SIMON MARGINSON

3. GLOBAL UNIVERSITY RANKINGS

INTRODUCTION: IDEALIZED MODELS VS. GLOBAL DIVERSITY

There is no single ‘Idea of a University’ (Newman 1899/1996). There are many different missions, structures and organizational cultures, associated with distinctive traditions and models of higher education. All of the multiple ‘Ideas’ are nested in national contexts, historical identities and conditions of possibility. In the ‘Westminster’ countries (UK, Australia, New Zealand) national systems combine university autonomy with explicit central steering. The Nordic/Scandinavian university combines emphases on high participation social equity, research culture and university autonomy with strong state investment (Valirnaa, 2004; 2005). The German-style university opts for elite participation, research culture and state administration. The Latin American public university has high participation, scholarly culture and a central social and political role in the building of the nation-state. The emerging science universities of East and Southeast Asia, including China, Taiwan, Korea and Singapore are fostered by state investment and in Singapore are explicitly designed to secure global competitiveness. India has technology and business-focused institutions that at best combine high quality and commercialism. Beyond the research university are strong vocational sectors in Finland, Germany (the Fachhochschulen), France, and other vocational and community-based programs, not to mention the different online institutions. There are also many specialized institution in teaching and research.

But some traditions are more equal than others. In the templates of the New Public Management (NPM), which has spread to higher education systems through most of the world, the pace of its distribution quickened by policy globalization including its adoption by the World Bank in lending programs in the developing world, the favoured models are taken from the United States, or rather, a reified, idealized version of American higher education as a national market.

The NPM norm higher education in terms of government-steered competition between institutions, executive-steered competition between academic units, systems with a mixture of public and private institutions, institutions with a mixture of public and private funding, higher tuition, customer focus; university marketing and entrepreneurship, research links with industry; performance measures and output-based funding; and relations with funding agencies based on contracts, accountability and audit. NPM reforms are driven by desires for fiscal

27 Numerous studies, supportive and critical, attest to the impact of the New Public Management in system organization and institutional management: for example Clark, 1998; Marginson & Considine, 2000; Nowotny et al., 2001; Musselin, 2005; Henkel 2005, 2007; Rhoads & Torres, 2006.
efficiency, global competitiveness and more effective control systems. The NPM sees national systems as economic markets and imagines institutions as firms driven fundamentally by economic revenues and market share, not teaching, research and service as ends in themselves. US higher education, which is underpinned by nationally financed student loans that enable a relatively high level of mobility, is traditionally understood as a national market.

However, there is more than one possible ‘American model’ in a national system that is a by-word for structured diversity, as summarised in the Carnegie classification (McCormick & Zhao, 2005). There are the Ivy League private research university and the liberal arts college, the state universities and four year institutions, the community college and the newer model of for-profits trading on the equity market. Most US enrolments are in the public sector, which includes the University of California system and the land grant and other public flagship universities in different states (Turner & Pusser, this volume). But the US system is also a by-word for hierarchy and some classifications have higher status. The NPM has taken two institutional norms or models from the US experience for world-wide propagation. These are not so much blueprints as broad social imaginaries diffused across nations, institutions and social agents; often in vague forms and imprecise notions; and combining structures, technologies, behaviours and values:

The idealized model of research university, the ‘entrepreneurial model’ (Clark, 1998): centrally focused on knowledge production; emphasizing research and graduate studies, excellence and prestige; tied to business and the knowledge economy; competitive for students and funds; internationally oriented, achieving greater autonomy via financial diversity, including tuition and philanthropy. The US Ivy League private universities are closest to this model in the real world and while they are not as consumer responsive or efficient as the model imagines they impart to it a tremendous prestige;

The idealized model of the for-profit vocational university: focused on vocational training for business, computing, perhaps the mass professions such as health; using teaching from the vocational field and curriculum packages, and accountable for its immediate vocational relevance, marketing-driven in its business planning and organizational culture; relentlessly expansionary in student numbers, sites and market share; spare and efficient with no ‘frills’ such as research, libraries or academic freedoms; ‘customer’-focused using performance management of staff and quality assurance. This form has a mixed record around the world but in the US it has become embodied in corporations that raise significant equity funds (Ottmann, 2002), including the Apollo Group, parent company of the University of Phoenix. Phoenix is the largest and fastest growing private university in the USA and has spread to a dozen other countries, although in 2007 it ran into difficulties.

It is ironic these models depart from actual American practice in significant ways. First, US higher education is more politicized and less driven by pure market forces than the NPM imagines. Second, private institutions are dependant on state support via student loans, and in the case of the Ivy League the public funding of research. Public subsidies are essential to the global strength of all US institutions. Third, neither model fits the majority of American institutions, which as noted are in the public sector. This has not stopped these two models from shaping not only the policy imagination in many countries, but also shaping the emerging global market, grounded in cross-border positional goods and the stratification of research reputation as Chapter 2 described. The idealized research university is the ‘Super-league’ Anglo-American research university in the elite sub-field of the global market. The idealized for-profit vocational university is the perfected model of the mass education and commercial providers of cross-border degrees at the other end of the global market. To restate Anderson’s (1983) point about the nation as an ‘imagined community’, an emerging market is an ‘imagined competition’.

