportion of IBS patients report psychological problems including stress, depression, 

agitation, low coping ability, and obsessive-compulsive disorder [17, 18, 51, 69, 70].  Valid, precise, and 

reliable measurement of psychological factors has shown that indeed ~50% of IBS patients may have 

demonstrable psychiatric illness [70]. 

 The IBS is said to arise due to primary alterations in the periphery (i.e. bottom up), or primary 

alterations in the CNS (i.e. top down), or by a combination thereof.  The physiological effects of physical 
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and psychological stressors on gut function and gut-brain interactions are mediated by the enhanced 

responsiveness of central stress/emotion circuits resulting in outputs of the autonomic, neuroendocrine, 

attention, and pain modulatory responses.  Consequently, IBS patients show correspondingly enhanced 

responsiveness manifesting altered modulation of gastrointestinal motility, secretion, immune function and 

alterated perceptual and emotional response to visceral events [17, 18, 71].   Chromogranin A (CgA) is a 

common marker for endocrine cells.  Recent studies have shown that CgA cell density in the ileum of IBS 

patients was reduced (63.2 ±4.4 in controls Vs 28.6 ±2.1 in IBS) [72, 73].  The GI tract hormones play an 

important role in regulating gastrointestinal motility; however, disturbances in GI motility are universally 

present in IBS patients.  This may in part be related to a reduction in the total amount of endocrine cells 

[72, 73]. 

 Among IBS patients, 35% were reported to be human leukocyte antigen (HLA)-DQ2-positive, 

23% had increased intraepithelial lymphocytes (IEL) counts, and 30% had increased celiac disease (CD)-

associated antibodies such as HLA-DQ2 in duodenal aspirate.  However, when the HLA-DQ2-positive and 

intestinal CD antibody-positive IBS patients complied with a gluten-free diet, their stool frequency and 

intestinal IgA decreased significantly [74].  The probability of non-celiac gluten sensitivity (NCGS) in IBS 

patients may be 10 times higher than the prevalence of CD in the general population [75].  Indeed, 

prevalence of biopsy-proven CD in IBS has been shown to be 4-fold more than that in controls without IBS 

[76].  A collaborative study conducted at 4 different sites, from 2003 to 2008, studied 492 patients with IBS 

and 458 asymptomatic individuals.  It was found that 7% of patients with IBS had CD-associated 

antibodies, indicating that gluten sensitivity might also mediate their IBS symptoms [75].  

 

 IBS is a complex multidimensional disorder encompassing inflammation pathophysiology, pain, 

hypersensitivity, impaired central processing of afferent sensory information, psychological distress, 

somatization, stress, and sleep perturbations [77].  It is considered to be associated with brain-gut axis 

dysregulation, involving dysfunctional enteric, autonomic and central nervous systems.  Visceral 

hypersensitivity is an important pathophysiological factor in IBS.  Various internal and external factors can 

modulate visceral sensitivity and GI motility, e.g. through enhanced responsiveness of the gut to stress and 

ingested nutrients.  Visceral pain processing is abnormal in IBS.   Noxious distension of the GIT activates 

regions associated with unpleasant sensation/pain via autonomic mechanism.  35% of IBS patients possess 

chronic pelvic pain [64].  The IBS patients with hypersensitivity and pain conduct greater activation of 

insula and reduced deactivation in the anterior cingulate cortex during noxious rectal/GIT distensions, in 

comparison with controls [78].  

 Autonomic activity (heart rate variability) was analyzed in IBS patients who underwent 

polysomnography.  A substantial vagal withdrawal during REM sleep occurs in IBS patients [79].  IBS 

patients with depressive symptoms (IBS+DS) were compared to IBS patients without depressive symptoms 

(IBS-DS).  IBS+DS patients had increased severity of gastrointestinal symptom, increased sleep 

complaints, and alterations in sleep architecture, compared to IBS-DS or healthy controls [80].  The 
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diarrhea-predominant IBS patients had significant vagal withdrawal compared to other IBS patients (those 

with predominantly constipation) during REM and non-REM sleep.  Further, these diarrhea-predominant 

patients had significantly greater sympathetic dominance during non-REM, than the other IBS group of 

patients [81].  The above observations have been confirmed recently.  Compared to constipation-

predominant patients, the diarrhea-predominant IBS subjects demonstrated, across sequential NREM 

periods and REM cycles, significantly increased parasympathetic modulation and lower 

sympathetic/parasympathetic nervous system balance [82-84].    

3. Intestinal Microbiota: 
 
 

 The gut is colonized by bacteria from the moment of birth.  It supports a diverse bacterial 

ecosystem; the gut flora has between 500 and 1000 distinct bacterial species.  The human gut microbiota is 

composed of  10
13

 to 10
14

 microorganisms, and contain 100 times as many genes as the human genome 

[85].  The homeostatic role of the intestinal microbiome involves interaction with the host mucosa as well 

as with potential pathogens.  They, therefore, orchestrate homeostasis by communicating with the 

epithelium and upregulating innate and adaptive immune mechanisms of the gut.  A vast literature is 

available on various aspects of animal and human gut microbiota [7-15]. 

4.  Dysbiosis: The Silent Assasin  

 The normal intestinal microflora plays an essential role in host metabolism and provides a natural 

defence mechanism against invading pathogens.  Polyphasic analysis of fecal bacteria showed that 

significant structural changes occur in the microbiota with aging, and this was especially evident with 

respect to protective bifidobacteria.  Reductions in these organisms in the large bowel may be related to 

increased disease risk in elderly people [86].  Analysis of the fecal flora samples from 35,292 stool samples 

of adults showed that the elderly (>60 yo) undergo the most profound changes in terms of bacteria-specific 

colonic microbiota [87].  Age affects the gut microbiota with a decrease in beneficial organisms such as 

anaerobes and bifidobacteria and an increase in enterobacteria [88, 89].  Further, one of the most common 

nosocomial infections viz. Clostridium difficile in the elderly causes diarrhea and has a profound effect on 

morbidity and mortality [90].  Evidence indicates, therefore, that the composition of the human gut 

microbiota, as well as its homeostasis in terms of host's immune system may be crucial in the host 

physiology and health status [89, 91].  Thus, decreased intestinal immunity may enhance GI infections.  

