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Abbreviation 

Aβ - amyloid beta  

AD - Alzheimer's disease 

BBB - blood-brain barrier  

BFVs - Blood flow velocities  

BOLD - blood-oxygen level dependent  

BP - High blood pressure, hypertension  

CAA - cerebral amyloid angiopathy  

CBFV - Changes in CBF velocity  

CSD - Chronic sleep deprivation  

CMRglc - cerebral metabolic rate of glucose  

CMRO2 - cerebral metabolic rate of oxygen  

CV - Cerebrovascular  

CRP - C-reactive protein  

DMN - default-mode network  

EC - entorhinal cortex  

fMRI - Functional MRI  

FDG  - 2-[18F]fluoro-2-Deoxy-D-glucose 

GluRs - glutamate receptors  

HbA(1c) - Glycosylated haemoglobin  

Hhcy - hyperhomocysteinemia   

HIF-1α - Hypoxia-inducible factor 1-alpha  

ICAM-1 - Intercellular adhesion molecule 1  

LTP - long-term potentiation 

MCP-1 - monocyte chemoattractant protein  

MetS - metabolic syndrome 

MDD - major depressive disorder  

MMP - matrix metalloproteinase   

MCI - mild cognitive impairment  

MMSE - Mini-Mental State Examination (MMSE) 

MRS - magnetic resonance spectroscopy  

NO - nitric oxide  

NOS - nitric oxide synthase  
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NFT - neurofibrillary tangles  

PCC - posterior cingulate cortex  

PET - positron emission tomography  

PIB - Pittsburgh compound B  

rCBF - regional cerebral blood flow  

ROS - reactive oxidative stress  

SPECT - Single photon emission computed tomography  

SPs - senile plaques  

T2DM - type 2 diabetes mellitus  

TBM - tensor-based morphometry  

TGF-β1 - transforming growth factor-β1  

VaD - vascular dementia () 

VCAM-1 - vascular cell adhesion molecule 1  

WMH - white matter hyperintensities  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4 of 59

Journal of Neuroscience Research

Journal of Neuroscience Research

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

5 

 

 

 

Significance 

 

Aging, hypertension, diabetes, hypoxia/OSA, obesity, vitamin B12/folate deficiency, depression, and traumatic 

brain injury – synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and 

glucose hypometabolism.  These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in 

turn decrease nitric oxide, and enhance endothelin, Amyloid beta deposition, cerebral amyloid angiopathy, and 

blood-brain-barrier disruption.  Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger 

several pathological feed-forward and feed-back loops. The above upstream factors persist in the brain for 

decades upregulating amyloid and tau, before the cognitive decline. The above cascades lead to neuronal Ca2+ 

increase, neurodegeneration, cognitive/memory decline, and AD.  However, strategies are available to attenuate 

cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. 
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Abstract 

 

Alzheimer's disease (AD) is the leading cause of dementia among the elderly. There is significant evidence that 

pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in 

promoting cognitive dysfunction. Several comorbid conditions including aging, hypoxia/OSA, hypertension, 

obesity, vitamin B12/folate deficiency, diabetes, depression, and traumatic brain injury – promote diverse 

pathological mechanisms. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain.  

In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive 

decline.  The above comorbid disease conditions may share and synergistically activate the above 

pathophysiological pathways.  Inflammation upregulates cerebrovascular pathology through proinflammatory 

cytokines, endothelin-1, and nitric oxide (NO).  Inflammation-triggered ONS promotes long-term damage 

involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feed-forward and 

feedback pathological loops.  The latter includes dysfunctional energy metabolism (compromised mitochondrial 

ATP production), amyloid beta generation, endothelial dysfunction, and blood-brain-barrier disruption.  These 

lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic 

dysfunction and neurodegeneration.  In essence, hypoperfusion deprives the brain with its two paramount 

trophic substances, viz. Oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and 

neuronal degeneration/loss leading to both gray and white matter atrophy, cognitive dysfunction, and AD.  This 

paper underscores the importance of treating the above mentioned comorbid disease conditions to attenuate 

inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism.  Additionally, 

several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. 
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1. Introduction 
 

Alzheimer's disease (AD) is a sporadic late-onset disease; its prevalence increases with the age of 65 years 

onwards.  Since we are living longer, there is a stark shift in the epidemiology of age-related diseases including 

an escalating prevalence of AD and vascular dementia (VaD) (Whitehouse et al., 1997).  Approximately 5.2 

million Americans have late-onset AD, and about 200,000 people younger than 65 years suffer from the early-

onset AD (Alzheimer's Association, 2014).  As per projections, the AD risk may double every five years 

(Takeda et al., 2008), and by mid-century, the number of AD patients in the United States may grow to about 9 

million.  AD adds a massive financial burden, and $214 billion are estimated to be the health care cost in 2014 

(Alzheimer's Association, 2014). 

AD patients suffer from the progressive and gradual decline in memory and cognitive functions. While the 

etiology of the late-onset AD is largely unknown, familial early-onset AD is associated with gene mutations.  It 

has been emphasized in recent years that environmental factors and epigenetic alterations may play a significant 

role in the neuropathogenesis of AD (Daulatzai, 2013b; 2014; 2015a; 2015b). Indeed, aging is an important risk 

factor for upregulation of gene expression related to inflammation and apoptosis in several age-related diseases. 

Mitochondrial dysfunction with resulting reactive oxygen species (ROS) generation is known to accompany 

aging (Daiber et al., 2015; Wu et al., 2015). Moreover, aging correlates with genetic and epigenetic 

perturbations and telomere attrition (Aviv et al., 2002; Blackburn et al., 2015).   

Progressive atrophy, degeneration, and loss of neurons (referred here as neurodegeneration) are characteristic 

features of several neurodegenerative diseases.  These include AD, Parkinson’s disease (PD), Amyotrophic 

lateral sclerosis (ALS), Creutzfeldt-Jakob disease, and Huntington disease.  The most salient risk factor for 

developing neurodegenerative diseases, in general, and late-onset AD, in particular, is aging. The characteristic 

visible neuropathological lesions in AD are 1. senile plaques (SPs) formed by amyloid beta (Aβ) and located 

outside neurons, and  2. neurofibrillary tangles (NFT) comprised of hyperphosphorylated tau (i.e. phospho-tau) 

are located within neurons (Su et al., 1996; Zhao et al., 2010).   According to the amyloid cascade hypothesis, 

Aβ is the noxious agent that triggers angiopathy, synaptopathy, glial (including microglial and astrocytic) 

activation-related inflammatory and reactive oxidative stress (ROS) responses, tau hyperphosphorylation (owing 

to altered activities of relevant kinases and phosphatases), and neuronal death (De Felice et al., 2007).  

According to Tau hypothesis, phospho-tau accumulation, and the neurofibrillary degeneration occurs in neurons.   

The paired helical filaments in NFTs induce abnormal cellular metabolism and cause neuronal death.  NFTs, 

therefore, are intimately associated with memory and cognitive dysfunctions (Goedert, 1993; Wes et al., 2014). 

The intracellular endoplasmic reticulum (ER) is a reticular membrane network (Baumann and Walz, 2001) that 

performs several vital functions.  These include: (i) protein folding, (ii) maintenance of cellular calcium, (iii) 

synthesis of lipids and sterols, and (iv) regulation of cellular homeostasis (Baumann and Walz, 2001; Gorlach et 

al., 2006; Schroder and Kaufman, 2005; Bernales et al., 2006; Ron and Walter, 2007; Kim et al., 2008).  
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According to ER stress hypothesis, ER stress and activated unfolded protein response (UPR) signaling are 

present in AD (Hoozemans et al., 2009) as well as other chronic neurodegenerative conditions (Lindholm et al., 

2006; Paschen and Mengesdorf, 2005; Matus et al., 2008; Kanekura et al., 2009; Scheper and Hoozemans, 

2009).  Importantly, diverse conditions such as cerebral ischemia and viral infections can also induce ER stress 

and trigger the UPR signaling (Hoozemans et al., 2009; DeGracia and Montie, 2004; Williams and Lipkin, 

2009).  Indeed, ER stress of neurons is linked to the inflammatory activation that may promote AD pathogenesis 

(Salminen et al., 2009).   

Data from the brains of those with advanced age and AD have consistently shown damage or abnormalities in 

basal forebrain projections to the cortex; this correlates with cognitive decline.  Hence, the "cholinergic 

hypothesis" postulates that a loss of cholinergic function in the brain contributes to the cognitive decline 

associated with advanced age and AD (Bartus, 2000; Schliebs and Arendt, 2011; Shen and WU, 2015). 

Therefore, to date, the mainstay of preventive treatment of AD is acetylcholinesterase inhibitors (Hosoi et al., 

2015).   

Brain’s viability and its myriad of functions critically rely on the continuous supply of energy substrates and 

oxygen via blood flow.  During functional activation – when there is an increased energy demand, regional 

cerebral blood flow (rCBF) is locally adjusted in the brain to meet this demand. This is achieved by regulating 

microvessel diameter and concomitant dilatation of upstream arteries and arterioles (that supply blood to the 

capillary bed). This physiological neurovascular coupling is essential regarding rCBF changes being linked to 

neuronal activity, temporally and spatially (Feuerstein et al., 2014; Vanzetta et al., 2008).  Any sustained 

reduction in rCBF, therefore, may reduce tissue function and cause regional cerebral damage.  

2-[18F]fluoro-2-Deoxy-D-glucose (FDG) positron emission tomography (PET) (FDG-PET) is used to measure 

the cerebral metabolic rate of glucose (CMRglc) as a surrogate for neuronal activity.  FDG-PET shows in vivo 

cerebral glucose utilization (CGU) and changes in brain metabolism.  The term upstream refers to arterial 

branches the blood flows through before reaching the metabolite exchange (glucose, O2/CO2) site.  Under 

pathologic conditions, the upstream blood supply limitation could be the proximal (involving arterioles or pial 

arteries) or distal (involving the carotid artery and heart). 

Cortical spreading depolarizations (CSD - a self-propagating wave of membrane/tissue depolarization) is 

associated with significant changes in tissue metabolism and blood flow (Ayata et al., 2006, Feuerstein et al., 

2010, Lauritzen, 1987; Piilgaard et al., 2009).  CSD can arise in the normal brain; it can also arise after brain 

injury (Kumagai et al., 2010, Shin et al., 2006; Strong et al., 2007) and clinically (Dohmen et al., 2008, 

Fabricius et al., 2006, Hartings et al., 2011; Lauritzen et al., 2011).  As such, CSD is a phenomenon that 

correlates with the normal or reduced rCBF response (via upstream blood supply) to energy needs in health and 

disease. The close regional coupling of rCBF, therefore, involves both cerebral metabolic rate of oxygen 

(CMRO2) and CMRglc (Powers et al., 2011).  Neurovascular coupling (i.e. functional hyperemia) involves 

communication between neurons, astrocytes and cerebral vessels and this neurovascular unit adjusts blood 

supply for energy and oxygen needs of activated neurons (Lecrux and Hamel, 2011).  Astrocytes cover the 

surface of intraparenchymal capillaries through their processes, suggesting that they may participate in glucose 

uptake.  Other astrocytic processes wrap around synapses – the sites for receptors and reuptake of 
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neurotransmitters.  There are specific glutamate transporters on the astrocytes, and glutamate stimulates glucose 

uptake into these cells (Magistretti and Pellerin, 1999).  

A growing body of evidence emphasizes an association between vascular risk factors and Cognitive decline 

(Dickstein et al., 2010, Murray et al., 2011; Wang et al., 2014).  Further, sex/gender is considered to play a 

pivotal role in the susceptibility for developing dementia induced by cardiovascular risk factors (Azad et al., 

2007; Rosvall et al. 2009; Dufouil et al., 2014; Chêne et al., 2015).  This interrelationship is important in 

understanding etio-pathophysiological mechanisms and the impact of vascular pathology in promoting 

neuropathology (i.e. plaque and tangle pathology) (Yarchoan et al., 2012).  The underlying neuropathology may 

persist for decades before clinical diagnosis of AD. This paper is focused on the significance of chronic 

hypoperfusion-related pathophysiological signaling.  The latter may upregulate several pathological mechanisms 

including endothelial dysfunction, glucose dyshomeostasis, inflammation, oxidative stress, and neurotoxicity. 