University rankings. Thus hegemonic idealized models become turned into living breathing social systems. In the process of normalizing cross-border education as a global market, the most potent mechanism has been university rankings, which began in 2003 (SJTUHE, 2007; Times Higher, 2006). Global university rankings are tools of the imagination, discursive technologies and data sets whose time has come. But university rankings also frame the imagination, and make the time. Notwithstanding their imagined (not to mention limiting, reductive and reifying) qualities, as the above account indicates normative global university rankings have not come from nowhere. They are grounded in a particular kind of prestigious institution which has helped to give them purchase in the sector; and nested in history. Hierarchical global comparison has been made possible by a particular kind of global condition in which the groundwork for imagining higher education as a universal competition had been laid not only by global economics, culture and communications and by the NPM; but more specifically in higher education by the normative methods of comparative education and development education (Marginson & Mollis, 2001); and also by a history of national rankings in different nations, especially the US News and World Report (2006). At the same time, the practices of global university rankings, which have gripped the attention of higher education institutions, governments, media and public throughout much of the world, also tend to more deeply entrench that global condition and legitimate that process of universal cross-border comparison. Rankings have become an end in themselves, without much regard as to exactly what they measure, whether they are solidly grounded or whether their use has constructive effects. The desire for rank ordering overcomes all. League tables rule. (Often institutions are rank ordered even where differences in the data are not statistically significant). This frees up the endogeneous logic of rankings to reshape the sector. It recalls Foucault in The archaeology of knowledge (1972), where he describes discourses as ‘practices the systematically form the objects of which they speak’ (Foucault, 1972, p. 49).

There is also a more immediate politics of rankings. Different rankings systems have particular ways of recording, classifying and counting, with specific shaping effects. These effects have direct implications for the rise and fall of actual institutions, not to mention whole national systems, in cross-border relations and in the distribution of prestige in the home country. Outside the USA, where only
national rankings really matter, the standing of a university is boosted by a good
global position. In other words rankings further the specific interests of certain
kinds of institution; and particular institutions and nations (though these effects can
differ between the different rankings systems). Rankings not only imagine and
describe higher education in terms of Bourdieu’s notion of a universal positional
competition in the sector, they engender precisely the kind of competitive struggle
that he discusses: a struggle over social position itself, and over the terms in which
positionality is understood, described and fixed. Many institutions attempt to
influence the system of classification and the contents of the data input used in the
rankings systems, though in this some are more effective than others. It recalls
Bourdieu’s comment in Distinction: A social critique of the judgment of taste
(1984) that: ‘Principles of division, inextricably logical and sociological, function
within and for the purposes of the struggle between social groups; in producing
concepts, they produce groups, the very groups which produce the principles and
the groups against which they are produced’ (Bourdieu, 1984, p. 479).26

This chapter. The chapter outlines the principal global rankings systems in use and
some issues and problems that have arisen, and discusses their effects in the
policies of governments and institutions. It then examines critiques of the existing
rankings systems, and alternative systems of comparison and classification that
have emerged, mostly in Europe, before an overall summation.

THE FIRST GLOBAL RANKING SYSTEMS

National Rankings

Most countries with large higher education systems have rankings of one kind or
another. Countries with rankings devised by newspapers and magazines include
China and Hong Kong China, Japan, India, the Ukraine, Romania, Poland,
Portugal, Italy, Spain, Germany, Sweden, Switzerland, France, UK, USA and
Canada. In Thailand, Malaysia, Pakistan, India, Kazakhstan, Korea, Tunisia,
Nigeria, the Netherlands, the UK, Brazil and Argentina rankings have been
instigated by ministries of education, grants councils or accreditation agencies. In
China, Japan, Australia, Kazakhstan, Slovakia, Romania, Russia, the Ukraine,
Germany, Spain, Switzerland, the UK and Canada rankings have been initiated by
universities, professional associations or other organizations (Salmi & Saroyan,
& Van Dyke, 2006); Canada; China, with several rankings systems (Liu & Liu,
2005), and Hong Kong; Germany; Italy; Poland; Spain; the UK, where four
different newspapers have developed rankings systems; and the USA.

26 In the same work Bourdieu remarks pessimistically (or is it optimistically?) that ‘the whole process
constitutes a perfect circle from which the only escape is to objectify it sociologically’ (Bourdieu.

There are also many specialist rankings systems that focus on characteristics
ranging from research output, to student services, to MBA programs, to Yahoo
Magazine’s ratings of ‘connectivity’, the university contribution to social diversity
and other features. Specialist rankings are not discussed further in detail here but it
can be noted that ratings of disciplines and other aspects are also taken up in the
larger schema of the Shanghai Jiao Tong University and the German CHE.

US News and World Report rankings: For the most part national rankings consist
of a single table but in the USA and Canada higher education institutions are
divided into groups according to mission and other characteristics, creating a set of
mini league-tables within the rankings system. In the United States the annual US
News and World Report (USNWR) survey focuses principally on aspects of
institutions seen to contribute to the quality of teaching and the student experience,
thereby servicing the national market of choice-making students whose potential
mobility is underpinned by national loans and in the case of selected students, the
broad range of tuition scholarships and other subsidies provided by institutions.
There is less emphasis on research and scholarship. The current categories of
institutions are drawn from the classification in 2000 by the Carnegie Foundation
for the Advancement of Teaching (USNWR, 2006, p. 81ff). The most important
grouping is the ‘National Universities’, 248 universities (162 public and 86 private)
each providing a wide range of fields of study and offering degrees to doctoral
level. Most of these institutions are research intensive. Other categories of
institutions used by USNWR are liberal arts colleges, Master’s level universities,
Comprehensive Bachelor level universities, business programs, undergraduate
engineering programs, and specialty schools, mostly in fine and performing arts.