Changes in the gut microbiota during aging may be a function of age-related altered nutrition and 

polypharmacy.  This is expected since age-related physiological changes in the GIT, vis-a-vis modification 

in lifestyle, nutritional behaviour, excess alcohol intake, general health, and functionality of the subdued 

immune system, must inevitably affect the gut microbial ecosystem.  Alteration in composition of intestinal 

microbiota has a serious impact and promotes several chronic conditions including obesity and 

inflammatory diseases (see below).  
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 It is well established that enteric infection may trigger IBS, in at least a subset of patients, 

evidenced by low grade inflammation and immune activation in the bowel.  The microbiome of the GIT 

influences many host organs including the gut and the brain; it is an important determinant of normal 

function in these systems. Any disruption of the balance between the host and its normal intestinal 

microbiota, owing to dysbiosis, may result in altered mucosal immune system, and cause variable gut 

inflammation in IBS patients [92].  Thus, dysbiosis regardless of cause (infection, gluten, alcohol, or drugs 

such as antibiotics and NSAIDS) induces chronic gut inflammation and dysfunction in IBS. Ongoing 

fluctuations in gut physiology destabilize the balance/proportion of commensal and pathogenic bacteria 

enhancing a vicious cycle of chronic dysbiosis.  Evidence obtained from animal models has provided a 

unifying paradigm in that changes in gut microbiota influence behavior– alterations in gut flora  gut 

dysfunction  gut inflammation  behavioral changes in IBS (Fig. 1).  Thus, according to this dysbiosis 

hypothesis, infection, dietary sensitivity (e.g. gluten) and/or drugs (e.g. alcohol) may upregulate gut 

inflammatory and functional changes and contribute to psychiatric co-morbidity [17-19; 93].   Furthermore, 

despite similar symptoms and underlying gut dysfunction, there is likely to be heterogeneity in the above 

pathogenesis in disparate subgroups of IBS patients.   

 IgA found in mucosal secretions of the gut maintains immune homeostasis, promotes tolerance, 

and defends against pathogens.  The intestinal epithelium—which constitutes the interface between the 

enteric microbiota and host tissues—actively contributes to the maintenance of mucosal homeostasis and 

defends against pathogenic microbial invasion.  The disruption of microbial community viz. dysbiosis 

predisposes the host to infection, by enteropathogens.  The translocation of intestinal bacteria and/or 

pathogen-associated molecules e.g. LPS, therefore, enhances inflammatory-immune responses. The latter 

impact adversely inducing neuroplastic changes in the enteric nervous system (ENS), gut-brain axis 

dysfunction, and causing diverse pathophysiological states in IBS [94]. 

5. Gut Inflammation 

 The intestinal epithelium – a mucosal surface can be colonized by large numbers of bacteria.  The 

host controls/modulates bacteria through a state of "controlled minimal inflammation", and bacteria and 

their products such as LPS, are prevented from breaching the intestinal barrier.  This is accomplished via 

several strategies including tight-junctions (between epithelial cells), mucus covering the epithelium, 

secretion of IgA, and an array of proteins, enzymes, and peptides that are bactericidal.  However, 

impairment in the above mechanism(s) may contribute to gut inflammation, noted in IBS [22, 63, 95]. 

   

 The intestinal mucosa of IBS patients contains an increased number of mast cells and activated T 

lymphocytes as well as an increased release of mediators known to signal to epithelial, neuronal, and 

muscle cells - leading to intestinal dysfunction [22, 63, 95, 96].  This may promote the activation of 

mucosal immune responses causing hypermotility and diarrhea.  There is evidence of increased intestinal 
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permeability in diarrhea-predominant IBS. This mucosal barrier defect allows the passage of an increased 

load of antigens of dietary and LPS of bacterial origin from the lumen. Further, immune factors released by 

the immunocytes, including proteases, histamine, and prostanoids, enhance the mucosal permeability and 

contribute to the activation of abnormal neural responses involved in gut motor function, abdominal pain 

perception, and changes in bowel habits [22, 63, 95]. 

 

 Several external and internal factors also enhance GIT pathology including stress, nutrients such 

as excess fat and gluten (in gluten-sensitive persons), NSAIDs, and alcohol; these can exert additive effects 

and modulate proinflammatory mediators, GI inflammation, visceral hypersensitivity, GI motility, and pain 

in IBS patients. 

6. Lipopolysaccharide and Systemic Inflammation  

 There is substantial evidence for the involvement of the intestinal microbiota in the functioning of 

the immune system and homeostasis; they interact with lymphoid follicles of the mucosa, as well as with 

regulatory and effector T cells.  The importance of the intestinal microbiota in immunity became obvious 

when animals grown in germ-free environments showed delayed onset of cellular and serologic responses 

and reduced immune impact [96-98].  Further, a lack of intestinal commensal microbiota leads to defective 

systemic immune system with reduction in CD4
+
T cell numbers and systemic antibody levels [99] - 

including IgA (the predominant immunoglobulin in the gut) that normally neutralizes toxins and pathogenic 

microbes [96].  

 LPS (endotoxin - component of gram-negative bacterial cell walls) can stimulate production of the 

proinflammatory cytokines TNF-α, IL-1β and IL-6 from monocytes and macrophages [100, 101].  Briefly, 

LPS triggers the well characterized intracellular inflammatory cascade, which may include stress-activated 

and mitogen-activated protein kinases, c-Jun N-terminal kinase, and p38 pathway.  CD14 lymphocyte 

antigen 96 and TLR4, which act as co-receptors for LPS, are considered to be the main molecules 

mediating the inflammatory conditions.  Following its binding to receptors, LPS induces production of pro-

inflammatory cytokines via activation of the nuclear factor κB (NFκB) [100, 102].  Accordingly, several 

studies have reported high levels of proinflammatory cytokines, notably TNF-α and IL-1β [103-105] in 

persons whose guts harbor pathogenic bacteria.  Conversely, TNF-α null mice showed improved metabolic 

homeostasis [106].   