These trigger memory and cognitive dysfunction - before frank AD.  This paper underscores significant 

evidence relevant to AD and emphasizes a link between the two major upstream pathogenetic factors and 

neuronal dysfunction and degeneration.  The triggering of cognitive/memory dysfunction and AD, therefore, is 

posited to be a function of chronic hypoperfusion and glucose hypometabolism.  Readers may find some early 

reviews on hypoperfusion, oxidative stress, and neuroinflammation interesting (de la Torre, 2012; Kim et al., 

2012; Liu and Zhang, 2012).  

2. Conditions That Promote Hypoperfusion 
 

Various factors including older age, hypertension, hypercholesterolemia, diabetes, obesity, atherosclerosis, and 

cardiac diseases have been shown to enhance vascular risk and facilitate onset and progression of cognitive 

impairment (Debette et al., 2011, Kalaria, 2010, Murray et al., 2011; Rodrigue, 2013; see Table 1).  Hence, 

identification and attenuation of these vascular risk factors in midlife must encompass an essential strategy to 

thwart the onset and progression of cognitive decline in advanced age. 

      2.1. Aging 

Aging is an important risk factor for several age-related diseases and upregulation of gene expression related to 

inflammation and apoptosis. Aging is also correlated with genetic and epigenetic perturbations, telomere 

attrition (see above), mitochondrial dysfunction, and ROS increase (see below).  An interrelationship has been 

emphasized between unhealthy diet, dysfunctional breathing, sleep restriction, and excess consumption of 

alcohol - and neuropathogenesis of cognitive dysfunction (Daulatzai, 2015b).  AD, therefore, is recognized to 

arise from multifocal and multi-factorial mechanisms (Fig. 1.). The latter promote potentially deleterious 

downstream factors including amyloid and tau increase, mitochondrial dysfunction, synaptic injury/loss, and 

eventual neuronal degeneration and loss (Daulatzai, 2015a-2015d).  

 

Two important indices of healthy brain aging are rCBF and  CMRO2.  A PET study (in 66 healthy volunteers 

aged 21 to 81 years) found that the magnitudes of CBF and CMRO2 declines in large areas of the cerebral 

cortex (Aanerud et al., 2012).  Recently, perfusion deficit in the brain of cognitively normal older adults has 

been documented in the inferior parietal lobules (Okonkwo et al., 2014).  Some possible reasons may be that 

aging is inevitably accompanied by vascular pathology (Bouras et al., 2006; Jeynes and Provias, 2006).  The 

Page 9 of 59

Journal of Neuroscience Research

Journal of Neuroscience Research

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

10 

 

latter may include cortical microinfarcts (Kövari et al., 2004; 2007), gray matter lacunes (Gold et al., 2005), and 

irreversible endothelial dysfunction (Hallam et al., 2010; Thal et al., 2009). Vascular pathological burden as 

hypoperfusion and neurodegeneration both precedes and parallels cognitive decline (Giannakopoulos et al., 

2007; Jellinger, 2002; Kalaria et al., 1993; Koike et al., 2011).  NFT were common in tau-positive neurons in the 

hippocampus from non-demented elderly persons (Takayama et al., 2002). In the elderly without dementia but 

memory dysfunction, cerebral circulatory/vascular abnormalities, and deleterious metabolic and functional 

impact may contribute to mild cognitive impairment (MCI) (Beckmann et al., 2003, Bennett et al., 2005; 

Okonkwo et al., 2014). 

     2.2 Intermittent Hypoxia/Obstructive Sleep Apnea  

 There are marked changes in cerebrovascular control during sleep disordered breathing notably Obstructive 

Sleep Apnea (OSA); this suggests that the cerebral circulation may be vulnerable to intermittent hypoxia (fig. 

1.).  Changes in CBF velocity (CBFV) and vascular compliance were evaluated (using transcranial Doppler 

sonography and cerebral pulse transit time) in patients with severe OSA.  CBFV reactivity was significantly 

diminished in dysfunctional respiratory periods.  CBF hyporeactivity was evident as a loss of vasoreactivity and 

increased arterial stiffness (Foster et al., 2007; Furtner et al., 2009).  Further, a reduction in CBF occurs during 

Non-REM sleep despite a relative hypercapnia state (Baril et al., 2015; Corfield and Meadows, 2006). Patients 

with severe OSA (compared to controls) showed reduced CBF in the left parietal lobules, precentral gyrus, 

bilateral postcentral gyri, and right precuneus (Baril et al., 2015).  Hence, vascular impairment in these AD-

related important brain areas could result in neurodegenerative processes, neuronal dysfunction, and cognitive 

deficits (Fig.1.). 

There is a close correlation between mean arterial pressure and CBFV.  Thus, cerebral perfusion pressure 

prevents cerebral ischemia.  Cerebrovascular autoregulation counteracts physiological fluctuations and 

maintains perfusion pressure.  However, cerebral hypoperfusion may occur when there are a systemic 

hemodynamic failure and chronic dysfunctional cerebrovascular autoregulation.  However, cerebral 

autoregulation is inadequate from rapid pressure changes in OSA (Bålfors and Franklin, 1994), and is, therefore, 

unable to protect the brain.  Nocturnal apneas are associated with profound changes in CBF.  Normally, vaso-

neuronal coupling occurs owing to CBFV variations during neuronal stimulation (Daffertshofer and Hennerici, 

1995). However, there is significant neuronal dysfunction in OSA patients (Daulatzai, 2015d; also see below) 

rendering vaso-neuronal coupling sub-optimal and CBFV insufficient.  OSA patients develop decreased CBF 

velocity and delayed cerebrovascular compensatory response owing to sustained alterations in blood pressure. 

The above-mentioned increase the risk of cerebral ischemia during OSA (Daulatzai, 2013a; 2015b; Urbano et 

al., 2008).  Apnea-induced hypoxemia in conjunction with reduced CBF (nocturnal and awake) would sustain 

cerebral hypoperfusion in OSA patients (Daulatzai, 2012; 2013a; 2013b; 2015a; 2015b; Foster et al., 2007). 

     2.3. Hypertension  

Various epidemiological studies link Hypertension to AD. Hypertension leads to changes in blood vessel wall in 

the brain; this may upregulate hypoperfusion and ischemia thus promoting AD neuropathogenesis (Hughes et 

al., 2015). There are epidemiological data that show a relationship between high blood pressure (BP) and 

cognitive dysfunction and dementia. The relationship between hypertension and the prevalence of AD/dementia 
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have been shown in cross-sectional studies; indeed, longitudinal studies have suggested that high BP in midlife 

is associated with a higher incidence of AD in later life (Launer et al., 2000).  A recent arterial spin labeling 

study has documented that individuals with hypertension have reduced temporal and occipital brain perfusion as 

well as decreased total and regional cortical thickness (compared with controls without hypertension) (Alosco et 

al., 2014). The meta-analysis also found that high BP leads to brain volume reduction, including the 

hippocampus (Beauchet et al., 2013). The synergistic effect of high BP and type 2 diabetes mellitus (T2DM) has 

a significant impact on hypoperfusion and cortical thickness (CThk). The latter was evident in the right lingual 

gyrus, posterior cingulate, precuneus, superior and middle frontal, and middle and inferior temporal regions 

(Tchistiakova et al., 2014). The above pathology and cognitive decline are inter-linked (Alosco et al., 2013).  

Arterial spin-labeling MR imaging studies in the MCI patients (relative to controls) showed significant regional 

hypoperfusion in the right inferior parietal lobe.  Further, the AD patients (relative to controls) showed 

significant regional hypoperfusion in several regions including right and left inferior parietal cortex extending, 

bilateral posterior cingulate gyri, and bilateral superior and middle frontal gyri (Johnson et al., 2005).  After 

accounting for underlying cortical gray matter atrophy, the hypoperfusion persisted in the right inferior parietal 

lobe, bilateral posterior cingulate gyri, and right and left middle frontal gyri (Johnson et al., 2005).  

Two important pathologies i.e. atherosclerosis and impaired cerebrovascular autoregulation are caused by 

chronic hypertension (Duron and Hanon, 2008;  Kennelly et al., 2009; Qiu et al., 2005).  In the Honolulu-Asia 

Aging study, 3605 Japanese-American men were followed prospectively over 26 years (1965-1991). The study 

found that high Systolic BP in midlife has a stronger adverse effect on cognitive function in APOE- positive 

persons (Peila et al., 2001). This particular study also found that elevated BP in midlife was associated with 

brain atrophy and greater numbers of amyloid plaques in both neocortex and hippocampus.  However, elevated 

diastolic BP was associated with extensive NFT in the hippocampus (Petrovitch et al., 2000).  Further, the Aβ-

related pathological risk, e.g. of cerebral amyloid angiopathy (CAA), was found to be higher when BP was 

higher (Shah et al., 2012). This indicated that hypertension compromises vascular integrity, leads to CAA, and 

impairs Aβ clearance from the brain (Shah et al., 2012).  

Functional MRI (fMRI) was performed in 541 women and men with mean age 50.4 years. Cerebrovascular 

reactivity (CVR) was quantified as the percentage change in blood-oxygen level dependent (BOLD) signal. 

Mean CVR was calculated for brain regions associated with the default-mode network (DMN) - a network 

implicated in AD (Haight et al., 2015). The study found that reduced CVR may represent diminished vascular 

functionality for the DMN for individuals with prehypertension/hypertension in mid-life (Haight et al., 2015). In 

a recent study on elderly patients with hypertension, a quantitative analysis of FDG-PET was conducted in the 

brain with an aim to characterize any MCI-like hypometabolic pattern. The study, although on a small number 

of patients, did find an MCI-like hypometabolic pattern in elderly hypertensives (Van Der Gucht et al., 2015). 

Indeed, hypertension was significantly associated with subjective memory impairment in older adults (Chen et 

al., 2014).  

The relationship between severe OSA and the possible development of systemic hypertension (see below) is 

well established (Foster et al., 2009, Morrell et al. 2000, Nieto et al. 2000; Peppard et al. 2000).  Indeed, patients 

with severe OSA may have increased the incidence of cardiovascular and cerebrovascular disease, and evidence 
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of structural cerebral lesions (Almendros et al., 2011; Foster et al., 2009).  Epidemiologically, patients with 

severe OSA may have the risk of stroke (Arzt et al. 2005; Foster et al., 2009; Yaggi et al. 2005).   Further, 

hypertension is a risk factor for MI, CVD, stroke, ischemic white matter hyperintensities (WMH), and silent 

infarcts.  Indeed, there would be synergistic vascular insults (Kerber et al., 2006) since hypertension is linked to 

other risk factors such as T2DM, obesity, and hypercholesterolemia (Allan et al., 2015, Firbank et al., 2007, 

Kovacic and Fuster, 2012; Skoog and Gustafson, 2003; 2006).  These risk factors mentioned above have been 

related to AD, and an extensive literature exists on this.  It is noteworthy that hypotension in late-life is also 

associated with an increased risk of AD (Mehrabian et al., 2010; Sambati et al., 2014).  

A recent experimental study on a mouse model of AD (TgSwDI) induced chronic hypertension and studied its 

effects after six months. Chronic hypertension promoted 1. vascular inflammation, 2. microvascular Aβ 

deposition, 3. BBB disruption, 4. pericyte loss, and 5. cognitive deficits (Kruyer et al., 2015). The Aged 

hypertensive mice (25 months old) (compared to 3 months old younger mice) showed increases in the APP-

binding proteins in the hippocampus (Csiszar et al., 2013). 