In the categories of national universities and liberal arts colleges, the largest part
of the index (25 per cent) is comprised by a survey of ‘undergraduate academic
excellence’ sent to university presidents, provosts and deans of admissions. Two
items each constitute 20 per cent: student retention and graduation rate; and
‘faculty resources’ which rewards small classes, high academic salaries, high
academic qualifications and a high proportion of staff full-time. Student selectivity
at entry, a proxy for positional market demand, is 15 per cent. The lesser items are
spending per student (10 per cent), the proportion of alumni who donate back to the
institution (5 per cent), and the graduation rate after controlling for spending and
student aptitude (5 per cent) (USNWR, 2006, pp. 77-79). These details have
become very significant to institutions. Over the years institutions have learned to
modify and target their behaviour so as to maximise their USNWR position.
Arguably, this has exacerbated the reputational race (Frank, 2001). It has also had
more specific effects that are perverse from the public interest viewpoint, for
example the manipulation of student entry to maximise student scores and refusal
rates, and the growth of merit-based student aid at the expense of needs-based aid
to improve student selectivity, retention and graduation indicators. In Shakespeare,
Einstein and the bottom line (2004) Kirp provides case studies on these practices.
Table 3.1. Shanghai Jiao Tong university rankings: weightings

<table>
<thead>
<tr>
<th></th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumni of institution; Nobel Prizes and field medals</td>
<td>10%</td>
</tr>
<tr>
<td>Staff of institution; Nobel Prizes and field medals</td>
<td>20%</td>
</tr>
<tr>
<td>High citation (HiCi) researchers</td>
<td>20%</td>
</tr>
<tr>
<td>Articles in citation indexes in science, social science and humanities</td>
<td>20%</td>
</tr>
<tr>
<td>Articles in Science and Nature</td>
<td>20%</td>
</tr>
<tr>
<td>Research performance (as above) per head of staff</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: SJTUHE, 2007

The Jiao Tong University Global Ranking

The first world-wide ranking by the Shanghai Jiao Tong University Institute of Higher Education (SJTUHE) was in 2003. The SJTUHE rankings process was supported by the Chinese government, which wanted to be able to assess the research performance of Chinese universities according to accepted international standards, as one basis of strategies designed to lift the global competitive position if science and technology R&D in China. Institutional rankings have been issued annually since, and in February 2007 and rankings in five broad disciplinary fields were released. The sole focus of Jiao Tong attention is research. The Jiao Tong group argues that the only data sufficiently reliable for ranking purposes are broadly available and internationally comparable data of measurable research performance (Liu & Cheng, 2005, p. 133). It is considered impossible to compare teaching and learning ‘owing to the huge differences between universities and the large variety of countries, and because of the technical difficulties inherent in obtaining internationally comparable data’. Further, the Jiao Tong group states that it does not want to employ subjective measures of opinion or data sourced from universities themselves, as are used in some national rankings (SJTUHE, 2007).

The Jiao Tong group consults widely and continually in relation to data compilation and interpretation, and holds an annual conference of rankings experts in Shanghai. Over this time the measures have been developed, refined and tightened so that within its framework the rankings system has been successively strengthened.

As Table 3.1 shows the Jiao Tong rankings are based on a composite index whereby the weighting given to different criteria is determined by the rankings agency index. The index is primarily driven by academic publication and citation, principally in science-based disciplines with some attention to social sciences and humanities: 20 per cent citation in leading journals as listed by the publishing company Thomson; 20 per cent articles in Science and Nature; and 20 per cent the number of Thomson/ISI ‘HiCi’ researchers in the top 250-300 in their fields on the basis of citation (ISI-Thomson, 2006). Another 30 per cent is determined by the winners of Nobel Prizes in the sciences and economics and Fields Medals in mathematics, based on the location of training (10 per cent) and current employment (20 per cent). The remaining 10 per cent is determined by dividing the total derived from the above data by the number of academic staff eligible to conduct research. The separate discipline rankings fall into five categories: natural sciences and mathematics, engineering/technologies and computer sciences, life and agricultural sciences, clinical medicine and pharmacy, and social sciences. While the same broad schema is followed in the determination and weighting of criteria, there is some variation by discipline due to publishing conventions. (Full details of each method of discipline ranking are provided at SJTUHE, 2007).

The Jiao Tong index is methodologically sound and for the most part provides a valid basis for synchronic global comparisons. It measures only real outputs, rather than subjective assessments of reputation which may or may not be solidly grounded. Its methods are transparent. The exception is the Nobel Prize and Fields Medal criterion. Nobel Prizes are submission based; science and scholarship are not the only determining factors. Politicking can enter the decisions. Regardless of questions of methodological soundness however, the SJTUHE rankings value universities closest to the model of institution that the designers wished to emulate. The Jiao Tong calculations favour universities large and comprehensive enough to amass strong research performance over a broad range of fields while carrying few research inactive staff. They favour universities very strong in the sciences, universities from English language nations because English is the language of research (non English language work is published less and cited less) and universities from the USA because Americans tend to cite Americans. The number of Thomson/ISI ‘HiCi’ researchers directly and indirectly drives performance in much of the index. As noted in chapter 2 the HiCi researchers are overwhelmingly located in the USA, with more than eight times as many as the next nation, the UK (ISI-Thomson, 2006); Jiao Tong research performance is dominated by the English speaking nations, with 71 per cent of the world’s top 100 research universities in 2006, particularly by the United States with 17 of the top 20 and 54 of the top 100.

There are clear winners and losers but nevertheless, the Jiao Tong rankings have arranged world-wide higher education in a hierarchy based on a technically defensible measure of performance. As such they directly define the elite sub-field of the global market. The only doubt is where the border falls. Strictly, this is impossible to resolve in technical terms, but by naming a top 100 with place-by-place rankings and an overall top 500 inclusions the SJTUHE provides a two tier descriptor of the global research hierarchy. (As noted in chapter 2, this does not alter the fact that USA and perhaps UK universities in the top 100 enjoy a higher status than their counterparts from elsewhere). The Jiao Tong rankings do not rank universities according to student demand or volume in the cross-border degree market. The SJTUHE group has been at pains to emphasise that this is not a holistic ranking of universities in all respects, including teaching quality, it refers only to research performance. But the impact is broader. By arranging universities according to research status, the primary determinant of the value of the positional goods produced in both the national markets and cross-border programs, the Jiao Tong rankings construct a reputational hierarchy. Harvard becomes understood not as number one research site but as number one university. Market research and anecdotal evidence from educational agents indicate that the Jiao Tong rankings
are feeding directly into student choice-making in relation not only to doctoral programs, which are nested in research, but first degree and Masters programs as well. It is as significant to be excluded from the Jiao Tong top 500 as to be ranked within it. De facto the SJTU/HE has constructed a market across the entire sector.