 Gut bacteria play important metabolic functions in both health and disease.  For example, evidence 

suggests a role for the gut microbiota in both the etiology of nonalcoholic fatty liver disease (NFLD) and its 

progression to steatohepatitis (NASH).  Both NFLD and NASH are strongly linked to obesity, the 

metabolic syndrome, and inflammation [107, 108].  Furthermore, intestinal overgrowth of Gram-negative 

bacteria could promote insulin resistance, endogenous ethanol production and choline deficiency.  Among 
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the potential mediators of this association is LPS.  Endogenous LPS is continuously produced by the death 

of intestinal Gram-negative bacteria (Fig. 1); it then migrates into intestinal capillaries [109].  
 
 

 LPS infusion in mice resulted in increased fasting levels of glucose and insulin, as well as weight 

gain; the effects of this treatment on total body fat, steatosis and adipose tissue were similar to those 

induced by a high-fat diet [110].  Concomitant with these changes, macrophage numbers in the adipose 

tissue and levels of inflammatory markers increase both systemically and in the brain.  Furthermore, insulin 

sensitivity was dysfunctional in LPS-infused mice.  Interestingly, increased deposition of fat was similar in 

visceral and subcutaneous regions in both the high-fat diet and LPS-infused groups of animals [111]. 
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Fig. 1. Schematic representation showing dysbiosis, gut inflammation, and barrier dysfunction in 

IBS. LPS released from the pathogenic gut bacteria promotes pro-inflammatory cytokines.  They 

induce systemic inflammation/endotoxemia; the latter triggers neuroinflammation in several key 

brain regions.  There is an ongoing dysfunction of gut-brain bidirectional pathway.  The above 

cascade may promote cognitive impairment and lead to dementia. 

 
 
7. Gut-Brain Axis 

 
   GIT is endowed with immunologic and non-immunologic mechanisms that neutralize and 

eliminate deleterious factors such as pathogenic microbes, other pathogens, and food antigens.  GIT has the 

most extensive immune system/ integrated neuro-immune network encompassing immune cells, lymphoid 

aggregates and intraepithelial lymphocytes.  Hence, there is extensive/abundant mucosal immunity in the 

GIT, and indeed the intestinal mucosa of an adult contains about 80% of the body's activated B cells - 

terminally differentiated to plasma cells (PCs).  Most mucosal PCs produce IgA.   Further, the secretion of 

mucus, gastric acid, water and electrolyte as well as peristalsis are regulated by “intrinsic – i.e. ENS” and 

“extrinsic – i.e. CNS” counterparts.  

 

  Almost every function of GIT is under the regulatory influence of the nervous system, including 

the vagal afferents, spinal afferents, sympathetic and parasympathetic efferents, and enteric nervous system 

(ENS).  The ENS is considered to be the Gut’s brain and governs the GIT activity/homeostasis.  Inputs 

from the CNS modify gut function(s) while inputs from the gut to the brain mediate symptoms [24, 25, 

112].  Several GIT diseases including the IBS and non celiac gluten sensitivity (NCGS) are impacted by 

dysfunctional GI innervation.   

 

 Several studies indicate that abnormal processing of afferent signals occurs in IBS patients.   

Autonomic dysfunction/imbalance may include low vagal tone and increased sympathetic activity, and this 

may alter visceral perception in IBS patients [113].  It is generally accepted now that there is dysfunctional 

bidirectional pathway between the GIT and the CNS in IBS; this “brain-gut axis” perturbation may 

underpin symptomatology of this functional syndrome [9, 93, 114-119].  This renders the IBS patients 

susceptible to the altered transport of intestinal gas, bowel distention, bloating, enhanced perception of gut 

stimuli, hence abdominal discomfort and pain, as well as psychosocial factors [120].  The symbiotic 

relationship between the commensal gut microbiota and its host (animals/humans) protects from the effects 

of infection and inflammation, as well as modulates the normal behavioral responses [24].  Consistent 

robust evidence indicates that gut bacteria influence the ENS, an effect that may contribute to afferent 

signaling of LPS, proinflammatory cytokines, and inflammation to the brain.  Thus, various regions in the 

brain may then synthesize their own pro-inflammatory cytokines [121].  Further, changes in the 

composition of the gut microbiota, I.e. dysbiosis, may impact normal physiology promoting diseases 

ranging from inflammation to obesity, via endocrine, immune, and neural pathways.  The vagus nerve 
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occupies an important route for communicating signals from GIT and gut bacteria to the CNS [9, 118, 119].  

Moreover, various physiological and neurological abnormalities (discussed above) in IBS trigger not only 

gut inflammation and immunocytic increase, but an increase in intestinal permeability.   Consequently, 

disturbances of the ANS occurring in IBS may correlate with brain-gut axis dysfunction  (Fig. 1) [17-23].     

 

 As reiterated above, consistent robust evidence indicates that gut dysbiosis influences the ENS, an 

effect that may contribute to afferent signaling of LPS, proinflammatory cytokines, and inflammation to the 

brain.  Various regions in the brain may then synthesize their own pro-inflammatory cytokines also [121]. 

Further, dysbiosis may impact normal physiology promoting diseases ranging from inflammation to 

obesity, via endocrine, immune, and neural pathways.   Hence, the vagus nerve occupies an important route 

for communicating signals from GIT and gut bacteria to the CNS [9, 118, 119].   However, disturbances of 

the vagus/ANS occurring in IBS may upregulate brain-gut axis dysfunction [19, 20, 23, 122]. 

 

 

 7A. Dysfunctional Gut-Brain Axis – Cuts Both Ways 

 The vagal afferent fibers carry information about physiological status of the gut directly to 

brainstem circuits. The afferent sensory pathway involves the nodose ganglion neurons.  The latter are 

bipolar and connect the gut directly with NTS neurons in the brainstem [123-127].   The NTS integrate this 

sensory information and regulates autonomic and homeostasis-related functions of the gut.  Dysfunction in 

this 2-way organization of gut-vagal/brainstem-vagal circuit may be a factor underlying the 

pathophysiological changes and motility dysfunction observed in IBS [128].  ACh is the main 

neurotransmitter released from vagal efferent terminals to excite enteric neurons.  In the gut, two distinct 

set of pathways exist: 1) excitatory cholinergic pathway (that increases gastric tone, motility and secretion), 

and 2) inhibitory non-adrenergic, non-cholinergic (NANC) pathway that inhibits gastric functions [129]. 