     2.4. Obesity/ Metabolic Syndrome  

About a third of U.S. adults have the metabolic syndrome (MetS) - and about one-sixth of 60 and older have 

MetS.  Indeed, the incidence of MetS increases in the older adults (Ford et al., 2002).  Several risk factors 

constitute MetS; these include abdominal obesity, hypertension, dyslipidemia, and glucose/insulin 

dysregulation. MetS is linked to diabetes, cardiovascular disease (CVD), and dementia.  

65 years old obese patients without a clinical history of cognitive impairment showed high levels of tau and Aβ 

precursor protein expression, in some cases comparable to AD.  AD-type changes in the obese (Compared to 

non-obese) may be due to comorbid diseases viz. Congestive heart failure, OSA, and hyperlipidemia (Mark, 

2009). Mean gray matter CBF is about 15% lower in MetS (compared to controls); this may mediate the lower 

memory function noted in MetS (Birdsill et al., 2013).  A significant increase in plasma Intercellular adhesion 

molecule 1 (ICAM-1), IL-8, and neutrophils occurs in the obese (relative to healthy subjects) (Carpagnano et al., 

2010).  MetS patients have significant inflammation, and this impacts cognition and memory.  Indeed, 

individuals having both MetS and high inflammation possess a higher probability of memory and cognitive 

decline (Dik et al., 2007; Misiak et al., 2012; Yaffe et al., 2004).  An Italian Longitudinal Study on Aging 

followed MCI patients with MetS (over 3.5 years) - an increased incidence of dementia was found in this 

population (Solfrizzi et al., 2011). Obesity per se is a recognized cause of cardiovascular pathologies (Alpert, 

2001; Kalogeropoulos et al., 2010; Massie, 2002).  Synergistic action of cerebral hypoperfusion and obesity is 

implicated in cognitive dysfunction in persons with heart pathology (Alosco et al., 2012; 2014).  Indeed, this is 

further enhanced in individuals with, MetS, T2DM, and pathological heart issues, reflected in their lower 

volume of the cortical brain and cognitive test functioning (Alosco et al., 2013).  

Those with mid-life obesity may run the risk of cognitive dysfunction/AD in later life. Cerebrovascular (CV) 

dysfunction showed a direct relationship with the duration of high-fat diet intake. The resulting hyperlipidemia 

disrupts CBF regulation and disrupts endothelial and smooth muscle function (Ayata et al., 2013). Obesity 

decreases CBF; it decreases the level of endothelium-derived nitric oxide (NO) (Toda et al., 2014). Obesity-

enhances endothelial dysfunction while a decrease in CBF enhances Aβ production – the latter, in turn, impairs 
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endothelial function; this vicious pathological cycle promotes cognitive dysfunction (de la Torre et al., 2003; 

Toda et al., 2014).  

In a recent interesting study on high-fat-diet-induced memory impairment in triple-transgenic Alzheimer's mice 

(3xTgAD), it was found that high-fat diet has rapid and sustained negative impact on memory (in control as well 

as in 3xTgAD mice) – this was ascribed to neuroinflammation in the AD mice.  However, 3xTgAD mice at 3-4 

months of age (compared to 15-16 months) have microglial activation, when fed with high-fat (Knight et al., 

2014).  The obese Zucker rat (OZR) represents a model of T2DM exhibiting increased arterial hypertension, 

vasoconstriction in the cerebral vasculature, and oxidative stress (Osmond et al., 2009). There is a significant 

increase in the astrocytic number in the OZR brain (in the frontal and parietal cortex, and in the hippocampus) 

(Tomassoni et al., 2013).  Further, feeding saturated fat induces the hippocampal pathology and impaired 

cognitive function (Kanoski and Davidson, 2011).  Higher BMI has been shown to induce the stroke at a 

significantly younger age (Dehlendorff et al., 2014). 

     2.5. Vitamin B12/Folate Deficiency  

Vitamin B12/Folate intake has an impact on mental and physical health.   A large number of elderly, even in the 

industrialized nations, consume less than recommended optimum amount of dietary nutrients.  Up to 60%, 

elderly may be vitamin B12-deficient and about 29% folate-deficient.  Poor cobalamin intake may cause 

atrophic gastritis resulting in lower gastric acid and pepsinogen secretion, and hence decreased absorption of B 

vitamins.  B-vitamin deficiency may induce vascular disease (Hofmann et al., 2001; Huo et al., 2015; Kolb and 

Petrie, 2013; Shiran et al., 2015; Sudduth et al., 2013).  

Homocysteine metabolism requires B vitamin cofactors.  However, nutritional deficiencies in folic acid, vitamin 

B6 (pyridoxal phosphate), and B12 (methylcobalamin) enhance hyperhomocysteinemia (Hhcy).  Vitamin 

B12/folate deficiency induces atherosclerotic lesions and neurocognitive decline.  Folate deficiency is correlated 

with reduced cellular proliferation (17%) and increased apoptosis (16%) (Akchiche et al., 2012). In folic acid 

deficiency, homocysteine upregulates proatherogenic pathways including ROS and fibrin synthesis.  However, 

folic acid (0.5-5 mg/d) supplementation significantly decreases homocysteine level (up to 25%) (Wolters et al., 

2004).  

In older adults, Hhcy increases CVD that may cause cognitive decline leading to AD.  Older hypertensive 

individuals with Hhcy may undergo brain atrophy (Narayan et al., 2011) (see below).  C57BL6/J mice were fed 

the vitamin B-deficient diet for ten weeks to induce Hhcy.  This caused a significant pathology of hippocampal 

microvasculature and decreased spatial learning and memory (Throen et al., 2008). Chronic Hhcy increased pro-

inflammatory TNF-α, IL-1β and IL-6, chemokine CCL(2) and prostaglandin E(2) in the Wistar rats’ 

hippocampus and serum (da Cunha et al., 2012).  Hhcy may stimulate the vascular and cerebrovascular 

dysfunction in homocystinuria patients (da Cunha et al., 2012).  

The frequency of the TT MTHFR genotype is quite high among individuals with B12 deficiency. This TT 

polymorphism in B12 deficiency correlated with endothelial dysfunction, and may be associated with potential 

vascular abnormalities that upregulate cardiovascular risk (Shiran et al., 2015). A model of VaD has been 

developed that induces Hhcy in mice. These mice develop neuroinflammation (determined by TNF-α, IL-1β, 
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and IL-6) and brain microhemorrhages.  Increases in the matrix metalloproteinase 2 (MMP2) and MMP9 

activity found in these animals are implicated in their cerebral hemorrhage pathology (Sudduth et al., 2013).  

Hhcy induced in mice by a methionine-rich diet increased atherosclerosis; it also enhanced RAGE (receptor for 

advanced glycation end products), VCAM-1, tissue factor, and MMP-9 in the vasculature (Hofmann et al., 

2001). The above pathologies were significantly suppressed by feeding folate and vitamins B6/B12.  Hhcy is a 

recognized factor that decreases gray matter thickness in bilateral frontal, parietal, occipital, and right temporal 

regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions (Madsen et al., 

2015).  The above mentioned increases the risk for AD.   

     2.6. Diabetes  

About 8% of the adult population suffers from T2DM.   A direct association between glycemia and dementia 

has been shown in older persons (≥60 years old) with or without diabetes (Crane et al., 2013; Logue et al., 

2011).  Also, the correlation also exists between poor glucose metabolism (high fasting blood glucose) and 

lower executive function (Karlamangla et al., 2014), hippocampal atrophy, and lower memory, in older adults 

even without diabetes (Cherbuin et al., 2012; Kerti et al., 2013).  Association also exists between insulin 

resistance and brain atrophy in those aged ≤60 years (Willette et al., 2013).  It is known that cardiovascular risk 

factors, higher blood glucose, and memory decline are correlated in non-diabetic mid-life males (Anstey et al., 

2015; Mortby et al., 2013).   Further, in midlife adults, studies have reported: i) An elevated risk of vascular 

disease (Petrea et al., 2009), ii) Higher white matter pathology (Sachdev et al., 2004),  iii) Enhanced glycaemia, 

and iv) Insulin resistance (Xu et al., 2013).  After adjustment for hypertension, BMI, and smoking, only insulin 

sensitivity and C-reactive protein (CRP) were associated with a cognitive decrease in prediabetic stage (Anstey 

et al., 2015; Biessels et al., 2014).  

Blood flow velocities (BFVs) were measured in the middle cerebral arteries of T2DM patients (and control). 

BFVs were negatively associated with HbA(1c) (A1C), and inflammatory markers. These data showed that 

reduced cerebral BFVs is related to increased resistance in middle cerebral arteries (Novak et al., 2006).  

Regional cerebral hypoperfusion and vasoreactivity, as well as cortical and subcortical atrophy, have been 

documented in the brain of T2DM patients.  Patients with uncontrolled diabetes, therefore, may have enhanced 

hypoperfusion and brain atrophy.  The resulting metabolic dysfunction in frontal and temporal regions from the 

effects mentioned above may impact negatively on cognition (Last et al., 2007).  Indeed, cerebral perfusion is 

extensively compromised in the diabetic patients suffering from hypertension (Efimova et al., 2007; Last et al., 

2007; ten Dam et al., 2007). CBF is significantly decreased in patients suffering from diabetic ketoacidosis 

(Yuen et al., 2008).  T2DM is a vascular risk factor that may increase dementia risk.  Neuronal cell death has 

been shown to increase in the hippocampus of the hypoperfused T2DM rats (Fukazawa et al., 2013; Kwon et al., 

2015). This reflects that diabetes can enhance vascular-triggered cognitive dysfunction and promote dementia 

owing to cerebral hypoperfusion, inflammatory component, and neuronal degeneration (Kalaria et al., 2012; 

Rosenberg, 2009).  

T2DM shares several risk factors with AD. While Aβ is deposited in AD brain, amyloid polypeptide APP called 

amylin accumulates within pancreatic beta-cells in T2DM. An increase in plasma glucose increases insulin 

levels even in subjects free of insulin resistance. This status has been shown to reduce 18F-FDG uptake in 
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precuneus/posterior cingulate, lateral parietal cortex, and frontal cortex – the AD-related regions (Ishibashi et 

al., 2015). Several studies have emphasized that T2DM may develop and persist in up to 30% of OSA patients 

(Kent et al., 2014; Pamidi and Tasali, 2012; Punjabi et al., 2004). Synergistically, they may modulate neuronal 

degeneration, and promote cognitive decline and AD (Daulatzai, 2013a; 2015b; 2015d).  

High stable glucose measures in younger individuals (25-59 YO; Compared to older persons) were associated 

with cognitive decline (after 12 years) (Anstey et al., 2015). A recent study evaluated the cognitive status of 

about 1000 diabetics and controls. The results showed that the occurrence of all-cause dementia, AD, and VaD 

was much higher in diabetics (4.8%, 2.7%, 1.4% respectively) compared to non-diabetics (2.2%, 1.2%, 0.4% 

respectively) (Zhao et al., 2012). The incidence of dementia and AD was significantly higher in T2DM patients 

carrying APOE ε4 carriers (diabetics: 9.2%, non-diabetics: 3.3%) than APOE ε4 non-carriers (diabetics: 6.3%, 

non-diabetics: 2.35%) (Zhao et al., 2012). 

     2.7. Depression  

Significant research shows the relationships between depression, brain structural changes and cognitive decline, 

in older adults.  34 males (average age. 73.9) were studied with “multi-channel Near-infrared spectroscopy” 

(Uemura et al., 2014).  rCBF was lower in the depressive subjects (compared with controls - the non-depressed) 

in the PFC.   Further, there was less PFC activation in older depressed adults thus accounting for executive 

function decline (Uemura et al., 2014).  