Effects on behaviour. Except in the USA there have been profound effects on behaviours and policies. The Jiao Tong initiative has triggered many conferences on ranking, in which the SJTU/HE group itself was active, and a flurry of marketing by the successful institutions. More generally, it has catalysed in each university a desire to improve its league table position by affecting data compilation, or by improving research performance, or both. At government level, the Jiao Tong rankings have triggered the desire to see more universities in the upper echelons of the table, as a signifier of national success and potential in the policy context of a global knowledge economy. In turn this has led to policies designed to concentrate a higher proportion of research activity and resources in a selected group of leading universities, and to attract and hold more top flight researchers. Singapore has set out to attract high quality expatriates by paying American level salaries. China and Germany have selected a group universities for special research status (van der Wende, 2007a). Others, such as Australia and the UK29 are talking about it. The strategic objective is to replicate the global attractiveness and impact of the American doctoral sector, though in the absence of US economic, technological, political and cultural power this is difficult to do. In Europe, the accelerated research race is leading to multilateral action. Leiden University in the Netherlands has led the formation of a League of European Research Universities; the European Union plans a European Institute of Technology (EIT) (van der Wende, 2007a; 2007b). At the time of writing it was unclear whether the EIT would be based on existing institutions or be a new institution with virtual and/or corporeal character.

The Jiao Tong rankings trigger a positive relationship between ranking measures and total research activity, providing institutions have the policy autonomy and resources to introduce the internal reforms necessary to lift relative position (Salmi & Saroyan, 2006). For individual institutions the benefits are more doubtful. It is as significant to be excluded from the Jiao Tong top 500 as to be ranked within it. De facto the SJTU/HE has constructed a market across the entire sector.

The first Times Higher Education Supplement ‘World University Rankings’ were published in 2004. The aim is a summative, holistic ranking of university ‘quality’. Again the index is composite, and also heterogeneous, covering much more than research. Half the Times Higher index is grounded in existing reputation, with 40 per cent comprised by a survey of academics (‘peer review’) and 10 per cent by a survey of ‘global employers’. There are two internationalisation indicators: the proportion of students who are international (5 per cent) and the proportion of staff (5 per cent). Another 20 per cent is fixed by the student-staff ratio, a quantity measure used as a proxy for teaching ‘quality’. The other 20 per cent is research citation performance per academic staff. The Times issues an annual list of the top 200 universities in order of merit, plus rankings by institution in natural sciences, engineering and IT, biomedicine, social science and arts/humanities (THES, 2006).

Methodologically, the ‘Times tables’ are open to criticism, in relation to most components of the index. In relation to the two reputational surveys, it is not publicly specified who is surveyed or what questions are asked. In 2006 the survey gathers a response of just 1 per cent from 200,000 e-mails sent worldwide. Not all responses were valid and could be used, and a relatively high proportion were from nations where the Times is well-known (Sowter, 2007), so that responses from the UK, Croatia and former British colonial locations in Southeast Asia tended to be over-represented. Despite this composition effect the pool of responses were not re-weighted to create global evenness (probably impossible given that with an overall response is 1 per cent some cells had too few responses for re-weighting).

In addition the published data for 2006 amalgamated the responses to the 2004, 2005 and 2006 surveys, despite variations in method across the three years. The 2004 and 2005 surveys also experienced low response and coverage bias. In addition the student internationalization indicator rewards entrepreneurial volume building but this is not necessarily grounded in the quality or quantity of student demand or the quality of programs or services. Nor can teaching quality be adequately assessed using student-staff ratios. Research plays a lesser role in the Times index than in most other comparisons of universities The Times Higher rankings reward a university’s marketing division better than its researchers.

29 The UK’s increased focus on concentration policy post-Jiao Tong is curious given that it already has a successful concentration program. History, the Research Assessment Exercise (RAE), and the distribution of targeted research-specific funding associated with the RAE have together produced a stratified allocation of capacity. The Russell Group of universities is already functioning as an elite research sub-sector; and Cambridge and Oxford are included in every global top ten, with Imperial and University College London just below. The UK has 11 universities in the Jiao Tong top 100 (the USA has five times as many but spends 17 times as much as does the UK on higher education) suggesting that the UK is doing relatively well in terms of measured research performance.
In composing the global market the Times Higher rankings are more ambiguous than those of the SJTUHE. Leaving aside composition bias, on one hand the 50 per cent of the index measuring comparative reputation reproduces the established global hierarchy. Leading research intensive universities are on top. This effect is reinforced by the 20 per cent of the index derived from research performance. At the same time, reputation is itself a composite category, taking in more than just comparative research performance. Elements such as national prestige, the standing of universities within the national system, and marketing, also come into play. Compared to the Jiao Tong ranking, the Times Higher ranking tends to elevate well known institutions in national systems especially those in national capitals. It is likely that the Times Higher ranking has also been influenced by the relatively heavy self-marketing and promotion by some Australian and UK universities in the cross-border student market. Likewise the internationalisation of students indicator rewards institutions active in the cross-border student market. Because it is a quantity indicator, it unambiguously rewards a mass orientation within that market. Hence the Times Higher combines, in eclectic fashion, both of Bourdieu’s principles of hierarchization. The result is a less coherent hierarchy.