Thus, GI dysfunction may happen either by activation of the NANC pathway and/or by inhibition of the 

tonic cholinergic pathway.  Given the importance of the gut-vagal reflex in the integration and control of 

visceral functions, any malfunction in vagal reflex may result in GI pathologies, including those of 

functional disorders such as IBS.       

 The bi-directional interactions between the nervous and immune systems promote homeostasis of 

the body [130-134].  The vagus nerve has a counter-inflammatory role [135].  The role of the vagal-efferent 

parasympathetic system in immunoregulation via α7-nAChR is well documented [136-140].    This anti-

inflammatory effect of vagal input is mediated through the activation of nicotinic receptors on macrophages 

[141, 142], and down-regulation of T cell function [143].  The above observation is strengthened by sub-

diaphragmatic vagotomy (in mice) resulting in proliferation of CD4
+
 T cells and stimulation of pro-

inflammatory cytokines, including TNF-α and IFN-γ [143].  Further, direct electrical stimulation of the 

vagus nerve in rats during endotoxemia inhibited TNF-α synthesis [134].  Similarly, an α7-nAChR-agonist 

attenuated systemic inflammation causing decreased TNF production [144, 145].   
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 Owing to abundant vagal sensors, the gut continuously sends information to the brain [123].  

Signals from the gut are crucial for the control of appetite, regulation of energy balance, glucose 

homeostasis, and inflammation.  In inflammatory reflex, an interaction between the vagus nerve and 

peripheral macrophages results in attenuation of proinflammatory cytokine release, in response to systemic 

exposure to bacterial endotoxin.  Disease activity index (DAI), macroscopic and histologic scores, 

myeloperoxidase activity, levels of serum amyloid-A, and colonic tissue levels of IL-1β, and TNF-α 

increased significantly in vagotomized mice 5 days post-colitis (induced by dextran sodium sulfate or 

hapten) [135].  Pretreatment with nicotine, however, significantly decreased the above inflammatory 

markers in these vagotomized mice with colitis [135].  This reiterated that the vagus nerve plays a counter-

inflammatory role in acute colitis via nicotinic receptors [135].  This is in keeping with the fact that the 

efferent vagus nerve inhibits pro-inflammatory cytokine release and protects against inflammation [138].  

Hence, this vagal function is aptly termed "the cholinergic anti-inflammatory pathway", reflecting a 

functional brain-to-immune connection, and that both inflammation and innate immune responses are 

regulated in part by vagal neural mechanisms [138, 146, 147].  This paradigm has been exploited clinically; 

electrical vagus nerve stimulation (VNS) is now utilized in the treatment of resistant epilepsy and 

depression (see VNS below).  By the same token, molecular mechanisms of cholinergic anti-inflammatory 

signaling, mediated by selective α7-nAChR agonists and centrally acting cholinergic enhancers, can also be 

efficacious in the control of inflammation [148].  

 

 Endotoxin generated in GI is a local as well as systemic immunological stressor [61].  Activation 

of afferent vagus nerve fibres by endotoxin (LPS e.g.) and/or cytokines (released by activated cells) 

stimulate hypothalamic-pituitary-adrenal anti-inflammatory axis also [149-151].  Thus, inflammation 

potentiates responses involving both sympathetic and parasympathetic (i.e. gut-brainstem/vagal 

modulation) [134, 137, 152-155].  When inflammatory state is persistent as in IBS, there is sympathetic 

hyperactivity and parasympathetic insufficiency in the dual autonomic control.  Hence the dysfunctional 

gut-brain axis may shift the homeostatic balance in favor of sympathetic.  This in conjunction with obesity 

[156-158], chronic alcohol consumption, and hypoxia [159] may cause hypertension and upregulate other 

deleterious effects [41-49], contributing to ongoing dysfunction in different brain regions.  Indeed, 

dysregulation of the gut-brain-gut communication via abnormal visceral sensory and 

dysfunctional/dyshomeostatic vagal efferent input may underlie chronic IBS pathology [77, 160, 161].  

8. Neuroinflammatory stimulation and Pathogenesis of cognitive impairment in IBS  

 Vagus arising from nucleus of the solitary tract (NTS)/dorsal vagal complex innervates several 

key visceral organs including heart, lungs, and GIT; it regulates their vital physiological functions, through 

ACh - its principal neurotransmitter [162, 163].  The presence of pathogenic bacterial colonization and 

inflammation in the gut is detected by the afferent/sensory component of the vagus [164].  The efferent 

response is then communicated via appropriate vagal anti-inflammatory output [132, 138, 162, 165].  Thus, 
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essentially the vagus nerve provides a bi-directional communication circuit to overcome inflammation 

[132, 162].   

 The systemic injection of LPS - dose-dependently increased IL-β protein levels, in the dorsal vagal 

complex, as well as in the hypothalamus, hippocampus, cerebellum, neocortex, and pituitary, as early as 2 h 

after LPS infusion [147].  The inflammatory signal reaching the brain induces other effects also.  For 

example, LPS-induced hypotension is mediated by the afferent vagus nerve which conveys the signal to the 

NTS, which in turn, stimulates norepinephrine release (anterior hypothalamic area) for triggering 

hypertension [166, 167].  Furthermore, systemic intraperitoneal injection of IL-β promotes IL-β mRNA in 

the brain; however, subdiaphragmatic vagotomy blocks this pathological effect, shown in the brainstem and 

hippocampus [146].  This reiterates that the vagus is involved in transmitting cytokine signals to the brain - 

thus causing the induction of brain cytokines/neuroinflammation (Fig. 1), as well as, potentiating 

neurotoxic substances including nitric oxide, oxygen radicals and proteolytic enzymes [146, 147].   

