
Designing and Evaluating an XPath Dialect for Linguistic Queries

Steven Bird
University of Pennsylvania &

University of Melbourne
sb@ldc.upenn.edu

Yi Chen
Arizona State University

yi@asu.edu

Susan B. Davidson
University of Pennsylvania

susan@cis.upenn.edu

Haejoong Lee
University of Pennsylvania
haejoong@cis.upenn.edu

Yifeng Zheng
University of Pennsylvania

yifeng@cis.upenn.edu

Abstract

Linguistic research and natural language processing
employ large repositories of ordered trees. XML, a standard
ordered tree model, and XPath, its associated language, are
natural choices for linguistic data and queries. However,
several important expressive features required for linguistic
queries are missing or hard to express in XPath. In this
paper, we motivate and illustrate these features with a
variety of linguistic queries. Then we propose extensions
to XPath to support linguistic queries, and design an
efficient query engine based on a novel labeling scheme.
Experiments demonstrate that our language is not only
sufficiently expressive for linguistic trees but also efficient
for practical usage.

1 Introduction

Large repositories of text and speech data are routinely
collected, curated, annotated, and analyzed as part of the
task of developing and evaluating new language technolo-
gies. These technologies include information extraction,
question answering, machine translation, and so forth. Lin-
guistic databases may contain up to a billion words, along
with annotations at the levels of phonetics, prosody, orthog-
raphy, syntax, dialog, and gesture. Of particular inter-
est here are so-called treebanks. For instance, Penn Tree-
bank [22] contains a million words of parsed text.

Unfortunately, different corpora use different data for-
mats and rely on specialized search tools to extract data
of interest. This lack of standards has become a critical
problem for data sharing, on-line retrieval and distributed
collaboration. Furthermore, as observed in [17], the rela-
tionship between these linguistic tools and existing database

query languages has not been well studied, making it dif-
ficult to apply standard database indexing and query opti-
mization techniques. As data size grows and the analysis
tasks become more complex, scalability has become a criti-
cal factor.

Linguistic data and its annotations is typically mod-
eled as an ordered hierarchical structure. For example, an
English sentence with its grammatical analysis annotation
(syntax tree) is presented in Figure 1. Due to the reliance on
an ordered tree model, a natural candidate for representing
linguistic data is XML.

Despite increasing efforts to use XML for representing
linguistic data, XML’s associated standard query languages,
XPath [10] and XQuery [3], are not widely used for query-
ing the data. After discussions with linguists and annotators
associated with the Treebank project, we found that this is
due to three primary issues: expressibility, user friendliness
and efficiency.

First, a language should naturally express the queries that
the user community needs. Since linguistic data has both
a sequential organization related to the primary data (for
example, sentences) and a hierarchical organization related
to the annotations, its query language must express tree
navigations in both directions. XPath and XQuery support
vertical navigations of a tree using the parent, ancestor,
child and descendant axes, and certain horizontal naviga-
tions using the following and preceding sibling axes, and the
following and preceding axes. However, other horizontal
navigations which are important to linguistic queries, are
lacking or can not be easily expressed in XPath.

To illustrate, consider the syntax tree in Figure 1. A
common linguistic query for this tree would be: Find con-
stituents which immediately follow a verb. The query asks
for the constituent right after a node V in a syntactic anal-
ysis of the given sentence. For example, the sentence can
be analyzed as “I V NP today". Therefore NP is a node

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

that immediately follows node V according to this analy-
sis. The sentence also can be analyzed as “I V NP PP
today" which is a finer granularity of analysis since an NP
is composed of an NP and a PP. Therefore node NP also
immediately follows V . Similarly, Det also immediately
follows V .

However, this type of tree navigation can not be easily
expressed in XPath. Furthermore, it turns out that this type
of horizontal navigation not only has practical applications
in linguistic queries, but also has interesting theoretical con-
sequences for tree models [21].

Second, user friendliness is an important consideration.
During our discussions with linguists and annotators, we
found that a path language without variable bindings is most
convenient, thanks to its similarities with regular expres-
sions which are used widely. Most of the additional features
of XQuery, such as node construction, iteration, joins and
type checking, are not usually required for linguistic tree
queries.

Finally, a query language should be efficiently evaluated
to be practically useful. XPath has been extensively studied
in terms of expressivity [21], complexity [13], as well as
optimization techniques [18, 11, 8], and it is widely used in
various applications.