Many universities that have done well in the Times Higher rankings have not hesitated to exploit the marketing benefits, particularly universities active in cross-border marketing. Institutions have also been vigorous in lobbying QS Marketing, the company that carries out the data collection process, which unlike the Jiao Tong group uses data collected from the institutions themselves as well as sources such as government-generated statistical collections. However, the other effects on institutional behaviour and national policy are less clear. The ambiguity of the Times Higher rankings (including the weaknesses in methodology and data collection) mean that there is no clear line of cause and effects between improved performance and improved ranking position. The Times Higher rankings are less definitive, less defensible, more criticised and less influential than the Jiao Tong. In particular, the data series has been negatively affected by two factors: the volatility of the rankings, particularly below the leading group of universities, and marketing, also come into play. The Times Higher rankings are less definitive, less defensible, more criticised and less influential than the Jiao Tong. In particular, the data series has been negatively affected by two factors: the volatility of the rankings, particularly below the leading group of universities, and marketing, also come into play. The Times Higher rankings are less definitive, less defensible, more criticised and less influential than the Jiao Tong. In particular, the data series has been negatively affected by two factors: the volatility of the rankings, particularly below the leading group of universities, and marketing, also come into play.

Volatility of the Times Higher rankings. In 2004 the oldest public university in Malaysia, the University of Malaya was ranked by the Times Higher at 89. The newspapers in the Malaysian capital, Kuala Lumpur, celebrated. The Vice-Chancellor ordered banners declaring ‘UM a world’s top 100 university’ placed around the city, with one on the edge of the campus facing the main freeway to the airport where every foreign visitor to Malaysia would see it. But the next year in 2005 the identity of Chinese and Indian students at the University was correctly reclassified; the reputation of the University itself (long established and one of two strongest research universities in Malaysia) and the national research system were equally affected. Yet the University of Malaya had dropped 80 places without any decline in its real performance. The same kind of problems has occurred in many other universities, as Table 3.3 shows. Sharp rises and falls especially affect the second half of the top 200 where small differences in metrics generate large rankings effects. This pattern of sharp changes in the position of a large minority of universities from year to year contrasts with the more stable Jiao Tong rankings.

<table>
<thead>
<tr>
<th>University</th>
<th>Times Higher ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Malaya</td>
<td>82</td>
</tr>
<tr>
<td>Massey, New Zealand</td>
<td>108</td>
</tr>
<tr>
<td>Orato, New Zealand</td>
<td>114</td>
</tr>
<tr>
<td>Munich, Germany</td>
<td>99</td>
</tr>
<tr>
<td>Ecole Pol. Federale de Lusanne, Switzerland</td>
<td>32</td>
</tr>
<tr>
<td>Geneva, Switzerland</td>
<td>-</td>
</tr>
<tr>
<td>Basel, Switzerland</td>
<td>126</td>
</tr>
<tr>
<td>Sciences Po, France</td>
<td>143</td>
</tr>
<tr>
<td>Birmingham, UK</td>
<td>-</td>
</tr>
<tr>
<td>School of Oriental & African Studies, UK</td>
<td>127</td>
</tr>
<tr>
<td>Dartmouth, USA</td>
<td>-</td>
</tr>
<tr>
<td>Emory, USA</td>
<td>138</td>
</tr>
<tr>
<td>Pittsburgh, USA</td>
<td>173</td>
</tr>
<tr>
<td>Purdue, USA</td>
<td>-</td>
</tr>
<tr>
<td>Vanderbilt, USA</td>
<td>156</td>
</tr>
</tbody>
</table>

Source: THES, 2006 and predecessors

It was not just the University’s executive leader who was subordinated by the reclassification; the reputation of the University itself (long established and one of two strongest research universities in Malaysia) and the national research system were equally affected. Yet the University of Malaya had dropped 80 places without any decline in its real performance. The same kind of problems has occurred in many other universities, as Table 3.3 shows. Sharp rises and falls especially affect the second half of the top 200 where small differences in metrics generate large rankings effects. This pattern of sharp changes in the position of a large minority of universities from year to year contrasts with the more stable Jiao Tong rankings.

Composition bias. Both the UK and Australia do exceptionally well in the Times Higher rankings. British universities have improved their comparative performance each year. The UK has 15 per cent of the GDP of the USA but almost half as many universities in the Times Higher top 100: 15 in the UK and 33 in the USA in 2006. In comparison, the USA has 54 research universities in the Jiao Tong top 100.
Remarkably, the Times has succeeded in reducing the American hegemony from 54 to just 33 of the top 100. The British now have two of the Times Higher top three universities and in the 2006 results Cambridge UK has almost closed the gap on Harvard. Yet the Harvard faculty is cited at three and a half times the rate of its British counterparts, and arguably has a much stronger global reputation. This result appears to be an artefact of the composition bias in the peer survey.

Likewise, the performance of the Australian universities also appears to have been inflated. Despite a relatively poor citation rate and moderate staffing ratios they do exceptionally well in the peer survey of academic staff which comprises 40 per cent of the index, and the internationalisation indicators especially that for students. In 2006 the Australian National University and the University of Melbourne were both ranked by the ‘academic peers’ on the same level as Yale and ahead of Princeton, Caltech, Chicago, Columbia and Penn. Australia has 13 of the Times top 200 (Table 3.4) making it the third strongest system in the world, ahead of Japan, Canada, Germany and all of Western Europe. This makes sense in relation to international marketing but not all round performance or reputation.

CRITIQUES AND ALTERNATIVES

The potency of global rankings, unease with the effects and the fact of as many losers as winners, has generated an industry of critique. This ranges from criticisms conducted within the terms of the exercise, to those that look beyond it to the larger open global setting (Marginson & van der Wende, 2007; chapter 2 this volume).