 8A. Gut Inflammation to Brain Inflammation and Cognitive Dysfunction 

 Chronically inflamed gut may upregulate barrier breakdown, LPS permeability, generation of 

proinflammatory cytokines, systemic inflammation, and neuroinflammation.   This underscores that IBS 

syndrome modulates crucial features of inflammation, and may be an important etiopathogenic route in 

triggering cognitive decline and vulnerability to dementia. A variety of inflammation-related proteins 

including LPS, complement factors, acute-phase proteins, and pro-inflammatory cytokines increase in AD 

brains [33].  These components of innate immunity, therefore, promote crucial pathogenic cascade, 

including systemic and neuroinflammation [31, 32, 36, 168, 169]; these are implicated in the 

etiopathogenesis of dementia [29, 30, 35-40, 170].  Elevated levels of endotoxin/LPS concentrations occur 

in plasma from AD patients (compared to healthy controls) [33, 34, 171]. This is consistent with systemic 

immunologic activation promoting neuroinflammation, and triggering cognitive decline and dementia [29, 

30-40, 168, 169, 170].    

 Inflammatory biomarkers are considered to reflect dementia status [34, 173, 177].  Several studies 

support that chronic systemic and central inflammatory processes underpin etiopathogenesis of dementia 

[34, 172-176]. During inflammation activated macrophage- microglia produce proinflammatory cytokines 

[178].  Assessment of the brains from transgenic APP/PS1 mice revealed proinflammatory cytokine-

producing CD4(+) T cells, increased microglial activation, Aβ deposition, and impaired cognitive function 

[179].  The intra-cerebroventricular administration of CRP increased mRNA levels for amyloid precursor 

protein (APP), TNF-α, IL-1β, IL-6, and CRP in cerebral cortex and the hippocampus [172]. The 

overexpression of TNF-α transgenes triggers features of chronic CNS inflammation, ataxia, seizures and 

paresis, and white matter degeneration [180].  Similarly, peripheral administration of LPS in transgenic 

APP-Tg mice led to neuroinflammation vulnerability with an increase in IL-6 level [176].  Indeed, IL-1β 

overexpression results in robust increase in tau phosphorylation in the triple transgenic mouse model of AD 
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[175].  Various neuropsychiatric symptoms in dementia are linked to the presence of proinflammatory 

components/cytokines [174, 181]. 

 
 8B. Inflammation causes Hippocampus Dysfunction and impaired cognitive function 

 
 The brain is vulnerable to neuro-inflammatory process through amyloid deposition, and this is 

implicated in one of the hypotheses of dementia pathogenesis [182, 183].  Several pro-inflammatory 

cytokines including IL-1β, IL-6, TNF-α, and TGF-β can enhance APP expression [184, 185], upregulate β-

secretase mRNA, its protein, and enzymatic activity [186], and thus increase Aβ formation [183, 187] in 

the hippocampus [188, 189].  Chronic hippocampal inflammation is linked to the onset and progression of a 

number of neurotoxic factors; they upregulate dementia-related pathologies including Aβ plaques, and 

neurofibrillary tangles (NFT) [49, 190].  Peripheral inflammation induced through LPS in C57BL/6J mice 

resulted in significantly higher levels of Aβ1-42 in the hippocampus (compared with saline controls) [191].  

Indeed, systemic injection of LPS enhanced APP expression, upregulated β- and γ-secretase activities, and 

resulted in Aβ1–42 accumulation in the hippocampus and the cerebral cortex of mice [183, 194].  

Interestingly, even a single injection of LPS has been shown to enhance levels of both Central and 

peripheral pro-inflammatory cytokines [192].  The Morris water maze and contextual fear conditioning 

tests have revealed cognitive deficits in LPS-treated mice [191].  Similarly, spatial memory was impaired in 

the mouse hippocampus following IL-1β expression [193].   A number of studies have confirmed that the 

systemic inflammation generated by LPS induces memory impairment [183, 195, 196].  The basis of this 

memory decline may be the relationship between LPS-induced accumulation of Aβ and neuronal cell death; 

substantial increase of apoptotic cells was revealed in the hippocampus of LPS treated mice (36.2 ± 3.6%) 

versus the control (2.1 ± 0.8%) [183]. Indeed, numerous data emphasize that pro-inflammatory mediators 

present in the hippocampus may induce neuro-pathological cascade, enhance cognitive dysfunction, and 

increase vulnerability for dementia [35-38, 40-49, 190, 197, 198]. 

 
 8C. Inflammation, Cerebellar Dysfunction, and Dementia 
 

 Altered central processing of visceral stimuli in IBS (e.g. chronic pain) modulate visceral sensory 

signals in both cortical area and the cerebellum [199, 200].  Indeed, cerebellar deficit may contribute to 

cognitive disability in IBS [200, 201].  Following LPS injection in rats, there is an increase of  IL-1β, TNF-

α and IL-18 in the cerebellum (albeit at different intervals) [192, 197, 202].  In a mouse model of 

neuroinflammation, proinflammatory cytokines impaired GABAergic transmission at Purkinje cells.  

Impairment in the glutamate-aspartate transporter-excitatory amino acid transporter 1 (GLAST-EAAT1) 

function in cerebellum correlates with prominent astroglial activation.  Further, IL-1β released by activated 

microglia/macrophages and infiltrating lymphocytes are implicated in synaptic alteration.  Even a brief 

incubation of normal mouse cerebellar slices with IL-1β resulted in a rapid GLAST/EAAT1 down-

regulation.  However, incubation of these slices with spontaneous excitatory postsynaptic currents (EPSCs).  
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These data highlight the crucial role played by the proinflammatory cytokines in triggering molecular and 

synaptic dysfunctions involved in neurodegenerative processes of the cerebellum [201]. 

 In addition to its primary role in motor control, cerebellum is considered to contribute to cognitive 

control also, having a bottom-up influence on cognitive/executive functions [204, 205, 211]. The 

anatomical and functional connectivity studies support a cerebello-hippocampal interaction [206, 207, 208] 

e.g. in hippocampal spatial representation map [209], hippocampal place fields, and path integration 

process [210].  In a model of neuroinflammation, cerebellar culture stimulated with endotoxin LPS and 

mediated by the pro-inflammatory cytokines, revealed myelin and axonal damage [203].  The quintessential 

cerebellar functions are linked to cognition.  For example, in community-dwelling elderly (60-85 yo), their 

executive function/attention and processing speed were correlated with absolute gait measures.  Indeed, 

poorer executive function correlates with gait impairments [213].  Further, the "cerebellar cognitive 

affective syndrome" [212] represents a set of symptoms that are similar to the known symptoms of AD.   