Single photon emission computed tomography (SPECT) was used to evaluate rCBF patterns in major depressive 

disorder (MDD) (Périco et al., 2005).   An inverse relationship was present between severity of depressive mood 

and rCBF in the brain (notably amygdala, lentiform nucleus, and parahippocampal gyrus). A direct correlation 

with rCBF was, however, found in the right postero-lateral parietal cortex. Interestingly, specific rCBF patterns 

existed in variable MDD symptoms.  For example, the severity of 1. Insomnia correlated inversely with rCBF in 

parts of anterior cingulate, insula and claustrum; 2. Anxiety correlated directly with rCBF in the right 

orbitofrontal cortex.  Regions of orbitofrontal cortex and the left lentiform nucleus showed CBF that directly 

correlated with Cognitive performance (Périco et al., 2005; Bench et al., 1993).  Another SPECT study on 

depression patients showed reduced rCBF in the PFC, left temporal lobe, and bilateral occipital lobes (Nagafusa 

et al., 2012).  This work further showed that different specific symptoms may be associated with differing 

regional functional deficits in MDD, yet they are unaffected by age. As per a recent SPECT study, treatment-

resistant depressed patients possess significantly low CBF in frontotemporal (bilateral), insular, anterior 

cingulate, and the caudate (left) regions (Richieri et al., 2015).  

rCBF was studied in MDD patients (compared with healthy controls) utilizing MRI with the arterial spin 

labeling method (which does not require radioisotopes) (Ota et al., 2014).  Significant rCBF reductions were 

present in the prefrontal cortex (right inferior) and anterior cingulate in the MDD patients.  The above results 

document a range of hypoperfusion and significant change in gray matter blood flow in major depression.  The 

Pulsatility Index (PI) values and rCBFV parameters were also decreased in the cerebral arteries in depressive 

participants (Wang et al., 2014).  

A meta-analysis of 23 studies identified conjoint decreases in rCBF and regional homogeneity in the insula and 

superior temporal gyrus in medication-free MDD patients. Also, altered rCBF was documented in the precuneus 
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and the frontal-limbic-thalamic-striatal neural circuit; the analysis showed altered regional homogeneity in the 

uncus and parahippocampal gyrus (Chen et al., 2015).  A recent work has shown frontotemporal gray matter 

reduction in MDD patients and reduced rCBF in the anterior cingulate and parahippocampal region (bilateral).  

Interestingly, frontoparietal and striatal areas showed CBF increase (Vasic et al., 2015). 

2.8. Traumatic Brain Injury 

Traumatic brain injury (TBI) is a major cause of disability and death.  Initial management of TBI concentrates 

on prevention of subsequent secondary insults and cerebral hypoperfusion (Stein et al., 2011).  TBI may cause 

memory impairment even after long-term following the insult (Stulemeijer et al., 2010; Dean and Sterr, 2013). 

Indeed, a substantial single or repeated TBI may lead to a chronic traumatic encephalopathy and dementia 

(Walker and Tesco, 2013).  Neuropathological findings after TBI may be similar to those found in AD.  TBI 

may up-regulate axonal damage and Aβ42 production, and down-regulate LTP (Walker and Tesco, 2013; 

Fakhran et al., 2013).  Indeed, brain injury and ischemia could contribute to AD pathogenesis owing to cerebral 

circulatory and other abnormalities (Beckman et al., 2003).   

There is evidence of significant pathology and altered metabolic milieu after TBI including edema, 

excitotoxicity, loss of neuronal and glial integrity, dysfunctional mitochondrial bioenergetics, oxidative stress, 

inflammation, and cell membrane disruption (Golding et al., 1999; Van Putten et al., 2005; Harris et al., 2012).  

A substantial CBF reduction occurs in frontal and occipital cortices following sub-acute mild TBI (Lin et al., 

2016).  Consequently, a cascade of pathophysiological mechanisms is linked to vascular impairment-decreased 

CBF, brain hypoperfusion, glucose hypometabolism, and diminished energy supply (Olesen et al., 1981; 

Golding et al., 1999; Ayata et al., 2004; Parkin et al., 2005; Lauritzen et al., 2011; Romero et al., 2014).  

TBI causes changes to brain’s glucose uptake and its metabolism.  Early after TBI, two deleterious features 

include: (1) regional cerebral oxygen tension and consumption decrease significantly in the cortex; and (2) at the 

same time point, glucose uptake is significantly reduced globally (Gajavelli et al., 2015; Jalloh et al., 2015).  

TBI affects brain glucose metabolism during sleep also and significantly lowers rCMRglc in the amygdala, 

hippocampus, parahippocampal gyrus, thalamus, insula, uncus, culmen, visual association cortices, and midline 

medial frontal cortices (Stocker et al., 2014).  The dysfunctional cerebral glucose metabolism contributes to 

secondary brain damage (Clausen et al., 2011).  However, systemic administration of beta-hydroxybutyrate (a 

ketone body) in TBI can effectively reduce ROS production in several cortical regions including the 

hippocampus and prevent neuronal death (Julio-Amilpas et al. 2015).                   

3. Framework Highlighting Pathological Ramifications and Cognitive Vulnerability Owing to 

Chronic Hypoperfusion and Glucose Hypometabolism  

3.1 Diverse Comorbid Conditions Trigger Vascular Pathology 

  
About 40% of AD patients may suffer from comorbid VaD.  MRI, CBF and mean CThk were compared 

between patients with mild AD and MCI converters to AD (MCI-c) after two years of clinical follow-up 

(Lacalle-Aurioles et al., 2014).  A significant hypoperfusion was noted in the parietal lobes of the MCI-c 

patients. This study indicated that rCBF deficits are already present in the MCI stage, emphasizing that CBF is a 

more sensitive parameter in MCI-c patients (Lacalle-Aurioles et al., 2014).  
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Cerebral hypoperfusion and metabolic dysfunctions are crucial features of AD that precede significant 

neuropathology. We need to unravel upstream factors/mechanisms that trigger the AD pathogenesis.  Prima 

facie, vascular dysfunction causes reduced rCBF, and vascular pathology contributes to inflammation and 

oxidative stress causing vicious cycles. NADPH oxidase generates vasoactive superoxide in vascular pathology. 

The role of hypoperfusion and glucose metabolic dysfunction described in aging, diabetes, dyslipidemia, 

hypertension, and other comorbid risk conditions (delineated above) are potentially potent in upregulating 

vascular inflammatory and ROS-related pathological damage (Murray et al., 2011). Oxidative stress and 

activation of proinflammatory factors e.g. Hhcy are deemed causal in promoting atherosclerosis that in turn 

enhances hypoperfusion (Zhou and Austin, 2009). 

There is a documented decrease in glucose metabolism with age in several brain areas.  A recent FDG-PET 

study was done on 70-year-old normal individuals.  There were statistically significant declines in FDG ratio in 

most cortical and subcortical regions, as a function of age (Knopman et al., 2014).  31.3% had elevated 

Pittsburgh compound B (PIB); however, no interaction was found between PIB status and Apolipoprotein E4 

(APOE ε4) genotype regarding glucose metabolism (Knopman et al., 2014).  This study made other important 

observations. Carrying an APOE ε4 allele was associated with reductions in FDG ratio in the posterior 

cingulate, precuneus, and lateral parietal regions.  However, there was no interaction between “age and APOE 

ε4 status”.  They concluded that the above regions possess an inherently unique vulnerability to reductions in 

glucose metabolic rate in aging and carrying an APOE ε4 allele (Knopman et al., 2014).  There is another study 

of note, although on a single patient, with posterior cortical atrophy.  Both amyloid and tau were studied with 

their specific tracers viz. PIB and [(18) F]AV-1451, respectively.  While amyloid was found throughout 

association neocortex, “[(18) F]AV-1451 was selectively retained in clinically affected posterior brain regions 

that also showed a significant reduction in [(18) F]FDG uptake (Ossenkoppele et al., 2015).   

A voxel-based analytical work showed significant hypometabolism but not atrophy in cognitively normal Aβ-

positive subjects in comparison with cognitively normal Aβ-negative subjects (Kljajevic et al., 2014).   This is in 

contrast to another recent study that found cognitively normal older adults with higher amyloid deposition are 

relatively hypermetabolic in some brain areas, e.g. frontal and parietal (Oh et al., 2014).  A 9-year longitudinal 

study was conducted on MCI patients employing serial brain imaging with PIB (Knopman et al., 2015).  It was 

found that the patients positive for amyloid and neurodegenerative changes showed volumetric and metabolic 

worsening in their temporal and parietal association areas (Knopman et al., 2015).  Thus, clearly more extensive 

work is needed to evaluate both amyloid deposition and NFT concurrently - since many studies do not carry out 

the simultaneous evaluation of tau status in Aβ-positive or negative subjects.             

Current evidence shows age-related cerebral microvascular pathologies. These include tortuous blood 

vessels/capillaries, venous collagenosis, low vascular density, and microembolic brain injury that lead to 

compromised blood supply. A decrease in cerebrovascular angiogenesis may impact recovery from ongoing 

OSA/hypoxia-related factors.  Most lipid microemboli from the heart may remain for weeks in the brain (Brown 

and Thore, 2011). Consequently, there is a functional failure of the aging microvasculature; this is also noted in 

AD brain emphasizing the possible role of the compromised brain microcirculation and decreased cerebral 

metabolism in AD pathogenesis (Farkas and Luiten, 2001; Hunter et al., 2012). These factors may impact 

drainage of Aβ along perivascular elimination pathways in aging artery walls (Weller et al., 2009) (see below).  
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Recent work has shown that Hhcy is an important independent risk factor that induces arterial pathology.   Also, 

endothelial injury and inhibition of insulin sensitivity are promoted by Hhcy (Liu et al., 2014). The arterial 

endothelial dysfunction occurs in OSA, hypertension, Hhcy, and insulin resistance (Liu et al., 2014). A 

significant number of elderly suffer from the above-combined stigmata that may induce arterial stiffness and a 

decrease in rCBF; the ensuing hypoperfusion would increase cerebrovascular damage (Chung et al., 2010). Mice 

fed a diet depleted of folate and vitamins B6 and B12 showed an increase in atherosclerotic lesion. The 

vasculature of these mice showed an enhanced expression of the receptor for advanced glycation end products 

(RAGE), VCAM-1, tissue factor, and the MMP9.  However, the above effects decreased significantly following 

reintroduction of folate and vitamins B6 and B12 in the diet (Hofmann et al., 2001). Similarly, vascular 

dyshomeostasis and endothelial dysfunction occur in obese individuals with prehypertension, prediabetes, 

hyperinsulinemia, and insulin resistance (Gupta et al., 2012). Hence, chronic cerebral hypoperfusion would lead 

to neural injury and cognitive impairment (see below).  

VaD patients are known to develop several vascular lesions (confirmed by MRI and histology) including 

microhemorrhages, hemorrhagic infarcts, or ischemic infarcts. Mice subjected to hyperhomocysteinemia 

develop neuroinflammation reflected by elevated TNF-α, IL-1β, and IL-6, (Sudduth et al., 2013). An earlier 

study on diet-induced Hhcy in mice (Hofmann et al., 2001) found higher levels of the MMP2 and MMP9. The 

latter is implicated in the development of cerebral hemorrhage. Hhcy induced spatial memory deficit (radial-arm 

water maze test) in the mice. There are growing data that low Vitamin B12 is directly associated with AD. A 

combination of high Hcy and low vitamin B12/folate levels are found in AD (Chen et al., 2015).  A recent meta-

analysis also corroborated that the above factors may increase AD risk (Shen and Ji, 2015).  

Vascular risk factors underlie AD or vaD (Fig. 1.).  Ethanol abuse and hypercholesterolemia also underlie 

pathologies that are similar to AD (Ullrich et al., 2010). Long-term ethanol treatment in adult Sprague-Dawley 

rats spatial memory dysfunction; this was owing to decreased cortical acetylcholine, elevated cortical monocyte 

chemoattractant protein-1 and tissue-type plasminogen activator, microglia increase, reduced number of choline 

acetyltransferase- and p75 neurotrophin receptor-positive neurons in the nucleus basalis of Meynert.  Further, 

the ethanol-treated rats displayed BBB leakage. Thus, ethanol and cholesterol may be causative in cognitive 

dysfunction in AD and vaD (Ehrlich et al., 2012). 