Normalization and diversity. The first and principal concern is the implications of normalizing models on the actual existing diversity in higher education. Here the criticisms are mounted more against bias effects than long term reshaping effects and to that extent are conducted within the terms of the exercise. Bias includes the favouring of English language countries, and comprehensive universities in both rankings system and the favouring of science-based research intensive universities in the Jiao Tong rankings. One example is that of the hegemonic national public university in Latin America. Each of Universidad Nacional Autonoma de Mexico (UNAM) and Universidad de Buenos Aires in Argentina (UBA) provide access to more than 200,000 students on many sites and perform many functions in national and regional development, and social and cultural life, including national research leadership. This range prevents UNAM and UBA from concentrating resources so as to maximise research intensity and reputation like a Princeton or a Caltech, and scholarship in Spanish is unrecognised in the rankings process. They appear in the Jiao Tong rankings in the 151-200 bracket. UNAM is 74 in the Times Higher table. Yet these universities are manifestly great, and the model has distinctive strengths and a long international role. Further, as noted, beyond the research university are other kinds of institutional mission, from liberal arts colleges in the USA to the many institutions focused on vocational and professional training without a role in basic research. The reputational element in the Times Higher ranking allows it to include the Indian IITs and elevate the Dutch technical research universities above traditional institutions but vocational sectors such as the German Fachhochschulen remain excluded. In Europe concerns about diversity have triggered the evolution of institutional typologies for separated comparison, as discussed below.

On the question of language bias Altbach (2006) remarks that:

The fact is that essentially all of the measures used to assess quality and construct rankings enhance the stature of the large universities in the major English-speaking centres of science and scholarship and especially the United States and the United Kingdom (Altbach, 2006, p. 3).

English is one of two languages spoken by approximately one billion people. The other is Putonghua (‘Mandarin’ Chinese). Two pairs of related mutually intelligible languages are spoken by over half a billion people: Hindi/Urdu (900 million) and Spanish/Portuguese (450/200 million). There are Russian (320 million), Arabic (250 million), Bengali (250 million) and four more languages with 100 million plus speakers: Malay-Indonesia, Japanese, French, German (Linguasphere Observatory, 2006). These languages and others are unlikely to disappear. But knowledge in other languages has disappeared from global rankings. Most academics in English language nations are monolingual but this is not the case elsewhere. English is the only global language of research publication but not the only language of thought. The exclusion of work in languages other than English is most problematic in the humanistic social sciences and humanities/arts where national languages dominate. These problems have generated a range of responses in the non-English-speaking world, from lobbying for the inclusion of non-English publications in rankings systems, to the creation of separate language-based lists, to rejection of rankings.
More generally, because rankings are a normalising device in which any and every institution is imagined as sufficiently similar to be fully comparable with each other, they encourage context-free judgements about merit. Once institutions are arranged in a single league table the particular historical, economic and cultural factors that shape relative performance are obscured. Rankings foster the illusion of a level playing field in which each institution can rise up the table on merit and its place is determined by itself. But all institutions have specific conditions of possibility, and global higher education is not a level playing field. Institutions are tied to their history, to local context, to national resourcing (especially for expensive basic research programs), to their language of use and to the capacities of their personnel. They have self-determination, within variable boundaries. All can improve, but none have absolute freedom to move up to any possible level.

Ironically, at the same time rankings discourage initiatives in mission and organization, curriculum, pedagogy and research, except for initiatives within a short distance of the normalising model. Rather, rankings encourage university executives to concentrate energy on maximising performance and reputation within the established criteria comprising the rankings, particularly research performance and student selectivity. They raise the opportunity cost of investment in innovations in curriculum, pedagogy and research. Such innovations typically take years to be realised in improved performance and longer to feed into reputation. In this manner rankings reify not only the historically-inherited diversity, but future possible diversity as well. The normalising effects of rankings are at their worst when there is only one or a very small number of rankings systems. The more diverse and multiple the comparisons the less potent the normalising effects of one.

Problems of coverage, aggregation and summation. Rankings systems based on institutions appear to 'evaluate universities as a whole' (van Dyke 2005, p. 106), as the 'Times Higher claims. But no rankings system can cover all purposes of higher education from the point of view of all stakeholders. The outputs are multiple and complex, and not all are open to numerical measurement. Any ranking system will encompass the needs of some stakeholders better than others. Usher & Savino (2006) examine 19 league tables and university rankings systems, noting that these are driven by different purposes and varied notions of what constitutes quality. When rankings systems purport to cover the generality of purpose and interest, the partiality and exclusion are hidden, and so compounded.

This goes also to the issue of aggregation and weightings: Usher & Savino (2006) remark on the arbitrary character of the weightings used to construct composite indexes covering different aspects of quality or performance, the means by which ratings agencies construct a singular descriptor of institutions ranked against each other. Generally, composite indicators and weightings are untheorised, and 'the fact that there may be other legitimate indicators or combinations of indicators is usually passed over in silence. To the reader, the author's judgment is in effect final' (Usher & Savino 2006, p. 3). As Salmi and Saroyan (2006, p. 9) note: 'the weightings vary across league tables and typically reflect the view of the publisher of the table rather than being grounded'.

Problems specific to reputational rankings. While reputational rankings provide a sense of where market perceptions are at, they are problematic when used as the main tool or mixed with objective data. They are circular. Subjective reputation, reproduced in the rankings, becomes recycled as subjective reputation. Well known university brands generate 'halo' effects. Newcomers are blocked regardless of merit. In any case many rankers are unfamiliar with institutions not their own.

There is no way to verify the soundness of the subjective judgements of reputation by ensuring they are grounded in actual comparative knowledge.

European Responses to the Problems of Global Rankings

Practical responses to the problems inherent in the holistic rankings developed by Shanghai Jiao Tong University and the Times Higher have centred on Europe. These have taken four forms. First, development of a comprehensive comparison of teaching and research based on survey data, by the Centre of Higher Education Development (CHE) in Germany. Second, construction of a range of publication and citation metrics by a Leiden University group. Third, negotiation of a typology of European institutions enabling a more diverse set of comparisons than permitted by single scales. Fourth, the development of an agreed set of principles to guide inter-institutional comparisons, the Berlin Principles.

The Centre for Higher Education Development (CHE) comparisons. The Centre for Higher Education Development (CHE), located in Gutersloh in North Rhine-Westphalia in Germany, has developed an approach to comparisons between the programs of different universities, in conjunction with the German Academic Exchange Service which assists international students and the publisher Die Zeit.