 Studies have shown that the cerebellum is strongly involved in cholinergic functions.  It has a 

direct influence on the cholinergic function since cerebellar stimulation may affect cortical cholinergic 

activity [216].   The cerebello-thalamo-cortical pathway is a function of cerebellar theta burst stimulation 

(TBS), which may modulate central cholinergic functions [214, 215, 216].  Two regions that possess high 

density of cholinergic receptors are the thalamus and the cerebellum [217, 218, 220]. nAChRs in the 

mammalian cerebellum regulate synaptic efficacy at two major classes of cerebellar neurons [217-219].   

 Several pathological changes occur in the cerebellum in AD, including widespread deposits of 

diffuse amyloid, ubiquitin-immunoreactive dystrophic neurites and increased microglia [221-223].  

Molecular layer gliosis and atrophy in the vermis is quite severe in AD [222, 224].  Loss of Purkinje 

neurons occurs in the vermis, cerebellar hemispheres, and the inferior olivary nucleus [222, 224].  The 

atrophy of the molecular layer (24%) and the granular layer (22%) correlated with a decrease in Purkinje 

cells [225].  In AD, cerebellum was replete with microglia in areas of amyloid deposit [226].  Several 

studies have demonstrated reduced cerebellar volume in the pre-dementia stage as well as throughout AD 

progression [227, 228].  The posterior cerebellar lobes are significantly smaller in AD patients; indeed 

cerebellar atrophy is found to be associated with poorer cognitive performance [229, 230] thus reflecting 

their possible involvement in dementia pathogenesis.  Further, the deep cerebellar dentate nucleus 

undergoes pathology in AD [231].  A significant reduction of cerebral blood flow (CBF) occurs also in the 

cerebellum in AD [232].  Changes in blood oxygen level-dependent (BOLD) signal in the cerebellum 

correlated with changes in psychometric measures of episodic memory retrieval [233].  An extensive 

literature indicates that cerebellar pathology may evolve chronically, in association with global cognitive 

changes throughout the clinical course of dementia [225, 226, 234-238]. 

 

8D. Inflammation, Delirium and Dementia 
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 Delirium - a neuropsychiatric condition is characterized by a global impairment in consciousness, 

attention, and cognition.  Delirium is usually characterized by inflammatory mediators into the bloodstream 

and activation of the inflammatory cascade.  The pathophysiology may include perivascular oedema, 

leukocyte adhesion to vessel lining, endothelial swelling, and decrease in capillary diameters and density.  

Further, in ageing and neurodegenerative disorders, microglial responses are enhanced following peripheral 

inflammation [239, 240].  Delirium is a frequent occurrence in dementia patients who suffer from systemic 

inflammatory stimulation. Therefore, an inter-relationship between aging, systemic inflammation/infection, 

delirium and dementia, is emphasized [240-242].   

9. Multiple Routes to Neuroinflammation 

 This paper has discussed the dysfunctional crosstalk along the 'brain-gut axis' existing in IBS.  The 

axis dysregulation and neuroinflammation, due in part to the passage of proinflammatory cytokines along 

the vagus, has been emphasized.  However, there are other routes through which the cytokines can reach 

brain.  These are the circumventricular organs (CVOs) and the blood-brain barrier (BBB).  CVOs are 

structures that border the brain ventricular spaces.  The fenestrated capillaries of the CVOs lack the typical 

tight junctions between adjacent endothelial cells [268].  In addition to the lack of the normal BBB and the 

dense vascular supply, the sensory CVOs (viz. subfornical organ (SFO), organum vasculosum of the lamina 

terminalis, and the area postrema) are replete with a variety of different receptors for peripheral signals, 

including regulatory peptides and cytokines (e.g. 1L-β) [269, 270, 271].  CVOs also send efferents to the 

nucleus of the solitary tract (among many other brain nuclei) [272].  Interestingly, the expression of most of 

the receptors is upregulated under conditions of systemic inflammation [270].  CVOs are the only regions 

in the brain in which neurons are exposed to the chemical environment of the systemic circulation.  One of 

the CVOs, the area postrema, has a close relationship with the NTS and dorsal motor nucleus of the vagus 

nerve [273].  Consequently, there may be more than one entry pathways for the cytokines to interact with 

neurons of the brainstem, and to upregulate dyshomeostatic processes.  Furthermore, there is evidence that 

blood-borne cytokines TNF-α, IL-1 β, IL-1 receptor antagonist (IL-1ra), and IL-6 cross the BBB to enter 

CSF and interstitial fluid spaces of the brain [274].  Thus, passage of cytokines across the BBB provides 

yet another route for systemic cytokines to potentially induce neuroinflammation [274, 275], increase Aβ1-

42 in the brain (e.g. hippocampus), and enhance cognitive deficits [40, 46-49, 191, 198, 276, 277].  

Cytokines can also induce production of cytokines and chemokines from cells of the BBB, which may then 

secrete these neurotoxic substances into the brain parenchyma [278, 279, 280]; they can be carried across 

the BBB by infiltrating leukocytes that extravasate through the BBB and enter neural tissue [281]. Indeed, 

the BBB has been shown to become more permeable during peripherally evoked inflammation, suggesting 

the increased vulnerability for neuroinflammation during pathogenesis of dementia [176, 282]. 
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10. IBS, Pathological milieu, and Correlates of Cognitive Dysfunction 
 

 IBS patients are victim of a number of pathologies described here.  They suffer from chronic 

stress, pain, gut infection and gut inflammation [112, 249-251].  Prominent sleep disorders commonly 

occur in patients with IBS. Patients with IBS have impaired sleep quality, reduced slow-wave sleep 

activity, and significant sleep fragmentation [283], but increased proportion of REM sleep [284].  The 

overall insomnia rate in IBS patients was found to be about 26.0% compared with the control mean score of 

total Pittsburgh Sleep Quality Index (PSQI) of 5.83 [285]. Standard clinical polysomnogram, 

pneumotachograph and supraglottic pressure catheter studies suggest a prevalence pattern of airflow 

limitation (IFL) and pharyngeal collapse during sleep among IBS patients (compared with healthy control 

(HC)) [286].  Intermittent hypoxia is known to be a significant pathology that may affect CNS functions 

and enhance cognitive impairment [44-49].  