      3.2 Cerebral Amyloid Angiopathy (CAA)  

The CAA increases with age; almost 100% elderly 80 years and over have CAA.  In CAA, Aβ peptide is 

deposited within the walls of the blood vessels and capillaries. CAA and hypoperfusion enhance deposition of 

leptomeningeal Aβ. CAA may originate from neurons.  According to drainage hypothesis, neuronally-produced 

Aβ crosses the blood-brain barrier (BBB) (Burgermeister et al., 2000).  Another theory suggests that Aβ 

originates in the circulating bloodstream. Aβ may also be generated by vascular smooth muscle cells, and 

pericytes (Revesz et al., 2002). Regardless of its origins, Aβ is deposited and builds up on the walls of the blood 

vessel due to its increased accumulation and decreased clearance (deficiency in the Aβ transport) (Segare et al., 

2013). This would cause narrowing of the lumen and induce vascular pathology. CAA induces the degeneration 

and death of endothelial cells (Ferrer et al., 2004).  
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ROS-mediated vascular/endothelial and BBB dysfunction (Ferrer and Keller, 2012 and Freeman et al., 2012) 

due to Aβ may induce inflammatory responses causing migration of leukocytes across blood vessels (Sutton et 

al., 1999; Thomas et al., 1997). Further, Aβ mediates production of TNF-α and IL-1β that in turn mediate 

inflammatory response and vascular pathology (Sutton et al., 1999). Hence, while CAA increases cerebral 

hypoperfusion, conversely hypoperfusion accelerates CAA (Okamoto et al., 2012).  Besides, Aβ may disrupt 

Blood–CSF barrier integrity (Brkic et al., 2015).  

The rat brain capillary endothelial cells (RBE4), deprived of oxygen and glucose generated 250% increase in 

Aβ42 production. The mechanism has been shown to be time-dependent and involves the HIF1-mediated β-

secretase (BACE1) and APP gene up-regulation. This work clearly showed that oxygen and glucose deprivation 

has a direct impact on endothelial cells of the brain to upregulate the intra-endothelial cell deposition of Aβ42 

(Bulbarelli et al., 2012).  

In AD, CAA has been shown to range from 70% to 97.6% (Attems, 2005).  CAA may cause microscopic 

bleeding in the neocortex making it an important AD pathology (Jellinger, 2007).  This has been corroborated 

recently (De Reuck et al., 2013; Samuraki et al., 2015).  CAA-related microbleeds were located (in 158 AD 

patients) mainly in cortex and subcortex, but in the occipital lobe also.  Patients with CAA-related microbleeds 

showed glucose hypometabolism and gray matter atrophy in the temporal lobe and cerebellum.  Consequently, it 

was concluded that CAA-related microbleeds are causative regarding gray matter atrophy and glucose 

hypometabolism in AD (Samuraki et al., 2015).  Sustained cerebral hypoperfusion through microinfarcts, 

hemorrhage, and white matter disruption produced glio-vascular alterations and cognitive deficits (Holland et 

al., 2015).   

In Tg2576 mice, human apoE4 expression caused substantial CAA at 15 months of age (Fryer et al., 2005).  

When microvessels are pathological, they may contribute to neuronal injury and death by releasing toxic factors 

that directly injure neurons (Grammas, 2000). Microvessels isolated from AD brain release higher levels of 

monocyte chemoattractant protein (MCP-1), TNF-α, IL-1β, and IL-6, compared to microvessels from non-AD 

brain (Grammas and Ovase, 2001). The AD microvessels secrete a high level of neurotoxic inflammatory 

mediators including protease thrombin and the inflammation-associated proteins IL-8, alphaVbeta3, and 

alphaVbeta5 integrins (Grammas et al., 2006). These neurotoxic agents upregulate the “pathologic activation of 

cerebral microvasculature” and dysfunctional endothelial cells may lead to neuronal injury/loss in AD brain 

(Grammas et al., 2002). 

The transgenic A/T mice (APP(Swe, Ind)) overexpress a mutated form of the APP and transforming growth 

factor-β1 (TGF-β1).  In these aged mice, chronic inflammation triggers a cascade leading to several AD-like 

pathophysiological features - encompassing cerebrovascular amyloidosis, microvascular fibrosis and 

degeneration, hypoperfusion, and cerebrovascular amyloid angiopathy. These lead to significant alterations in 

metabolic activity in different brain regions implicated in learning and memory processes (Wyss-Coray et al., 

2000; Buckwalter et al., 2002).  Further, these mice displayed deficient neurovascular and neurometabolic 

coupling to whisker stimulation, and memory performance (Ongali et al., 2010).  At nine months of age, these 

mice had degenerative alterations in endothelial cells and pericytes, associated with decreased regional cerebral 

glucose utilization (Wyss-Coray et al., 2000; Hamel, 2015).  Further, they showed a decline in NO activity in 
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vessel walls and cerebrovascular function with dilatory deficits thus causing decreased vessel tone 

(Papadopoulos et al., 2014; Tong and Hamel, 2015). Hence, endothelium-mediated vascular dysfunction may be 

an important component in AD pathogenesis (Di Marco et al., 2015).  

     3.3 Blood–Brain Barrier (BBB) Dysfunction  

The neurovascular unit is comprised of brain microvascular endothelial cells and astrocytes that regulate BBB 

permeability.  This interface viz. the BBB protects the brain from any noxious molecules in peripheral 

circulation. BBB is an important component of the vascular hypothesis (Rocchi et al., 2009; Valenti et al., 2014; 

Canobbio et al., 2015; Janota et al., 2015; Rius-Pérez et al., 2015; Di Marco et al., 2015).  Indeed, 

hypoperfusion, hypoxia and neuroinflammation due to various factors may lead to BBB leakiness and apoptosis 

in AD (Biron et al., 2011; Hartz et al., 2012; Heye et al., 2014; Yang et al., 2015; Michael et al., 2015; Banks et 

al., 2015; Nathoo et al., 2016). In mild-to-moderate AD, the BBB undergoes significant disruption during the 

disease progression (Bowman et al., 2007).  In AD progression, the BBB permeability is crucial in letting the 

neurotoxic substances such as pro-inflammatory cytokines enter the CNS (Bell et al., 2009; Desai et al., 2002; 

Lashuel, 2005; Persidsky et al., 2006; Simionescu and Antohe, 2006).  

Aging reduces BBB integrity, and this is linked to AD (Altman and Rutledge, 2010; Deane and Zlokovic, 2007). 

Also, a high-saturated-fat and cholesterol (HFHC) diet contributes to BBB breakdown. Activated microglial 

cells play a significant role in altering the BBB integrity (Hawkins and Davis, 2005). Increase in microglial 

activation was shown in aged rats receiving the HFHC diet (Freeman and Granholm 2012). The 

lipopolysaccharide-stimulated inflammation enhances BBB disruption, activated microglial cells, and damaged 

endothelial cells causing their death (Kacimi et al., 2011).  Rats with hypoperfusion (after transient middle 

cerebral artery occlusion) underwent both microglial activation and neuronal loss (Emmrich et al., 2015).  

Chronic sleep restriction (CSR) may also induce BBB dysregulation.  The latter may occur via inhibition of 

endothelial and inducible nitric oxide synthase (eNOS and iNOS, respectively), endothelin1 upregulation, and 

decreased 2-deoxy-glucose uptake.  As little as six days of CSR was enough to impair BBB dysfunction -  

decreasing several tight junction proteins, and increasing BBB permeability.  Interestingly, following just 24 h 

of recovery sleep, the BBB permeability became normal (He et al., 2014). 

3.3.1 Disruption of Glucose Uptake Impairs BBB Integrity  

There is hypometabolism of differing severity in different regions of the AD brain. Cerebral hypometabolism 

reflected by a reduction in glucose utilization begins decades before any AD symptoms or histopathologic 

changes.  The increase in plasma glucose levels reduces 18F-FDG uptake in precuneus/posterior cingulate, 

lateral parietal cortex, and frontal cortex in AD-related regions. The potency of this phenomenon is such that it 

can occur even in normal individuals without insulin resistance (Ishibashi et al., 2015).  

90% of brain energy is supplied by glucose metabolism (Handa et al., 2000).  The blood glucose concentration 

and transporter protein are the rate-limiting factors for its transport into the brain.  Any disruption of  BBB 

integrity interferes with glucose uptake. Chronic ethanol abuse impairs glucose tolerance and causes inability to 

maintain plasma insulin levels (Wilkes and Nagy, 1996).  Recent work measured the glucose metabolism in 

different brain regions of the chronic alcoholics by FDG-PET (Volkow et al., 2006), and found a decline in 
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glucose metabolism in the frontal cortex.  Additionally, alcohol consumption enhances monocytes migrating 

across the BBB, and ROS-mediated BBB disruption (Haorah et al. 2005b; 2007a; 2007b).  Several other 

mechanisms are implicated in the alcohol-induced BBB disruption; these include activation of myosin light 

chain kinase (Haorah et al. 2005a), inositol 1,4,5-triphosphate-gated intracellular Ca2+ release (Haorah et al. 

2007a; 2007b), and protein tyrosine kinase-mediated matrix metalloproteinase signaling pathways (Haorah et 

al., 2008a; 2008b).  

3.3.2 BBB Disruption Promotes Neuronal Loss  

In cultures of neuron and astrocyte (human stem cell-derived), treatment with Aβ42 induces hypometabolism. 

The Aβ-exposed cultures displayed decreases in glucose uptake and its utilization (Tarczyluk et al., 2015). The 

latter has been shown to disrupt the energy-redox axis reflected by changes in NAD+/NADH, ATP, and 

glutathione levels (Tarczyluk et al., 2015). The pyruvate uptake, (an important energy source in the brain 

mitochondria) was lower after Aβ42 treatment of the cultures; this, however, decreased ATP but increased Ca2+ 

and ROS levels. Consequently, unlike astrocytes, the neurons succumbed to death (Tarczyluk et al., 2015).  

Alcohol negatively interferes glucose metabolism in the brain (Handa et al. 2000; Volkow et al. 2006). The 

BBB dysfunction would adversely affect the uptake and utilization of glucose by neurons and glial cells.  This 

would impact their survival as well.  Indeed, this has been confirmed in that attenuation of glucose uptake 

causes neuronal degeneration (Abdul Muneer et al., 2011a; 2011b). Alcohol significantly inhibited the uptake 

and transport of glucose across the BBB; this was validated by both in vitro and in vivo findings.  

Decreases in glucose transport across the BBB (e.g. due to alcohol) and glucose uptake in cells correlated with 

reduction of GLUT1 protein (due to defective mRNA biosynthesis of GLUT1) expression in cell culture and 

brain microvessels (Abdul Muneer et al., 2011a). The above mentioned causes further breakdown of BBB 

integrity (Abdul Muneer et al., 2011a).  Consequently, cerebral glucose hypometabolism may lead to 

neurotoxicity and neuronal degeneration (Fig. 1.). 

3.3.3 Hypoperfusion and Neuronal Death  

The mechanisms underlying neuronal death due to chronic cerebral hypoperfusion has been extensively studied 

(Martin et al., 2000). Ultrastructurally and immunocytochemically, degenerating hippocampal CA1 pyramidal 

neurons and cerebellar Purkinje cells undergo necrosis, while degenerating granule neurons show both necrotic 

and apoptotic processes. Indeed, the vulnerable neurons undergoing degeneration after hypoperfusion/ischemia 

are mediated by the apoptosis-necrosis continuum (MacManus et al., 1995; Martin et al., 2000; and Portera-

Cailliau et al., 1997a; 1997b). Neurodegeneration due to hypoperfusion involves intracellular Ca2+ 

dyshomeostasis and excitotoxic activation of neuronal glutamate receptors (GluRs) (Diemer et al., 1993).  

Several other deleterious changes occur in neurons after hypoperfusion; these may include damage to the plasma 

membrane and cytoplasmic organelles.  In neuronal degeneration (Laiho et al., 1971; Laiho and Trump, 1975; 

Martin et al., 2000) mitochondrial dysfunction causes a decrease in ATP synthesis (Laiho and Trump, 1975). 