Therefore we are particularly interested in how to aug-
ment XPath to express linguistic queries and how to effi-
ciently evaluate this more expressive query language.

After studying the requirements of linguistic queries, we
propose a linguistic query language LPath, which extends
the XPath 1.0 syntax.1 By adding certain horizontal navi-
gation axes, we have both primitives and transitive closures
for vertical and horizontal navigation, filling a gap in the
XPath axis set. We also include subtree scoping and edge
alignment which we will show are required by linguistic
queries.

We then discuss how to efficiently evaluate LPath
queries. Labeling schemes have proven to be a very
effective technique for evaluating XPath queries [18, 8].
However, we have found that existing labeling schemes
cannot support the new features in LPath. We propose a
new labeling scheme which speeds up the existing as well
as new axes in LPath. Based on this labeling scheme, we
design and implement an efficient query engine to evaluate
LPath queries.

Experiments demonstrate that LPath is not only suffi-
ciently expressive for querying linguistic trees but also effi-
cient for practical usage.

The contributions and organization of the paper are as
follows. Section 2 describes a new application of semistruc-
tured data, linguistic treebanks. We analyze the data model

1We focus on the discussion of XPath 1.0 (abbreviated as XPath in the
rest of the paper) without user-defined functions in this paper. As with
XPath, LPath can have a function library.

S

VP

NP

PP

NP NP

NP V Det Adj N Prep Det N N
@lex: @lex: @lex: @lex: @lex: @lex: @lex: @lex: @lex:

I saw the old man with a dog today

S: sentence; NP: noun phrase; VP: verb phrase; PP: preposi-
tional phrase; Det: determiner, Adj: adjective; N: noun; Prep:
preposition; V: verb. Nodes are assigned identifiers to facilitate
the discussion.

Figure 1. A Syntax Tree

and query requirements and introduce a running example.
Next, in Section 3 we propose an expressive and intuitive
linguistic query language, LPath, by extending XPath. To
evaluate LPath queries, a new labeling scheme which effi-
ciently supports both horizontal and vertical tree naviga-
tions is introduced in Section 4. The LPath query evalua-
tion system has been implemented and tested against several
linguistic query engines as well as an XPath query engine.
Experimental results, reported in Section 5, show that the
proposed approach efficiently evaluates linguistic queries
on various data and query sets. Furthermore, the additional
expressiveness of LPath does not compromise its efficiency
compared with XPath query evaluation. Finally, Section 6
discusses related work on linguistic query languages as well
as XPath query evaluation. Section 7 concludes the paper
and discusses future research directions. We also discuss its
implications for XPath design and evaluation.

2 Data Model and Query Requirements

2.1 Linguistic Data

Linguistic data consists of linguistic artifacts (for exam-
ple, texts or recordings), which are considered immutable,
together with hierarchical annotations. A common data
model for linguistic data is therefore an ordered labeled
tree, in which the leaves or terminals are units of linguistic
artifacts (e.g. utterances or words), and the annotations are
the tree structure. Since the terminals of a linguistic tree
are linearly ordered, an order is also induced on the non-
terminals.

For example, Figure 1 shows the syntax tree of a sen-
tence. Here the words in the sentence are represented by

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Query Result LPath
Find a sentence containing the word saw {S } //S[//_[@lex=saw]]
Find noun phrases that is an immediate {NP } //V==>NP
following sibling of a verb
Find noun phrases that immediately follow a verb {NP , NP } //V->NP
Find nouns that follow a verb which in turn is a child of a verb phrase {N , N , N } //VP/V-->N
Within a verb phrase, find nouns that follow a verb {N , N } //VP{/V-->N}
which is a child of the given verb phrase
Find noun phrases which are the rightmost child of a verb phrase {NP } //VP{/NP$}
Find noun phrases which are the rightmost {NP , NP } //VP{//NP$}
descendant of a verb phrase

Figure 2. Example Linguistic Queries

a sequence of terminals. The linguistic annotation is an
ordered tree built over the terminals. Non-terminal nodes
are annotations of sequences of terminal nodes or other non-
terminals. For instance, the node NP is an annotation of
annotations Det , Adj and N , with the interpretation that
“a determiner, an adjective and a noun together compose a
noun phrase.”

2.2 Linguistic Queries

2.2.1 Tree Navigation

Large-scale empirical linguistics involves searching and
collating tree data. Since linguistic data is two dimensional,
it is frequently navigated in both the vertical and horizontal
directions.