The CHE dispenses with holistic rank ordering of institutions in league tables, avoids problems of arbitrary weighting and composite indicators; admits multiplicity of purpose into the process of comparison, and has shifted the

30 The classical case is the American survey of students that ranked Princeton law school in the top ten law schools in the country. But Princeton had no Law school (Frank & Cook, 1995, p. 149).
normative power of the comparison process from the ranking agency to the user of higher education. Its approach to comparison has also secured wide-ranging support. The CHE methodology lacks the emotive potency of a single league table but arguably provides more data, and more useful data. It represents the most potentially transformative challenge to the present logic of global positional competition that has so far evolved, especially given its potential to become a European-wide system, and the total size of the European higher education area.

CHE surveys 130,000 students and 16,000 academic faculty in almost 250 higher education institutions. It collects data on student experiences and satisfaction, and academic recommendations on the best places in each field, focusing on 36 academic subjects each offered by a substantial number of institutions, which are updated in clusters within a three year cycle. It supplements the surveys with independent sources comprising one third of the data base. No data are taken from institutions. CHE ranks institutional departments according to each separate indicator of academic and service quality, assigning the top third, middle third or bottom third of all institutions. The CHE refuses to integrate data for each institution, on the grounds that there is no theoretical or empirical basis for doing so. It argues that there is no ‘one best university’ across all areas, and ‘minimal differences produced by random fluctuations may be misinterpreted as real differences’ (CHE, 2006). Moreover, students have heterogeneous preferences as to mission and purpose. Accordingly, the CHE data are made available to prospective students and the public free of charge via an interactive web-enabled database. Any person can interrogate this data base by investigating and rank identified disciplines and administrative services, using their own combination of criteria (CHE, 2006), thereby creating the weightings and rankings themselves.

The CHE approach acknowledges that the definition of ‘quality’ is purpose-driven and open to variation and passes power over the definition from the ranker to the consumer. It also provides by far the most comprehensive set of comparative data. The data on teaching quality are limited by their subjective nature, but this is the only inter-institutional comparison on teaching executed successfully. Significantly, the CHE comparisons have proven highly successful with public and academic experts on rankings systems (van Dyke, 2005; Salmi & Saroyan, 2006; Usher & Savino, 2007). The CHE data collection has been extended to Switzerland, Austria, the Netherlands and Flanders, the Dutch-speaking portion of Belgium. ‘The CHE ranking system is thus well positioned to develop into a European-wide system’ (van der Wende, 2007b).

One difficulty with the CHE approach is that this method depends on a relatively high level of homogeneity between institutions, and between the different programs and services offered by those institutions, to enable comparison. Therefore to successfully execute the CHE approach in the United States, it would be necessary to separately compare the institutions in the different Carnegie classifications. Likewise to develop a CHE-type system for the whole of European higher education, more varied than that of Germany alone, would require a typology and separated comparisons for the different groups of institutions.

Table 3.5. Top ten European research universities as measured by publications and citations using four different indicators by the CWTS at Leiden University

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cambridge UK</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>UC London UK</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Imperial C UK</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>UC London UK</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>Oxford UK</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>LM Munchen Den</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Oxford UK</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>Imperial C UK</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>LM Munchen Den</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Cruiser C UK</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>LM Munchen Den</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>Paris 06 France</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Paris 06 France</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>Milan Italy</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>Utrecht Neth</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Milan Italy</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>Utrecht Neth</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>Cath Leuven Belg</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Utrecht Neth</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>Cath Leuven Belg</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>Geneva Switz</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Cath Leuven Belg</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>Geneva Switz</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>Erasmus Rot Neth</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Erasmus Rot Neth</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>Erasmus Rot Neth</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>Oxford UK</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Oxford UK</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>Oxford UK</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>Imperial C UK</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Source: CWTS, 2007

The Leiden metrics. The Centre for Science and Technology Studies (CWTS) at Leiden University in the Netherlands is preparing a new ranking system based solely on bibliometric indicators that it has developed (CWTS, 2007). This takes in the 400 universities with the largest number of academic publications, covering the output of at least 600 active researchers in each of those universities. The Leiden group has developed four sets of indicators:

1. Ranking by number of publications;
2. Ranking by average impact as measured by citations per publication;
3. Ranking by average impact as measured by citations per publication, modified by normalisation for academic field (controls for different rates of citation in disciplines, for example the number of citations per publication is lower in engineering and applied science than medicine).
4. Ranking by average impact as measured by citations per publication, modified by normalisation for academic field as for 3, and controlled also for institution size.

The Leiden group considers indicator 4 to be its ‘crown’ indicator. This measures the overall performance of a research university independent of its size, thereby removing one limitation of the SJTUHE comparison. Other strengths of the Leiden approach compared to the Jiao Tong rankings are the modification for different rates of citation by field, removing the effect of academic field composition on the outcome of comparisons between institutions; and the avoidance of the problem of composite indicators and aggregation based on arbitrary weightings. The Leiden group has also dispensed with the Nobel
The Leiden group has initially applied its method to the top 100 research universities in Europe and Israel combined. The results show the sensitivity of rankings to the ‘tweaking’ of methodologies and raise questions about the singular value of not just the Jiao Tong ranking but the Jiao Tong approach to publication volume and citation impact. As Table 3.5 demonstrates, when the Jiao Tong ranking is shifted from total number of publications to the quality of publications measured by citation, the dominance of the UK universities is diminished, while the British system remains number one, and universities from Switzerland, the Nordic countries and Scandinavia come into their own. Using the ‘crown’ principle the UK and Swiss universities occupy nine of the top ten places.