Indeed, as early as 6 hours after cerebral ischemia, total protein synthesis is severely reduced particularly in 

vulnerable neurons (Araki et al., 1990; Furuta et al., 1993; Johansen and Diemer, 1990; Thilmann et al., 1986) 

followed by a lack of restoration of biosynthetic function.  Early after hypoperfusion, cytoskeletal disintegration 
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occurs in dendrites, before degeneration of neuronal cell bodies (Kitagawa et al., 1989; Yamamoto et al., 1990). 

The above pathophysiological abnormalities persist during the process of neurodegeneration (Kirino, 1982; 

Kirino and Sano, 1984; Kirino et al., 1984; Martin et al., 1998).  Of note, CNS ischemia has a deleterious impact 

on non-neuronal cells also - astrocytes, oligodendrocytes, inflammatory cells, and vascular cells die apoptically 

(Martin et al., 1997a; 1997b; 1998). Signaling pathway mediated by the HIF is an important compensatory 

protective mechanism; it is triggered by pathophysiological conditions including hypoxia and ischemia.  

Hypoxia-inducible factor 1-alpha (HIF-1α) activation was studied in the animal model of chronic cerebral 

hypoperfusion. HIF-1α increased as early as 12 h after hypoperfusion and continued increasing for 56 days. 

Importantly, there is the sustained increase of HIF-1α during chronic cerebral hypoperfusion - but without any 

protective effect (Yang et al., 2013). 

     3.4 Cerebral Hypometabolism  

There is evidence that AD patients suffer from abnormal forward glucose transport in the cortical brain regions 

(Jagust et al., 1991; Piert et al., 1996). The impaired glucose metabolism is said to be the basis for 

neuronal/synaptic dysfunction and cognitive decline.  The functional biomarker CMRglc in conjunction with 

changes in the brain volumes is valuable to gain information about disease progression and drug treatment 

outcome.  A CMRglc study in the aging-associated cognitive decline identifies patients with metabolic 

alterations, and who may develop aMCI (Hunt et al., 2007); it may also predict those aMCI patients who may 

subsequently convert to AD (Herholz et al., 2007).  MCI converters to AD possess a much lower CMRglc in the 

right cingulate, left inferior parietal and left temporal gyrus, and most of their brain areas undergo significantly 

decreased CMRglc during AD progression (Ishii et al., 2009).  

 

12 weeks of hypoperfusion decreases CBF by 26% in CAA mice (compared to wild-type mice), indicates 

perivascular Aβ accumulation and impaired microvascular function. This study also documented that cortical 

microinfarcts in AD brains are mainly located close to CAA afflicted vessels (Okamoto et al., 2012).  

FDG-PET studies have highlighted CMRglc abnormalities in preclinical individuals in their 40’s (Reiman et al., 

2004).  CMRglc reductions in the Hippocampus during normal aging is considered to predict cognitive decline 

much earlier than the clinical diagnosis (Mosconi et al., 2008). The dysfunctional entorhinal cortex (EC) 

connection has been implicated in cortical hypometabolism. Assessment with FDG-PET pointed out CMRglc 

reductions in the EC and the ipsilateral temporooccipital cortex (Mosconi et al., 2004).  Importantly, 

Presymptomatic familial early-onset AD individuals have an absence of brain atrophy but show significant 

widespread MRglc reductions (Mosconi et al., 2006).  Reduced CMRglc was found only in posterior cingulate 

cortex (PCC) in aMCI patients; however, low CMRglc was present in AD in several areas including frontal, 

parietal, temporal, and occipital cortex (O’Brian et al., 1992). Other studies on AD have also documented 

CMRglc reductions in the PCC, precuneus, temporoparietal and frontal multimodal association regions (Del 

Sole et al., 2008; Herholz et al., 2007). Worth noting is the fact that aging-associated cognitive decline patients 

(who later converted to AD) showed the metabolic decline in more extensive regions, viz. frontal and temporal 

cortices, right cingulate gyrus, right thalamus, and bilateral precuneus (Hunt et al., 2007). However, in 
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subcortical vascular dementia patients, the glucose hypometabolism was more severe in the thalamus, 

brainstem, and cerebellum (Seo et al., 2009).  

When AD patients were studied with FDG-PET after one year (from the baseline), they had a significant decline 

in glucose metabolism in frontal, parietal, temporal, and posterior cingulate cortices (Alexander et al. 2002).  In 

another study, 16 AD patients were followed up for two years, and interval change in amyloid deposition and 

CMRglc studied.  Relative PIB retention in cortical regions differed by 3-7%;  in contrast, CMRglc decreased 

by 20%.  Interestingly, this follow-up study showed a significant negative correlation between CMRglc and PIB 

retention in the parietal cortex. (Engler et al., 2006).  An interesting study in AD patients has documented that 

hypometabolism in parietal and precuneus regions is negatively correlated with PIB retention in AD patients 

(Cohen et al., 2009). However, others have found a positive correlation between PIB and CMRglc in all cortical 

regions studied but particularly in the posterior cingulate and parietal cortices (Forsberg et al., 2012). The 

reasons for the above discrepancy is not known. Finally, an elegant study in baboons has highlighted the 

interrelationship between rhinal cortex pathology and the CMRglc decline in the inferior parietal, posterior 

temporal, posterior cingulate, and the posterior hippocampal regions (Meguro et al., 1999). Importantly, as 

much as 49.9% decrease of CMRglc may occur in the parietal cortex of the AD patients (Piert et al., 1996).  

Neuronal damage and dysfunction in the rhinal cortices may cause glucose hypometabolism in several brain 

areas; this is said to play a significant role in the pathogenesis of AD (Meguro et al., 1999; Millien et al., 2004; 

Daulatzai, 2015b).  FDG PET studies suggest that normal anatomico-physiological connections with the EC are 

important to maintain cortical glucose metabolism.  Conversely, decreases in the CMRglc in the temporoparietal 

and hippocampal areas noted in AD may be due to their disconnection with the rhinal cortex (Meguro et al., 

1999; Millien et al., 2004; Mosconi et al., 2004; Daulatzai, 2013a; 2013b; 2014; 2015b; 2015c). 

3.5 Brain Atrophy: A Defining Impairment in Multiple Risk Factors 

      3.5.1 Aging   

Aging is associated with cognitive decline in some (but not all) aged persons. Owing to susceptibility, the 

vulnerable persons begin to decline from their 40s onwards.  Significant pathology may continue to accumulate 

at the time they are in their 50s and 60s.  Age-related cognitive decline correlates with decreases - in regional 

brain volume (Allen et al., 2005; Fotenos et al., 2005; Sowell et al., 2003), cortical thickness (Magnotta et al., 

1999; Salat et al., 2004), and white matter (Pfefferbaum et al., 2006; Salat et al., 2005).  There is an ongoing 

accumulation of NFT (Del Tredici and Braak, 2008) and Aβ (Beckmann et al., 2003; Bennett et al., 2005; 

Okamoto et al., 2012; Okonkwo et al., 2014). 

Healthy aging is associated with widespread age-related neuroanatomical volume change. The brain volume loss 

of 0.2% per year occurs after age 35 years. This is followed by a decrease in brain volume loss of 0.5% annually 

at age 60.  However, in over 60 years old, the volume loss is more than 0.5% in the brain (Hedman et al., 2012).  

With older age, gray matter (GM) volume was lower in the sensorimotor, frontal, temporal, occipital, and 

parietal lobes, as well as in the cerebellum, posterior hippocampus, thalamus, and middle cingulate gyrus (Raji 

et al., 2009; Walhovd et al., 2011). In the presymptomatic stage with no cognitive decline, hypertension and AD 

are additive in enhancing gray matter damage (Glodzik et al., 2012).  Interestingly, in Aplysia californica, the 
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neurons express genes related to apoptosis and AD; however, these are expressed differentially in older animals.  

This was inter-related to (i) changes in histones, (ii) DNA methylation, and (iii) regional relocation of RNAs; 

these alterations are thought to underlie age-related changes in neuronal functions and synaptic plasticity 

(Moroz and Kohn, 2010).  Importantly, normal aging has little effect on medial temporal lobe volume loss 

(Dickerson et al., 2009; Salat et al., 2004).  

      3.5.2 Obesity  

Obesity is a risk factor for AD (Kivipelto et al., 2005).  Higher cortisol secretion may decrease brain volume 

(Bjorntorp, 2001; Simmons et al., 2000).  Several studies have emphasized the brain volume decline as a 

function of obesity (Gustafson et al., 2004; Pannacciulli et al., 2006; Ward et al., 2005).  In one study over a 6-

year period, BMI was shown to influence gray matter volume (Taki et al., 2011).  OSA is one of the risk factors 

for obesity.  Data show that OSA patients undergo a reduction in their gray matter (compared with non-apnoeic 

controls) (Morrell et al., 2010).  Indeed, gray matter volume decreases have been confirmed in the left 

hippocampus, EC, left PCC, and right superior frontal gyrus (Canessa et al., 2011). After CPAP treatment, 

memory, attention, and executive functioning were significantly improved; concomitantly gray matter volume 

increased in the hippocampus and frontal cortex (Canessa et al., 2011).  Using tensor-based morphometry 

(TBM) and computational analysis, the study showed that increase in body’s adipose tissue (hence greater BMI) 

correlates with lower brain volumes in the hippocampus, orbital frontal cortex, and parietal lobes in cognitively 

normal elderly adults (Raji et al., 2010). Recent proton magnetic resonance spectroscopy (MRS) studies also 

showed that higher BMI lowers neuronal viability in the brain regions including, frontal, parietal, and temporal 

lobes (Gazdzinski et al., 2009).  In effect, every unit increase in BMI was associated with a 0.5%–1.5% average 

brain tissue reduction in MCI and AD patients studied (after controlling for age, sex, and education) (Ho et al., 

2010; Verstynen et al., 2012). The BMI associated brain atrophy is predominantly in the white matter (Gregoire 

et al., 2011; Verstynen et al., 2012). 

     3.5.3 Homocysteine  

Homocysteine is an agonist at N-methyl-D-aspartate (NMDA) receptor (the glutamate binding site), but as a 

partial antagonist at the glycine receptor site.  It mediates excitation at the Schaffer collateral-CA1 synapses (at 

NMDA receptors) in the hippocampus (Ito et al., 1991).  

Under physiological conditions, modest Hhcy may contribute neurotoxicity via overstimulation of NMDA 

receptors (Lipton et al., 1997; Schwarz et al., 1990).  Excessive stimulation of these receptors mediates brain 

damage (Lipton and Rosenberg, 1994; Simon et al., 1984).   

Elevated homocysteine enhances brain atrophy rates in older hypertensives (Narayan et al., 2011).  Hhcy 

correlates with white matter atrophy and hippocampal atrophy (Firbank et al., 2010; Choe et al., 2014).  Recent 

multiple linear regression analyses have confirmed that plasma total homocysteine level has a significant impact 

on hippocampal volume (after controlling for the amyloid beta deposition, vascular burden, age, gender, 

education, and ApoE4 genotype).  Indeed, homocysteine has a direct adverse impact on the hippocampus, not 

mediated by Aβ (Choe et al., 2014).  However, B-vitamin treatment decreases (7 fold) the gray matter atrophy in 

the medial temporal lobe (Douaud et al., 2013).  
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Under pathological conditions, the neuronal damage is a function of excessive Ca2+ influx and higher ROS.  

ROS can be generated extracellularly by homocysteine (Stamler et al., 1993) causing excessive NMDA receptor 

stimulation, cytochrome c release, neurotoxicity, and apoptosis (Baydas et al., 2005; Ho et al., 2001; Lafon-

Cazal et al., 1993; Lipton et al., 1997). Importantly, superoxide dismutase and catalase may offer protection 

from neuronal damage (Truelove et al., 1994).  Overstimulation of NMDA receptors leads to increased level of 

cytoplasmic Ca2+ by L-glutamate, and mitochondrial pathology (Kim et al., 1999; Wang et al., 1999). 14-3-3 

brain protein suppresses apoptosis mainly through sequestration of Bad, a pro-apoptotic protein (Brunelle et al., 

2009; Dougherty et al., 2004; Yacoubian et al., 2010).  However, the level of 14-3-3ε is significantly reduced 

after reducing homocysteine (Wang et al., 2012).  