Vertical navigations on linguistic trees are the same as
in XML tree navigation, e.g. parent, child, ancestor, and
descendant. As an example, we may want to find all sen-
tences containing the word saw as in query in Figure 2.

Horizontal navigations traverse the sequential organiza-
tion of a linguistic tree. Some of them are supported by
XPath axes such as following, preceding, following sibling
and preceding sibling. For example, a linguist may want to
find nouns that follow a verb which in turn is a child of a
verb phrase, specified as in Figure 2.

Other forms of horizontal navigation used in linguistic
queries, such as immediate following sibling, do not have a
corresponding XPath axis but still can be represented by an
XPath expression using the core function library. For exam-
ple, in Figure 2, which finds noun phrases that are the
immediate following sibling of a verb, can be expressed in
XPath as //V/following-sibling::_[position()=

1][self::NP].2 It first finds all the following-siblings of
a node, then uses the position function to filter out the
first one; finally it checks the tag. Arguably, this is not a
natural way of expressing the query.

2Instead of using * to denote a wildcard to match any tag name as
defined in the XPath specification, we use _ as wildcard and * to denote
transitive closure in this paper.

S NP VP NP I saw the old man PP today
VP V NP NP I V Det Adj N PP today
NP NP PP I V NP PP today
NP Det Adj N I V NP today
PP Prep NP I VP today

(a) CFG Productions (b) Some Proper Analyses

Figure 3. CFG and Its Proper Analyses

Furthermore, as shown by [16], two commonly used hor-
izontal navigations in linguistic queries cannot be expressed
in XPath: immediate following (see query in Figure 2),
and its inverse immediate preceding.

Immediate following navigation can be understood with
respect to the context-free grammar (CFG) which licenses
the trees. For example, Figure 1 shows a derivation tree
of the context-tree grammar with the production rules in
Figure 3(a), where the parent child relationship corresponds
to the derivation of rules. Applying grammar productions in
reverse to a sentence, we can get a set of sequences, called
proper analyses [9]. In other words, each proper analysis
is a derivation of the root that can ultimately produce the
sentence. Figure 3(b) shows some proper analyses of the
sentence I saw the old man with a dog today with respect to
the grammar in Figure 3(a).

We say that a node immediately follows another node
in a linguistic tree if and only if appears immediately

after in a proper analysis according to the productions
of the grammar. From the sample proper analyses in Fig-
ure 3(b), we know that V is immediately followed by NP ,
NP and Det , and therefore we can determine that NP and
NP are the results of .

The transitive closure of immediate following is express-
ible in XPath: If a node appears after in a proper anal-
ysis, then the relationship between and is equivalent to
the navigation defined by the following axis in XPath. For
example, in Figure 1, node N , N and N all follow V .

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Table 1. LPath Navigation Axes
Type LPath Axis Abbreviation Closure Core XPath Support

child /
Vertical descendant /descendant:: /

parent \

ancestor /ancestor:: \

immediate-following ->
Horizontal following --> ->

immediate-preceding <-
preceding <-- <-
immediate-following-sibling =>

Sibling following-sibling ==> =>
immediate-preceding-sibling <=
preceding-sibling <== <=
self .

Other attribute @

Beside tree navigations, there are two commonly used
features in linguistic queries which are difficult or impos-
sible to express in XPath: subtree scoping and edge align-
ment.

2.2.2 Subtree Scoping

Linguistic tree navigation often needs to be scoped within
a subtree. In contrast to , searches for nouns which
follow a verb within a verb phrase. For example, consider
a verb V and three nouns which follow it, N , N , and
N in Figure 1. Since N is outside the verb phrase VP , it
does not satisfy the query. [14] proposes a technique to con-
vert a conjunctive query with an XPath axis that expresses
scope to an XPath query. However, the size of the resulting
query can be exponential in the size of the original query.
By explicitly providing scope as a language primitive, we
can implement it efficiently.

2.2.3 Edge Alignment

Linguists are often interested in nodes whose positions are
the leftmost or rightmost within a particular subtree. The
alignment of a child node with the leftmost or rightmost
edge of its parent (as in) can be expressed using the posi-
tion function in XPath. For example, can be expressed
as //VP/_[last()][self::NP].