A European Typology. To value diversity in comparison between institutions it should be transparent and well understood, and there must be cultural and/or administrative barriers to ‘mission drift’ and convergence around a single dominant model of institution, normally that of the comprehensive research university. This requires an agreed typology of higher education institutions based on distinctive mission. The US has the Carnegie classification, which was revised in 2005 (Sapp & McConnell, 2006). In Europe a comprehensive typology is being developed at Rome (van Vught et al., 2005; van der Wende, 2007b). This typology is made up of a number of parallel schemes each based on a different characteristic: size of institution, legal status, type of education (degrees offered, range of disciplines), student and staff profiles, activities in research and innovation. Early work suggests that there is considerable variation in the quality of potential data under the schemes. For example bibliometric indicators for basic research are well established while indicators for the socio-economic relevance of applied research are not. The areas of teaching, lifelong learning, innovation, knowledge transfer and local and regional engagement all require further work (van der Wende, 2007b). In the evaluation of the typology in European institutions are being asked to specify their own missions, consistent with autonomy. However it is unclear whether once the typology is established institutions will be free to redefine their mission and category; and if so what could retard academic drift into higher status categories over time, which would tend to confute categories and weaken diversity.

Further, while a typology offers the prospect of protecting diversity at the level of broad category, as the US experience shows it does not necessarily overcome the other difficulties of league tables based on holistic comparison. This confirms that to achieve useful comparative data that are consistent, transparent to the users and foster motivation in all institutions to improve performance; while sustaining diversity and avoiding the problems of partiality and validity inherent in holistic league tables; the better approach would be to use the CHE methodology of user-oriented comparison in conjunction with a typology. If this was done on the global scale, the categories of the typology could include diversity of language as well as diversity of mission and program.

The Berlin Principles. The formulation of the Berlin Principles (UNESCO/IHEP 2006), adopted on 18-20 May 2006, was led by the higher education program of UNESCO and the Institute for Higher Education Policy in Washington. The Principles suggest that rankings and league tables should be transparent as to purpose, method and sources of data, and the weighting of indicators; use valid and relevant indicators, where possible focusing on outputs rather than inputs; use audited, verifiable and scientifically sound data; take diversity into account; and be refined and improved over time. To this extent the Principles present no challenge to the Jiao Tong approach, although those related to transparency and validity might be invoked as a basis for criticism of the Times Higher. More challenging is the requirement in the Principles that rankings ‘specify the linguistic, cultural, economic, and historical contexts of the educational systems being ranked’. It is also suggested that rankings ‘be compiled in such a way that eliminates or reduces errors in original data, and be organized and published in a way that errors and faults can be corrected’, a nod in the direction of the CHE approach to comparison.

The formulation of the Berlin Principles was attended by much goodwill but did not meet the more fundamental criticisms that had been raised in relation to league tables in which whole institutions are represented by single numbers. Essentially the Berlin meeting went with the trend to global reputational rankings, attempting to modify that trend rather than transform it. The opportunity to encourage the spread of the CHE approach beyond Europe was missed, despite widespread support for that approach in policy circles around the world. In the Principles the problems of arbitrary selection of indicators and weightings, partial coverage and bias including language bias, disincentives to invest in local innovations with longer lead times; and the circular recycling of reputation, remain untouched.

CONCLUSION

Taken together these developments suggest that in the foreseeable future global university rankings will retain all or much of their potency, including their growing effects in relation to the movement of students and researchers, and the reshaping of national policies of research concentration and stratification. However, a more plural set of indicators and of rankings will develop; and greater specialisation in relation to mission and function, as already indicated by discipline indicators and the range of publication and citation metrics. Within Europe, where a coordinated policy-based approach to comparison and classification is in prospect, it is likely that a more nuanced and sophisticated set of indicators and measures will be devised, in which there is less or no emphasis on holistic institutional rankings. The CHE use of consumer-selected measures is likely to be further developed. However the UK is more likely to retain its fascination with singular league tables.

Rankings function as a meta-performance indicator. They do more than ‘reflect’ an institution’s profile and quality. The criteria used to determine each institution’s position in the ranking system become meta-outputs that each institution must place on priority. In that manner rankings begin to define what ‘quality’ means and they shape its subsequent evolution. In the world according to the Shanghai Jiao
Tong University rankings, ‘quality’ means scientific research and Nobel Prizes, not teaching or community building or solving local or global problems. In the world according to the Times Higher, ‘quality’ means reputation, primarily; and larger staff-student ratios, research, and international staff and students, and it is partly fostered by marketing the institution across borders, which drives up Times Higher-defined performance. It seems that institutional leaders, and governments, have been given their marching orders. By shaping university and system behaviours, while standardising the definitions of outcome and output, rankings begin to decide university mission and the balance of activity. In part the power over university identity is shifted from institution itself to the ratings agencies and to the market they are helping to construct (by-passing national governments along the way!). This shift from autonomy to heteronomy in itself is very important, and carries with it serious problems for the trajectory of higher education in many countries. But these should not be overstated. The heteronomy is not complete. It scarcely touches the top institutions, which remain masters of their own identity; and the more diverse and plural are the systems of comparison and ranking, the less that any one ranking system will reshape the other institutions below the top.

Regardless, the contribution of global university rankings to market formation in the sector proceeds apace. Rankings render higher education and research more amenable to singular processes of measurement, production and distribution in the commodity form, for economic markets or quasi-market competition. Ranking of any and every university in the world, that supremely ambitious (some would say fantastical) project, for all its savage violation of diversity of mission and the specificity of values and cultures, allows us to imagine higher education and research in terms of one inter-dependent world. This in itself is a boon. Education and knowledge have become inter-dependent on a worldwide scale, just as economy and culture (ecology always was globally inter-dependent) and it is time this was recognised. And the possibilities are open. But a rankings mediated economy and culture (ecology always was globally inter-dependent) and it is time

REFERENCES

Simon Marginson

Centre for the Study of Higher Education
University of Melbourne
Melbourne, Australia
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
MARGINSON, S

Title:
Global university rankings

Date:
2007

Citation:

Persistent Link:
http://hdl.handle.net/11343/28473

File Description:
Global university rankings