     3.5.4 Sleep Deprivation  

Chronic sleep deprivation (CSD) may compromise neuronal stability and induce cell death (Daulatzai, 2013a; 

2015b; 2015d).  A recent study has shown significantly reduced hippocampal volume in sleep-restricted animals 

(Novati et al., 2011).  The hippocampus of young and aged animals subjected to CSD showed apoptosis and cell 

death (de Souza et al., 2012).  This was ascribed to Ca² signaling dysregulation (de Souza et al., 2012). CSD 

produces unhealthy physiological consequences.  Indeed, healthy adults subjected to CSD manifest adverse 

effects on endocrine, metabolic and inflammatory functions. Furthermore, the CSD-induced increase in brain 

TNF-α and IL-1β and decrease in hippocampal BDNF might contribute to neurocognitive decline (Zielinski et 

al., 2014). Finally, synapses are affected by sleep. Excitatory synapses change their efficacy; they grow or 

shrink – as a function of sleep. Sleep deprivation affects the synaptic function of LTP (long-term potentiation) 

(Cirelli, 2013). Consequently, sleep restriction has a potent impact on neurobehavioral, memory, and cognitive 

functions.  

     3.5.5 Chronic Alcohol Abuse  

Chronic alcohol abuse is one of the common reasons for neurodegeneration.    Excessive consumption of 

alcohol is associated with neurodegeneration and cognitive dysfunction, as well as microglial activation (Zhao et 

al., 2013).  Cerebral microbleeds occur in heavy drinking (Ding et al., 2015).  The loss of dopaminergic and 

cholinergic neurons from chronic alcohol administration occurs in the hippocampus and striatum.  Copious data 

also document that alcohol-induced neurodegeneration (AND) is related to enhanced oxidative stress, increased 

NF-kappaB transcription, and proinflammatory proteins – both are neurotoxic (Crews and Nixon, 2009).  

Ethanol disrupts synaptic signaling in the hippocampus causing spatial memory decline (Wright et al., 2003).  

However, blocking of oxidative stress and NF-kappaB transcription, and increasing CREB transcription may 

nullify the above derangements (Crews and Nixon, 2009). 

      3.6 Elderly and Cognitive Impairment 

Cognitively healthy elderly having pathological biomarkers for AD may not progress to AD (Lue et al., 1999; 

Riudavets et al., 2007; Iacono et al., 2008; Erten-Lyons et al., 2009; Kramer et al., 2011; Bjorklund et al., 2012). 

Conversely, a significant proportion of elderly having cognitive and memory concerns/impairment do not 

necessarily convert to dementia/AD either (Marchant et al., 2013; Wirth et al., 2013; Hwamee et al., 2014; 

Mormino et al., 2014; Amariglio et al., 2015).    
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Longitudinal, observational study with serial brain imaging (conducted over 10 years) in a population-based 

cohort has shown that older subjects even positive for neurodegeneration can lack an AD metabolic profile and 

pathophysiology (Knopman et al., 2015).  Indeed, older adults may possess age-related gray matter atrophy 

across the whole brain, regardless of Aβ deposition (Oh et al., 2014; Jansen et al., 2015; Foley et al., 2015).  

Importantly, the presence of brain amyloidosis alone is not sufficient to produce cognitive decline (Jack et al., 

2008; 2009; 2015).  A discussion on Aβ deposition and neuroimaging (PIB), and other biomarkers, in 

cognitively normal elderly and those with preclinical AD, is beyond the scope of this paper. 

Subtle losses in cognitive function may not always be symptomatic of AD.  However, among “vulnerable” 

elderly, about 79.5% in age group 90 years (or older) and 46.7% among those aged 71–79 transition to AD 

(Brookmeyer et al., 2011).  The overall prevalence of MCI (in the United States) for individuals aged 71 years 

or older is reported to be 22% (Brookmeyer et al., 2011).  Of these, the annual conversion rate in 3 years (in 

clinical samples) from MCI to AD is about 8-15% (Devanand et al., 2008).  Estimations have shown that AD 

accounts for approximately 69.9% of all dementia while VaD being 17.4%.  Other types of dementia including 

Parkinson's dementia, normal pressure hydrocephalus dementia, frontal lobe dementia, alcoholic dementia, 

traumatic brain injury-related dementia, and Lewy body dementia (to name a few) account for about 12.7% 

cases (Brookmeyer et al., 2011).   

4. Cerebral Hypoperfusion: Therapeutic Approach  

Several therapeutic substances have been documented that attenuate cerebral hypoperfusion. Some of the 

selected ones are mentioned below. The therapeutic approach is subdivided as follows into 1. Reperfusion-

Rehabilitation Approach, 2. Pharmacological Approach, and 3. Nutraceutical Approach.  

      4.1 Reperfusion-Rehabilitation Approach  

The brain reperfusion-rehabilitation therapeutic strategy has been presented recently. The effect of the brain 

reperfusion rehabilitation therapy (BRRT) was evaluated in 15 patients with mild AD.  They underwent BRRT 

for 12 months with significant improvement in tissue oxygen saturation (measured with near-infrared 

spectroscopy), Mini-Mental State Examination (MMSE), and Rey Auditory Verbal Learning (RAVLT) tests.  

This indicates that the attenuation of hypoperfusion may result in improvement in verbal memory-learning and 

global cognitive impairment (Viola et al., 2014).  

      4.2 Pharmacological Approach   

Minocycline  

Minocycline is a tetracycline derivative that reduces inflammation and ameliorates cerebral ischemia.  It 

controls oxidative stress and attenuates the cognitive decline in an animal model of chronic cerebral 

hypoperfusion (Wistar rats) (Cai et al., 2008).  A decrease in the relaxant NO enhances cerebral ischemia, and 

minocycline down-regulates expression of iNOS but upregulates eNOS.  Its beneficial effects include 

decreasing oxidative stress and apoptosis and protecting neural function (Cai et al., 2008).  

Cilostazol  

Chronic cerebral hypoperfusion was induced in T2DM rats.  These rats were treated with cilostazol - a potent 

inhibitor of type III phosphodiesterase. Cilostazol was significantly beneficial in these hypoperfused animals; it 
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inhibited neuronal cell death, activated CREB phosphorylation, upregulated BDNF expression, and improved 

memory impairment (Kwon et al., 2015).  Cilostazol also improved endothelial dysfunctions in mesenteric 

arteries of T2DM rats.  This endothelial effect of cilostazol treatment is via improved: (a) acetylcholine-induced 

relaxation and (b) cyclic adenosine monophosphate (cAMP)-mediated relaxations (Matsumoto et al., 2008; 

Miyamoto et al., 2009).  An earlier study also showed protective effects of cilostazol on focal cerebral ischemia 

- through decreasing TNF-α level, Bax protein level, cytochrome c release, and increasing the levels of Bcl-2 

protein (Choi et al., 2002).  This led to a decrease in brain ischemia, and oxidative apoptotic cell death (Choi et 

al., 2002).  A recent study corroborated some of the above data and further documented that cilostazol 

upregulated p-CREB and Bcl-2, as well as increased cyclooxygenase-2 expression, and reduced microglial 

activation. Thus, cilostazol is brain-protective and may be potentially useful in ameliorating cognitive 

impairment (Watanabe et al., 2006). Several elements of the above studies have been confirmed in the rats 

subjected to focal transient ischemic damage (Hong et al., 2006) and chronic cerebral hypoperfusion (Lee et al., 

2008).  

Edaravone  

Edaravone is another important therapeutic candidate for consideration in treating cerebral hypoperfusion. 

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a potent free radical scavenger; its antioxidant function 

inhibits lipid peroxidation. It is used clinically for the treatment of acute cerebral ischemia. In a rat model of 

chronic hypoperfusion, edaravone protected axonal damage, and provided protection against white matter 

lesions; the mechanisms for these included endothelial protection and free radical scavenging (Ueno et al., 

2009). In a rat model of transient global cerebral ischemia, the beneficial effect of edaravone in the 

hippocampus included: increased number of neural stem/progenitor cells and newly generated neurons in the 

subgranular zone, decreased apoptosis of neural stem/progenitor cells, decreased ROS generation, and inhibition 

of HIF-1α and caspase-3 expression (Lei et al., 2014).  Edaravone’s benefit in hypoxic-ischemic injuries in the 

brain (Noor et al., 2005; Sun et al., 2015; Zhang et al., 2012) and other tissues (Doi et al., 2004; Taniguchi et al., 

2007) is well documented.  

Gallic acid  

ROS-mediated damage is implicated in cerebral hypoperfusion. Gallic acid (GA) is another antioxidant 

therapeutic that exerts the benefit through attenuating free radical-induced neural damage in cerebral 

hypoperfusion. In an animal model (rat) of vascular dementia, hypoperfusion reduced total thiol and glutathione 

peroxidase (GPx) antioxidants but increased malondialdehyde (MDA) level - in both hippocampus and frontal 

cortex. There was a concomitant decrease in spatial memory.  However, when GA was administered 

(chronically), it increased total thiol and GPx contents and decreased MDA levels.  GA administration 

significantly enhanced the spatial memory (Korani et al., 2014; Mansouri et al., 2013).  

S-nitrosoglutathione  

S-nitrosoglutathione (GSNO) is the nitric oxide carrier; it decreases Aβ accumulation in the brain and improves 

cognitive function.  In chronically hypoperfused rat brains, GSNO treatment decreased iNOS expression and 

nitro-tyrosine formation.  GSNO showed protective role in iNOS/nitrosative stress mediated calpain/tau 

pathologies (Won et al., 2015).  GSNO reduced the Aβ and ICAM-1/VCAM-1 levels in the rat brain following 
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chronic cerebral hypoperfusion. Besides, GSNO treatment induces other beneficial effects; these include 

decreased cytokine-induced proinflammatory response (viz. activation of NFκB and STAT3) and expression of 

ICAM-1 and VCAM-1 in the endothelial cells.  Furthermore, experiments in primary rat neuron cell culture 

confirmed that GSNO decreases Aβ through inhibition of the β-secretase activity (Won et al., 2013).  

L-carnitine  

There is impaired endothelial function in vascular diseases. The dysfunction develops owing to oxidative stress; 

hence, antioxidant can be of clinical advantage. The effectiveness of antioxidant L-carnitine was studied in 

TNF-α-stimulated human umbilical vein endothelial cells in vitro. Following antioxidant treatment, 

mitochondrial β-oxidation was restored; also, increased cell adhesion molecule and Nox4 expression, leukocyte 

adhesion, and inflammatory cytokine secretion were counteracted. Further work has shown that endothelial 

inflammation and oxidative stress are Nox4-induced (Scioli et al., 2014).  

28 days after the induction of chronic hypoperfusion, rats were treated with (or without) L-carnitine. L-carnitine 

had the following beneficial effects.   It reduced PTEN (phosphorylated phosphatase tensin homolog deleted on 

chromosome 10) and increased phosphorylated Akt and mammalian target of rapamycin (mTOR) (Ueno et al., 

2015).  Further, L-carnitine treatment in the hypoperfused rats reduced lipid peroxidation and oxidative DNA 

damage but increased myelin sheath thickness.  Hence, L-carnitine has been shown to be effective in regulating 

the PTEN/Akt/mTOR signaling pathway, and enhancing axonal plasticity; it also ameliorates oxidative stress 

and increases myelination of axons (Ueno et al., 2015). This study also documented that L-carnitine ameliorates 

white matter pathology and cognitive decline in chronic hypoperfusion.  

Simvastatin 

It is noteworthy that simvastatin treatment of APP(Swe, Ind) mice fully restored NO activity in their vessel 

walls and ameliorated dilatory deficits, but not the impaired hyperemic response to whisker stimulation 

(Papadopoulos et al., 2014; Tong and Hamel, 2015). 