However, the alignment of a descendant with the left-
most or rightmost edge of a node as in cannot be
expressed by an XPath query using the position function.
A putative XPath equivalent for could be: //VP//_

[last()][self::NP]. However, this XPath expression
evaluates to on the tree in Figure 1, while should
evaluate to {NP , NP }. This is because edge alignment
refers to the node order in an XML tree, while the XPath
position function refers to the order in a sequence obtained

RLP ::= HP | HP ‘{’ RLP ‘}’
HP ::= | S HP
S ::= A ‘::’ LA NodeTest RA Predicates*
LA :: = | ’ˆ’
RA :: = | ’$’
A ::= ‘/’ | ‘/descendant’ | ‘.’ | ‘\’ | ‘\ancestor’

| <= | => | <== | ==>
| <- | -> | <-- | -->

RLP: RelativeLocationPath; HP: HeadPath; S: Step;
A:AxisName; LA: Left Alignment; RA: Right Alignment.

Figure 4. The Grammar of LPath That Differs
From XPath

from intermediate results which does not necessarily repre-
sent the structural order in the original XML tree.

3 LPath: A Path Language For Linguistic
Trees

In this section we present the LPath language for query-
ing linguistic trees, which extends XPath with new prim-
itive horizontal tree navigation axes, subtree scoping and
edge alignment. These new features of LPath are shown in
Figure 4, which highlights the difference between the LPath
and XPath grammars. The rest of the LPath specification is
the same as that in [10]. For space reason, it is omitted here.

LPath navigation axes include all XPath axes and eight
new axes: immediate-following (->) as formally defined
in Definition 3.1, immediate-following-sibling (=>),
immediate-preceding (<-), immediate-preceding-sibling
(<=), following-or-self, preceding-or-self, following-
sibling-or-self and preceding-sibling-or-self. We include
the or-self axes so that the axis set contains both primary
axes and their transitive closure (* and +). To be concise,

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

we omit the discussion of the or-self and namespace axes
in the rest of the paper. A summary of LPath axes, their
syntactic abbreviations, the relationships between them,
as well as their relationship with Core XPath [13], a
clean logic core of XPath language, is given in Table 1.
Following XPath, we use ‘//’ as an abbreviation for
/descendant-or-self::node()/. Note that LPath has
axes for both primitive and transitive closures of vertical
and horizontal navigations, filling a gap in the XPath axis
set.

Definition 3.1: In a tree , a node immediately follows a
node if and only if follows and there does not exist
a node , such that follows and follows .

We introduce braces to express subtree scoping 3. This
forces all node navigations to be constrained to a subtree.
When ‘{’ occurs after a query node , all the axes between
‘{’ and ‘}’ are evaluated within the XML subtree rooted at
the node matching . For example, can be expressed
as //VP/V-->N. In contrast, constrains the query with
subtree scoping on node VP and can be expressed as: //

VP{/V-->N}. Given the XML tree in Figure 1, although
node N is a following node for V in the whole tree, it is
outside the scope of VP ’s subtree and is therefore not part
of the result for .

We introduce to force left edge alignment, and to
force right edge alignment, motivated by the syntax of regu-
lar expression languages. For example, can be expressed
as: //VP{/NP$}. Often and are used together with
subtree scoping to align nodes within a subtree instead of
the whole tree.

LPath queries for all sample linguistic queries are shown
in Figure 2 in the LPath column.

The following lemma is suggested by lemmas 5.2 and
5.3 in [16]:

Lemma 3.1: Scoping, immediate-following, immediate-
following-sibling and their reverse axes can not be
expressed by Core XPath.

4 LPath Query Evaluation

A good query language is both expressive and efficient.
We have discussed the design of LPath and illustrated how
it can be used to express linguistic queries. Next we will
discuss how to efficiently evaluate LPath queries.

To capture hierarchical order in a linguistic tree and to
enable efficient LPath axis and edge alignment processing,
we propose a new interval-based labeling scheme. Using
this labeling, we can detect the relationship between tree
nodes with respect to all LPath axes.

3Note that here braces are used differently than the ones in attribute
value templates in XSLT.

Table 2. Axes and Label Comparisons
Vertical Navigation
child()
descendant()

parent()
ancestor()

Horizontal Navigation
immediate-following()
following()
immediate-preceding()
preceding()
Sibling Navigation
immediate-following-sibling()
following-sibling()
immediate-preceding-sibling()
preceding-sibling()
Others
attribute()

begins with @

The labeling scheme is based on the following observa-
tions for an ordered tree without unary branching (that is,
every non-terminal node has at least two children).

Containment: A node is a descendant of if and
only if every leaf descendant of is a leaf descendant
of .