 

 The IBS patients showed higher fractional anisotropy (FA) in the fornix and external capsule 

adjacent to the right posterior insula; however chronic pain severity in IBS correlated with FA of the insula 

and lateral thalamus [161].  Alterations in gray matter (GM) density/volume and cortical thickness (CT) 

have been studied in IBS patients and the HC group controlling for total brain volume, and global as well 

as regional properties of large-scale structural brain networks [287].  Relative to HC, the IBS group had 

lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral 

hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, left gyrus rectus, left 

putamen, and brainstem [287].  Further, regions that involve endogenous pain modulation and central 

sensory amplification were identified as network hubs in IBS [287, 288].  In addition data underscore that 

persons with IBS possess latent impairments in cognitive flexibility owing to altered activity of the 

dorsolateral prefrontal cortex (DLPFC), insula, and the hippocampus, and impaired connectivity between 

the DLPFC and other areas [289]. Furthermore, there is evidence for the presence of abnormal 

hypofunction of hippocampal glutamatergic neurotransmission in IBS patients.  The hippocampus - a key 

brain region that provides inhibitory feedback to the HPA axis, exhibits reduced excitatory glutamatergic 

neurotransmission and reduced N-acetyl-aspartate (NAA; a marker of neuronal integrity) levels in IBS 

patients [290].  The above data as well as dysfunctional odor identification and odor threshold are 

consistent with a central etiology of IBS [291] - supporting IBS as a disorder of brain-gut interaction [284].  

Each of the factors addressed above could significantly impinge on related CNS functions.  Specifically, 

changes in density of GM among regions involved in cognitive/evaluative functions support an ongoing 

attenuation of cognitive function in IBS [292] that may lead to dementia. 

 

11.0 Perspective 
 
 11A. Corticotropin-releasing factor – A Therapeutic Target 
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 IBS patients have recurrent abdominal pain or discomfort in the absence of any detectable organic 

abnormalities.  Corticotropin-releasing factor (CRF) is an essential coordinator of the stress response 

orchestrating a host of autonomic, neurochemical, and behavioral responses to stress [243, 244].
 
 

Perturbations to this system in humans have been shown in anxiety disorders [245] and IBS [246-248].  

Indeed, alterations in central CRF signaling pathways have been confirmed recently also in the 

pathophysiology of IBS [249].  Moreover, exaggerated brain responses to a pain threat in IBS patients are 

attenuated by acute administration of a CRF receptor 1 (CRF-R1) antagonist [250].  

 IBS is characterized by chronic increase in anxiety and stress symptoms [251, 252]; however, 

there is clinical evidence of increased engagement of the CRF/CRF receptor 1 (CRF-R1) signaling system 

[253].  Expectation of abdominal pain engages several cortical and limbic brain regions, in accordance with 

anticipatory signalling of somatic pain [254-256].  Orally administered CRF-R1 (relative to placebo) 

produced significant blood oxygen level-dependent (BOLD) signal reductions in the amygdala, 

hippocampus, insula, anterior cingulate, and orbitomedial prefrontal cortices in IBS patients [250].  Such 

treatment may therefore engage normalization of effective connectivity between key nodes of the 

emotional-arousal circuit.  Furthermore, pretreatment with CRF-R1 antagonist blocked colorectal 

distention-induced anxiety in rats, thus supporting the concept that peripheral CRH-CRH-R1 system plays 

an important role in brain-gut sensitization [246, 253, 257].  

      11B. Benefit of Prebiotics, Probiotics, and Synbiotics on Human Commensal Biome  
 

 Arguably, the highest density of microorganism resides in the gut in the human body.  Several converging 

studies on gastrointestinal inflammatory conditions suggest that these conditions are probably caused by defects 

in host immunity and/or alterations in resident GI bacterial populations.  The immune mechanisms that are 

necessary in intestinal homeostasis may become dysfunctional.  Given an extremely large numbers of microbes 

in close contact with the GI tract lining of the host, it is not surprising that dysbiosis might result in an increased 

risk of bowel inflammation. Bacterial infection [e.g. by diarrheagenic Escherichia coli (EC), including 

enterohemorrhagic (EHEC), enteropathogenic (EPEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and 

enterotoxigenic (ETEC) strains] can cause substantial morbidity in patients with functional GI disorders (FGID) 

[258]. Consequently, alterations to the gut flora can lead to pathogenic microbiota in susceptible IBS 

individuals causing local inflammation, alterations in epithelial function, gut barrier breakdown, and chronicity 

(see above). 

 

 It is quite feasible that immunologically mediated alterations including increased inflammatory mediators, 

and increased small bowel permeability of LPS can be controlled by several available options.  These include 

Prebiotics, Probiotics, and Synbiotics.  Bran is an example of prebiotic; it promotes the growth of commensal 

bacteria e.g. lactobacilli and bifidobacteria.  Probiotics utilize beneficial species such as Bifidobacteria and 

Lactobacilli, as exogenous supplementation to intestinal and colonic microbiota.  Synbiotics are exogenous 

supplementation to intestinal and colonic microbiota Synbiotics exploit the synergistic benefit by combining a 
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prebiotic with probiotic; an example would be Bifidobacteria plus fructooligosaccharides (or 

galactooligosaccharides), or Lactobacilis rhamnosuss GG plus inulins.   

 Chronic treatment with L. rhamnosus (JB-1) resulted in reduced stress-induced corticosterone and anxiety- 

and depression-related behavior, as well as region-dependent alterations in GABA(B1b) receptor mRNA in the 

brain [12].  These neurochemical and behavioral effects, however, were absent in vagotomized mice, 

identifying the vagus as a major modulatory communication pathway between the gut microbiota and the brain 

(see above).  This study further underscores the pivotal role of GI bacteria in the bidirectional communication of 

the gut-brain axis; it highlights that certain bacterial types may induce therapeutic benefits in disorders such as 

anxiety, depression, and IBS [12]. 