L-arginine, Clazosentan, and Bosentan 

L-arginine is the substrate for nitric oxide synthase.  Both clazosentan and bosentan are the antagonist of 

endothelin-1. The administration of the above compounds can ameliorate vasoconstriction and reduce 

hypoperfusion (Fabricius et al., 1995; Scheckenbach et al., 2006; Schubert et al., 2008; Kreipke et al., 2011; 

D'haeseleer et al., 2013). 

     4.3 Nutraceutical Approach  

 

Several studies have emphasized the use of multi-nutrient dietary interventions in both prevention and treatment 

of AD. The effectiveness of diets is based on specific nutrients provided. These diets claim to attenuate 

neurodegenerative and enhance neuronal maintenance/repair.  

Fortasyn® Connect (FC)  

Male AβPP-PS1 mice (and wild-type littermates) were fed the Fortasyn® Connect (FC) diet (that contains 

cofactors for membrane synthesis). FC is enriched with the omega-3 fatty acids docosahexaenoic acid (DHA), 
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eicosapentaenoic acid (EPA), uridine monophosphate, phospholipids, choline, folic acid, vitamins, and 

antioxidants. This diet is claimed to ameliorate synapse loss and synaptic dysfunction in AD. The FC diet was 

found to restore neurogenesis in AβPP-PS1 mice and decrease the anxiety-related behavior (Jansen et al., 2013).  

APPswe/PS1dE9 mice on control diet showed hypoperfusion, axonal disconnection and neuronal loss (as found 

in AD). However, after feeding FC diet, there was reduced water diffusivity and increased cortical CBF in the 

dentate gyrus and cortical regions of these mice (Zerbi et al., 2014). The beneficial effects of FC diet have been 

confirmed in terms of decreasing Aβ and amyloid plaque burden in the hippocampus of these transgenic animals 

(Broersen et al., 2013).  

Rutin and Polyphenols  

Rutin is a biologically active flavonoid; its antioxidant and anti-inflammatory properties protects the brain.  

Rutin has shown multi-faceted therapeutical benefits including the alleviation of cerebral hypoperfusion (Qu et 

al., 2014).  

Polyphenols are widespread natural compounds found in vegetables, fruits, grains, bark, roots, tea, and wine. 

Most polyphenols possess antioxidant, anti-inflammatory, and anti-apoptotic properties; they also have 

protective effects on mitochondria, glutamate uptake, regulation of intracellular calcium levels, and ischemic 

injury (Panickar and Jang, 2013). Studies have documented that green tea polyphenols (GTP) reduce BBB 

permeability after ischemia. GTP reversed the opening of tight junction (TJ) barrier, decreased mRNA and 

lowered protein expression of claudin-5, occludin, and ZO-1 in microvessel fragments after hypoperfusion.  

Hence, GTP functions as a neuroprotective agent in cerebral ischemia (Liu et al., 2013).  

Ligustilide  

Ligustilide (LIG) is an interesting neutraceutical. It is a lipophilic component of Danggui – a Chinese Angelica 

root, Radix Angelica sinensis. Rats having Chronic cerebral hypoperfusion (induced surgically) were treated 

with LIG (80mg/kg, oral).  LIG prevented dendritic damage, neuronal apoptosis, and neuronal loss in the 

parietal cortex and hippocampus.  LIG also inhibited astrocytic proliferation following hypoperfusion. LIG, 

therefore, appears valuable in imparting beneficial neuroprotective effects in chronic cerebral hypoperfusion 

injury (Feng et al., 2012)  

Souvenaid  

Souvenaid® is a medical food product that has components found in Fortasyn® Connect (FC) diet, with 

modifications. Synaptic loss is integral to cognitive deficits in AD; therefore, Souvenaid has been developed 

over 12 years to affect synaptic integrity and function in AD.  Two randomised, double-blind, controlled trials 

(duration 12 and 24 weeks) in AD patients (not treated with acetylcholinesterase inhibitors and/or memantine) 

have found Souvenaid® to be effective in improving episodic memory performance (de Waal et al., 2014; 

Pardini et al., 2015; Ritchie et al., 2014). Given the above beneficial effects, it is not unreasonable to expect 

Souvenaid® to be protective in cerebral hypoperfusion also.  

    5. Concluding Remarks  

Chronic cerebral hypoperfusion noted in many medical conditions in the elderly stimulates several pathologies 

including glucose hypometabolism, WM Lesions, and cognitive impairment. Chronic hypoperfusion in 
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conjunction with inflammation, ONS, Aβ accumulation, and tau hyperphosphorylation promotes synaptic 

dysfunction and neuronal degeneration/loss – leading to gray and white matter atrophy.  These pathological 

events eventually lead to cognitive decline in the vulnerable aged with comorbid conditions (Zhao and Gong, 

2015; Zhu et al., 2007).  

There is a close relationship between rCBF and metabolic activity in brain regions. Thus, rCBF is closely 

coupled to CMRglc, and CMRglc reflects neuronal activity (see above). Studies in normal aged humans have 

found age-related decreases in brain glucose metabolism.  In gray and white matter areas CBF and blood 

volume (CBV) decrease with age approximately 0.50% per year (Leenders et al., 1990). There is age-related 

decline also in CMRO2 (Takada et al., 1992).  The decrease in CBF and CMRO2 in gray matter is about 18% 

and 17% respectively in aging (Pantano et al., 1984).  Similarly, in the aged rhesus monkeys (roughly equivalent 

to 54–75 yo humans), correlated decreases occur in both CMRglc and CBF in many brain regions including 

frontal, temporal, and occipital cortices, and cerebellum, hippocampus, and striatum (Noda et al., 2002). Several 

medical conditions discussed above may synergistically upregulate hypoperfusion and hypometabolism.  For 

example, higher peripheral insulin resistance even in cognitively normal late middle–aged (60 yo) persons was 

associated with lower global glucose metabolism and lower CMRglc in the frontal, parietal, and temporal lobes 

(Willette et al., 2005).  In hypertensive individuals, cerebral microbleeds (related to CAA) may be associated 

with significantly reduced resting- state CBF in multiple brain regions with the highest decrease in the parietal 

cortex and precuneus (Gregg et al., 2015).  The above mentioned pathological stigmata have been described in a 

diverse range of medical conditions (see above)  

Aβ overexpression (e.g. in CAA) impairs CBF in critical brain regions including the entorhinal, temporal, 

parietal and precuneus. Chronic hypoperfusion, therefore, is contributory in inducing neuronal 

injury/neurodegeneration and promoting cognitive decline/AD (Daultazai; 2013a, 2013b, 2014, 2015b-d; 

Mattson et al., 2014).  Strategies including pharmacotherapy and nutraceutical consumption described here may 

be neuroprotective and attenuate chronic hypoperfusion. The above discussion on the multi-faceted origin of 

hypoperfusion, therefore, calls for early, sustained, and aggressive intervention through exercise, lifestyle 

changes, pharmacotherapy, and dietary supplementation. 

Finally, there are convincing and accumulating studies that cerebral hypoperfusion is correlated with cognitive 

impairment and neurodegenerative disease (Bennett et al., 1998; Dardiotis et al., 2012; de la Torre, 2012; 

Daulatzai, 2013; Abete et al., 2014; Toda et al., 2014).  Furthermore, data from experimental models of chronic 

hypoperfusion clearly corroborate an association of cerebral hypoperfusion with cognitive dysfunctions (Ni et 

al., 1994; Sarti et al., 2002; Farkas et al., 2007; Cechetti et al., 2010). 
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Figure Legend 

Figure 1.  Schematic representation of the pathogenesis of cognitive decline in aging and AD.  

Several comorbid conditions in aging are associated with the risk of cerebral hypoperfusion and 

glucose hypometabolism. Thus, multifactorial modulators have the potential to trigger inflammatory 

and oxidative stress responses that may give rise to dysregulation of homeostasis.  Cerebral 

microvascular pathology deposits Aβ in the walls of cerebral vessels which is a common cause of 

cerebral amyloid angiopathy (CAA).  Consequently, dysfunctional neurovascular unit alters CBF 

regulation, promoting a secondary cascade of events. Endothelin-1 (released by the endothelium) 

activity - a potent vasoconstrictor is upregulated.  Decreased endothelial NO (a major vasodilator) 

plays an important role in modulating APP and upregulating Aβ expression within the 

cerebrovasculature. The chronic activation of microglia is also associated with Aβ increase.  Besides, 

dysfunctional BBB contributes to an increase in cerebral neurotoxic substances, leukocytic migration 

across the BBB, and the development of neurodegeneration.  
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Table 1. 

Conditions That Promote Cerebral Hypoperfusion and Glucose Hypometabolism: 

Pathophysiological Ramification 

Risk Factors Implications for Vulnerability 
Aging Multi-factorial mechanisms 

unhealthy diet, dysfunctional 

breathing, sleep restriction, and 

excess consumption of alcohol 

Vascular pathology and  

cortical microinfarcts (Kövari et 

al., 2004; 2007), gray matter 

lacunes (Gold et al., 2005), and 

irreversible endothelial 

dysfunction (Hallam et al., 2010; 

Thal et al., 2009). 
Obstructive Sleep Apnea Nocturnal apneas/hypopnea Cerebral hypoperfusion - 

Decreased CBF velocity and 

delayed cerebrovascular 

compensation (Bålfors and 

Franklin, 1994; Baril et al., 2015; 

Corfield and Meadows, 2006). 
Hypertension Vascular inflammation, BBB 

disruption, hypoperfusion, and 

ischemia 

Changes in blood vessel wall, 

hypoperfusion, and a decrease in 

cortical thickness; brain volume 

reduction (Shah et al., 2012, 

Beauchet et al., 2013; Alosco et 

al., 2013; Kruyer et al., 2015; Van 

Der Gucht et al., 2015). 
Obesity/Metabolic Syndrome Dyslipidemia, and 

glucose/insulin dysregulation, 

diabetes 

Hyperlipidemia disrupts 

endothelial and smooth muscle 

function; vasoconstriction in the 

cerebral vasculature, and oxidative 

stress (Osmond et al., 2009).  

Decreased NO and CBF (Ayata et 

al., 2013; Toda et al., 2014).  
Vitamin B12/Folate Deficiency Hyperhomocysteinemia, 

microvasculature pathology    
Proatherogenic, pro-inflammatory, 

increases CVD, increased matrix 

metalloproteinases, RAGE, 

apoptosis (Akchiche et al., 2012; 

Narayan et al., 2011; da Cunha et 

al., 2012; Shiran et al., 2015; 

Hofmann et al., 2001; Madsen et 

al., 2015) 
Diabetes Dysglycemia, insulin resistance Increased C-reactive protein, 

inflammatory markers, and 

reduced CBF (Anstey et al., 2015; 

Biessels et al., 2014; Cherbuin et 

al., 2012; Kerti et al., 2013; 

Willette et al., 2013; Novak et al., 

2006; Fukazawa et al., 2013; 

Kwon et al., 2015). 
Depression Lower CBF Decreased arterial Pulsatility and 

reduced blood flow in several brain 

regions including PFC (Nagafusa 

et al., 2012; Ota et al., 2014; 

Uemura et al., 2014; Wang et al., 

2014).  

 
Traumatic Brain Injury edema, excitotoxicity, loss of 

neuronal and glial integrity, 

dysfunctional mitochondrial 

 Upregulates axonal damage and 

Aβ42 production, and down-

regulates long-term potentiation 
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bioenergetics, oxidative stress, 

inflammation, and cell membrane 

disruption 

(Walker and Tesco, 2013; Fakhran 

et al., 2013).  Decreased CBF, 

brain hypoperfusion, glucose 

hypometabolism, and diminished 

energy supply (Olesen et al., 1981; 

Golding et al., 1999; Ayata et al., 

2004; Parkin et al., 2005; Lauritzen 

et al., 2011; Romero et al., 2014). 
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