Adjacency: A node immediately follows if and
only if the leftmost leaf descendant of immediately
follows the rightmost leaf descendant of .

To see the adjacency property, we notice that a node
immediately follows if and only if appears immediately
after in a derivation of the root (proper analysis). If
we replace (and) with its derivation consisting of its
leaf descendant sequence in , immediately follows
if and only if the leftmost leaf descendant of appears
immediately after the rightmost leaf descendant of in .

According to these two properties, the relationship
between two nodes in an ordered tree without unary
branching can be detected according to the relationship
between their leaf descendants.

For a tree with unary branches, it is possible that node
and its descendant have the same leftmost and rightmost
leaf descendants, and therefore their ancestor-descendant
relationship cannot be determined by the containment prop-
erty solely. To distinguish and , we need to take the
node depth into consideration. The depth information can
also be used to distinguish the parent-child relationship
from the ancestor-descendant relationship.

To test the sibling relationship between nodes and ,
we need to check whether they share the same parent. To

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

expedite sibling navigations, which are frequent in linguis-
tic queries, we include id and pid in a node label, where id
and pid are the unique identifier of a node and its parent,
respectively.

We distinguish element nodes from attribute nodes using
name which records either an attribute name starting with
‘@’ or a tag.

Now we formalize the labeling scheme4.

Definition 4.1: We assign each node a tuple left, right,
depth, id, pid, name , shortened as l, r, d, id, pid, name ,
in the following fashion:

1. Let be the leftmost leaf element. Assign .
2. Let be a leaf element. Assign .
3. Let and be consecutive leaf elements where is

on the left. Then assign = .
4. Let be a non-terminal node which has a sequence of

leaf descendants in order: . Then assign
and .

5. For each element , let be the depth of , where
the root has a depth of .

6. For each element , assign a nonzero as its unique
identifier (where is a Skolem function).

7. For each element , assign to be ’s parent’s
unique identifier; if is the root, assign .

8. For each attribute associated with an element ,
assign the same l, r, d, id, pid as to .

9. For each element , let be the tag of . For
an attribute , let be the attribute name of .

The node labels can be constructed in a single depth-first
traversal of a linguistic tree.

Table 2 shows how to determine the LPath axis relation-
ship of any two nodes by inspecting their labels.5

We store linguistic tree nodes along with their labels in
a relational database and translate an LPath query to an
SQL query. According to Table 2, each LPath axis can be
translated to an SQL join. The query translation module
is similar to the XPath-to-SQL translation discussed in the
literature [11, 18] and is omitted here.

Example 4.1: Figure 5 shows part of the relation including
label information for the sample annotation tree in Figure 1,
where the id attribute in the table corresponds to the node
ids in Figure 1. Consider node NP : it has label l=3, r =9,
d =3. We detect that node S with label l=1, r =10, d =1 is
an ancestor of NP since S .l NP .l, S .r NP .r, and
S .d NP .d according to Table 2. Furthermore, node V
with label l=2, r = 3, d =3 immediately precedes NP since
NP .l = V .r.

4This definition can easily be extended to multiple trees by introducing
tree identifiers.

5Extensions to reflexive versions of the axes are easy and are omit-
ted here. For example, descendant-or-self() =

left right depth id pid name value
1 10 1 2 1 S
1 2 2 3 2 NP
1 2 2 3 2 @lex I
2 9 2 4 2 VP
2 3 3 5 4 V
2 3 3 5 4 @lex saw
3 9 3 6 4 NP
3 6 4 7 6 NP
3 4 5 8 7 Det
3 4 5 8 7 @lex the

Figure 5. Relational Representation of

5 Experimental Results

We have implemented the LPath query engine in C++
[1]. The labeled form of linguistic trees were stored in a
database with schema { tid, left, right, depth, id, pid name,
value}. The attribute tid is used to distinguish different
trees, and value records data values. The relation is clus-
tered by {name, tid, left, right, depth, id, pid}. Indexes {tid,
value, id}, {value, tid, id} and {tid, id, left, right, depth,
pid} were also built to improve performance. We used yacc
to generate a parser to translate an LPath query to an SQL
query, and this was fed to the relational database to get the
result. The system was tested on a commercial relational
database.

5.1 Experimental Setup

The experiments were performed on a 2GHz Pentium 4
machine, with 512M memory and one 7200rpm hard disk.
All experiments were repeated 7 times independently, and
the average query evaluation time was reported, disregard-
ing the maximum and minimum values.