 

11C. Vagus Nerve Stimulation  

 
 The available current research on VNS shows that the vagus/brain in tandem may modulate immune 

responses.  There have been considerable advances in clinical neurostimulation.  VNS is frequently utilized in 

clinical medicine and is not a novel stimulation modality any longer.  VNS has been approved by the FDA as a 

neurostimulation modality in a subset of patients with treatment-resistant depression [259] and epilepsy [260]. 

 A recent study determined the beneficial effects of VNS and its mechanisms that attenuate LPS-induced 

(intraperitoneally injected) acute lung injury (ALI).  VNS improved lung injury, evidenced by a significant 

reduction in lung edema, neutrophil infiltration, and pulmonary permeability [261].  Additionally, VNS 

decreased the expressions of Src-suppressed C kinase substrate and E-selectin proteins in lung tissue and 

effectively attenuated the levels of proinflammatory cytokines including TNF-α, IL-1β, and IL-6 in 

bronchoalveolar lavage fluid [261].  The above data document the VNS efficacy in ameliorating LPS-induced 

ALI. 

 In canines with heart failure (HF), long-term, low level VNS improved left ventricular (LV) systolic 

function, prevented progressive LV hypertrophy, and improved biomarkers HF (compared with control animals 

that did not receive VNS) [262].  Further, other studies in canine model of HF have also shown that Chronic 

VNS improves cardiac autonomic control and significantly attenuates canine HF [263].  The therapeutic benefit 

of VNS in dogs included pronounced cardiac and anti-inflammatory benefits, improved heart rate variability 

and baroreflex sensitivity, and lower plasma norepinephrine, angiotensin II, and C-reactive protein levels [263]. 

 The effect of VNS was recently examined in LPS-challenged (intraperitoneal injection) mice.  The 

endotoxin induced intestinal tight junction injury with increased intestinal permeability, evidenced by increased 

amount of fluorescein isothiocyanate-dextran (FID) in circulation [264].  VNS (of right cervical vagus nerve) 

[265] ameliorated the tight junction damage, decreased permeability to fluorescein isothiocyanate-dextran, and 

reversed the decreased expression of tight junction proteins occludin and zonula occludens 1 [264].  

Furthermore, VNS inhibited the enhanced activity of nuclear factor κB.  α-bungarotoxin is a specific α7-nAChR 
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antagonist, its administration prior to VNS significantly abolished the above protective impact of VNS.  Since 

α-bungarotoxin is a specific α7-nAChR antagonist, this interesting study has, therefore, shown that attenuation 

of tight junction disruption and intestinal epithelial permeability in LPS-induced endotoxemia is mediated by 

α7-nAChR [264].  A recent simplified transcutaneous auricular VNS technique may be worth pursuing since it 

is a simpler and least invasive treatment option [266].  Given the above mentioned documented benefits of 

VNS, particularly its positive effects on many inflammatory diseases of vagus-innervated organs including GIT, 

there is a strong case for its application in IBS patients. 

12. Conclusions 

 IBS is perhaps the most common gastrointestinal disorder seen in primary care and gastroenterology 

practice.  Recent intense research has revealed how alteration in the composition of the gut microbiome 

influences animal and human physiology contributing to diseases ranging from inflammation to obesity.  The 

microbiota which has a close relationship forms an integral part of the animal/human organism; it has been 

confirmed to be an essential inherent factor that impacts human health.   An alteration in microbiome, i.e. 

dysbiosis, can be an immune-diet-mediated mechanism which may be the driving force behind GIT disease 

development.   

 The 'gut-brain' or 'brain-gut axis', (depending on whether one considers bottom-up or top-down pathways) 

is a bi-directional communication system, encompassing ENS and the vagus, as well as sympathetic nerves 

[25].  The enteric, autonomic and CNS domains are implicated in gut-brain axis dysregulation in IBS.  Owing to 

the abnormal visceral hypersensitivity, chronic abdominal pain is the most distressing symptom in the IBS 

patients.  However, these patients may have cerebella ataxia, myopathy, arthritis, hypotonia, learning disorders, 

depression, migraine, and headache – to name a few.  The altered bacterial communities (in dysbiosis of the 

gut) enhance gut inflammation, intestinal barrier dysfunction, and systemic to neuroinflammation.  Obesity and 

excess alcohol both exacerbate the above pathological stigmata.  Hence gut dysbiosis may serve as significant 

therapeutic target for the prevention/treatment of IBS-related conditions, including cognitive decline.  Important 

consideration needs to be given to modulate gut inflammation, and paradigms should be considered to develop 

new therapeutic regimens that seek to abrogate the progression of gut inflammation.  Regulation of microflora 

composition (e.g. by probiotics and prebiotics) offers the possibility to influence the mucosal and systemic 

immunity dysfunction and restore GI homeostasis.  This article addresses the above question of impact of GI 

functional disorder IBS on health and cognition.  The approach presented here lays the foundation for a 

framework - that addresses key questions in regard to possible therapeutic strategies to abrogate GI 

inflammation  neuroinflammation, and to ameliorate cognitive impairment.  Emphasis has been placed on 

strong potential that exists for food to manipulate microbiota composition; this may, therefore, provide new 

therapeutic strategies against the gut diseases, based on dietary intervention [6].  In addition, given the 

bidirectional communication between the GIT and CNS, an essential question is whether the brain can be 

exploited to modulate gut-related inflammation in IBS discussed here.  The mechanisms underlying 
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microbiome-gut-brain communication certainly provides us with possibilities of potential therapeutic strategies  

[9, 119]. 

 

 VNS may be an important therapeutic modality in this regard to upregulate vagal/parasympathetic function, 

and ameliorate gut-brain axis dysfunction [267].  It is quite feasible that dysbiosis, immunologically mediated 

alterations, increased GIT permeability of LPS/pro-inflammatory cytokines and metabolic disorders can be 

controlled and reversed by several available options.  Thse may include therapeutic use of  “Prebiotics, 

Probiotics, and Synbiotics, and VNS”.   
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