5.1.1 Systems

Here we compare the performance of the LPath query
engine with two popular linguistic query language
implementations, TGrep2 [25] and CorpusSearch [24],
both designed for the Penn Treebank corpus. We also
present the performance of an XPath engine using a
popular XML labeling scheme for comparison [11].

5.1.2 Data Sets

Two data sets were tested: the Wall Street Journal Corpus
and the Switchboard Corpus, both from Treebank-3 [19].
The Wall Street Journal (WSJ) Corpus consists of a million

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

WSJ SWB
File Size 35983kB 35880kB
Tree Nodes 3484899 3972148
Unique Tags 1274 715
Maximum Depth 36 36

(a) Test Data Sets

WSJ SWB
Tag Freq Tag Freq

1 NP 292430 -DFL- 193708
2 VP 180405 VP 185259
3 NN 163935 NP-SBJ 135867
4 IN 121903 . 135753
5 NNP 114053 , 133528
6 S 107570 S 132336
7 DT 101190 NP 129804
8 NP-SBJ 95072 PRP 114332
9 -NONE- 79247 NN 76390
10 JJ 75266 RB 73477

(b) Top 10 Frequent Tags in Data Sets

LPath Size of Result
Query WSJ SWB
//S[//_[@lex=saw]] 153 339
//VB->NP 23618 16557
//VP/VB-->NN 63857 32386
//VP{/VB-->NN} 46116 25305
//VP{/NP$} 29923 22554
//VP{//NP$} 215104 112159
//VP[{//^VB->NP->PP$}] 2831 1963
//S[//NP/ADJP] 7832 2900
//NP[not(//JJ)] 211392 109311
//NP[->PP[//IN[@lex=of]]=>VP] 192 31
//S[{//_[@lex=what]
->_[@lex=building]}] 2 5
//_[@lex=rapprochement] 1 0
//_[@lex=1929] 14 0
//ADVP-LOC-CLR 60 0
//WHPP 87 20
//RRC/PP-TMP 8 3
//UCP-PRD/ADJP-PRD 17 4
//NP/NP/NP/NP/NP 254 12
//VP/VP/VP 8769 6093
//PP=>SBAR 640 651
//ADVP=>ADJP 15 37
//NP=>NP=>NP 7 7
//VP=>VP 20 72

(c) Test Query Sets

Figure 6. Test Data and Query Sets

words of syntactically parsed text. The Switchboard Cor-
pus (SWB) consists of 650 transcribed, syntactically parsed
telephone conversations [12].

Characteristics of these data sets are presented in Fig-
ure 6(a), where File Size is the disk space required for the
uncompressed ASCII representation of the linguistic trees.
We list the ten most frequent tags appearing in each data set
along with their frequencies in Figure 6(b).

5.1.3 Query Sets

Since there is no benchmark for linguistic queries, we have
developed a collection of tree queries with input from lin-
guists and annotators at the University of Pennsylvania.
These are shown in Figure 6(c). Only 11 of these 23 queries
are expressible in XPath. The collection includes queries
with value tests in predicates (, to), and queries
containing sibling axis traversals (to). We also
include queries with high selectivity (to) and with
low selectivity (and). In the experiment, queries
return the result size.

5.2 Query Processing Time

Figures 7 and 8 present the query execution time in log
scale for the WSJ and SWB data sets, respectively, using
the LPath query engine, TGrep and CorpusSearch. Since
LPath to SQL query translation time is negligible, this is
not included in the figures. For the WSJ dataset, the LPath
query engine is the fastest except for queries , and

. In each of these three queries, low selectivity tags
appear. contains the most frequent tag NP, the second
most frequent tag VP, and the fourth most frequent tag IN;

contains NP five times in a row vertically; and
contains NP three times horizontally. A relational database
retrieves all the nodes whose name appears in a query as
intermediate results and then joins them to compute the final
query result. When low selectivity tags appear in a query,
a lot of disk accesses are needed and the size of the inter-
mediate results is large. On the other hand, when the tags
appearing in a query have high selectivity, the LPath query
engine works well by leveraging the indexes, e.g. and

. Furthermore, the LPath query engine performs well
for queries containing high-selectivity value predicates, as
they effectively reduce the size of intermediate results for
joins, e.g. and . For the SWB dataset, the LPath
query engine is the fastest for all queries since the frequency

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Wall Street Journal

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Query

Tim
e(s

)

LPath Tgrep CorpusSearch

Figure 7. Query Execution Time on Wall Street Journal Dataset

Switchboard

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Query

Tim
e(s

)

LPath Tgrep CorpusSearch

Figure 8. Query Execution Time on Switchboard Dataset

Wall Street Jounral

0.0001

0.001

0.01

0.1

1

10

Q1 Q8 Q9 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19

Query

T
im

e(
s)

LPath Xpath

Figure 10. Execution Time of LPath and XPath
Query Engine on Wall Street Journal Dataset

of tags in the SWB dataset is different. In particular, the tags
used in our queries that have high frequency in the WSJ
corpus generally have much lower frequency in the SWB
corpus.

5.3 Scalability of Query Processing Time

To test the scalability of these systems as the data size
increases, we replicated the WSJ dataset between 0.5 and
4 times. Figure 9 reports the processing time on data of
increasing sizes for representative sample queries of differ-
ent types. The performance of other queries is similar and
is omitted. As we can see, the LPath query engine scales
well.

5.4 Labeling Scheme

We compared the labeling scheme for LPath with a
well-known labeling scheme designed for evaluating XPath
queries [11], which is referred here as the XPath labeling
scheme. This scheme uses textual positions of the start
and end tags rather than left and right as used in the LPath
labeling scheme. The XPath labeling scheme was proposed
to efficiently evaluate the descendant axis and the child axis
by testing label containment. We implement XPath-to-SQL
query translation based on the strategy proposed in [11]. To
compare the performance, we set other components of both
labeling schemes to be the same.

Figure 10 reports the query execution time on the WSJ
dataset. The SWB dataset has similar results. 11 queries
in the query set can be expressed using XPath and therefore
are supported by the XPath labeling scheme. As we can see,
the performance of these two labeling schemes is almost
the same. The proposed labeling scheme supports more
queries without degrading the performance of XPath query
evaluation.

6 Related Work

Several languages for querying linguistic data have been
proposed [7, 23, 24, 4], but they are tied to specific data
formats and are difficult to generalize and reuse. Moreover,
little is known about whether query optimization techniques
such as those developed in relational databases can be used.

TGrep2 is a grep-like tool for searching linguistic
trees [25]. Queries are expressed as nested expressions

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Q3

0.1

1

10

100

0 20 40 60 80 100 120 140

size(MB)

ti
m

e(
s)

LPath Tgrep CorpusSearch

Q6

0.1

1

10

100

1000

0 20 40 60 80 100 120 140

size(MB)

ti
m

e(
s)

LPath Tgrep CorpusSearch

Q11

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140

sizesize(MB)

ti
m

e(
s)

LPath Tgrep CorpusSearch

(a) (b) (c)

Figure 9. Query Execution Time as WSJ Data Size Increases

involving nodes and relationships between nodes. Query
execution uses a binary file representation of the data,
including an index on the words in the trees.

CorpusSearch is a language for syntax trees [24]. A
query explicitly specifies a context node and a navigation
within the context. It supports restricted disjunction and
negation.

The Emu query language [7] is designed for querying
hierarchical speech annotations. This language supports
node navigation and logical connectives. Though this query
language has proved useful in phonetics research, it is not
sufficient to express all queries for syntax trees, such as the
child relationship () and negation.

Bird, Buneman and Tan [4] proposed a query language
for annotation graphs, a data model proposed by Bird and
Liberman [6]. The language focuses on expressing hori-
zontal navigations and is not able to express all vertical
navigations, for example, the parent-child relationship on
trees with unary branching. A subset of the language is
implemented using a relational engine [20].

A preliminary proposal of LPath is presented in [5].
Recently, Lai [16] has established the formal expressiveness
of LPath relative to XPath, Conditional XPath, and Regular
XPath [21].

We refer the reader to [17] for a more comprehensive
survey of tree query languages and a discussion of linguistic
tree query language requirements.

One important class of XPath query engines is based
on labeling schemes that encode a node by its positional
information. These methods have been shown to be very
efficient [18, 11, 8]. These labeling schemes enable us to
determine the vertical navigation relationships and follow-
ing/preceding relationships between two nodes efficiently
by checking the containment relationship of their labels,
but they do not address all the horizontal navigations as
required in linguistic queries, such as immediate follow-
ing/preceding.

7 Conclusion

We have proposed LPath as an expressive and efficient
language for linguistic queries. LPath extends XPath by
introducing horizontal navigation primitives, subtree scop-
ing, and edge alignment. Once these horizontal axes are
added, horizontal and vertical navigation primitives as well
as their closure are fully supported (cf. Table 1).

To efficiently evaluate LPath queries, we have proposed
a labeling scheme that supports both horizontal and vertical
navigations. Based on the labeling scheme, an LPath query
evaluation system was designed and implemented.

We believe this work has implications for XPath design
and implementation beyond linguistics. First, we found
that several important node navigations are not supported
or not easily expressed by XPath, presumably because these
navigations are not required in current applications. How-
ever, as XML is a standard data format representing a tree
model, and XPath is its standard language, it is beneficial
for XPath to include these additional navigations in order to
support wider scientific applications. Second, from a theo-
retical perspective, by including these new axes in XPath,
the XPath axis set will contain both primitive horizontal
navigations and their closures, just as it currently does for
the vertical navigation axes. The result is an elegant and
comprehensive inventory of axes.

The evaluation of LPath queries leverages a novel label-
ing scheme which is also useful for XPath query process-
ing. As shown in section 5, an LPath query engine has the
same performance as an XPath query engine, but supports
more queries. Thus, it suggests an interesting alternative to
existing XPath query evaluation techniques.

8 Acknowledgments

We would like to thank Val Tannen, Peter Buneman,
and James Bailey for their valuable feedback on the work
reported here. This research is funded by NSF 0317826
Querying Linguistic Databases, NSF IIS 0415810

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Preserving Constraints in XML Data Exchange, and NSF
IIS 0513778 Data Cooperatives: Rapid and Incremental
Data Sharing with Applications to Bioinformatics.

References

[1] http://www.ldc.upenn.edu/Projects/QLDB/.

[2] TIGER PROJECT. http://www.ims.uni-
stuttgart.de/projekte/TIGER/.

[3] XQuery 1.0: An XML query language, June 2001.
http://www.w3.org/XML/Query.

[4] S. Bird, P. Buneman, and W.-C. Tan. Towards a
query language for annotation graphs. In Proceedings
of the Second International Conference on Language
Resources and Evaluation, 2000.

[5] S. Bird, Y. Chen, S. B. Davidson, H. Lee, and
Y. Zheng. Extending XPath to support linguistic
queries. In Proceedings of PLAN-X, 2005.

[6] S. Bird and M. Liberman. A formal framework for
linguistic annotation. In Speech Communication 33,
pages 23 –60, 2001.

[7] S. Cassidy and J. Harrington. Multi-level annotation
of speech: an overview of the emu speech database
management system, 1999.

[8] Y. Chen, S. Davidson, and Y. Zheng. BLAS: An Effi-
cient XPath Processing System. In Proceedings of
SIGMOD, 2004.

[9] N. Chomsky. Formal properties of grammars. In
Handbook of Mathematical Psychology, pages 323 –
428, 1963.

[10] J. Clark and S. DeRose. XML Path language (XPath),
November 1999. http://www.w3.org/TR/xpath.

[11] D. DeHaan, D. Toman, M. Consens, and M. T. Ozsu.
A comprehensive XQuery to SQL translation using
dynamic interval encoding. In Proceedings of SIG-
MOD, 2001.

[12] J. J. Godfrey and E. Holliman. SWITCHBOARD-1
Release 2, 1997. http://wave.ldc.upenn.edu.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. In Proceedings
of VLDB, 2002.

[14] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive
Queries over Trees. In Proceedings of PODS, 2004.

[15] T. Grust. Accelerating XPath location steps. In Pro-
ceedings of SIGMOD, 2002.

[16] C. Lai. A Formal Framework for Linguistic Tree
Query. Master’s thesis, Department of Computer Sci-
ence and Software Engineering, University of Mel-
bourne, Victoria, Australia., 2005.

[17] C. Lai and S. Bird. Querying and Updating Tree-
banks: A Critical Survey and Requirements Analysis.
In Proceedings of the Australasian Language Technol-
ogy Workshop, 2004.

[18] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In The VLDB Journal,
pages 361–370, 2001.

[19] M. A. M. M. P. Marcus, B. Santorini and A. Taylor.
Treebank-3, 1999. http://wave.ldc.upenn.edu.

[20] X. Ma, H. Lee, S. Bird, and K. Maeda. Models and
Tools for Collaborative Annotation. In Proceedings
of the Third International Conference on Language
Resources and Evaluation, 2002.

[21] M. Marx. Conditional XPath, the first order complete
XPath dialect. In Proceedings of PODS, 2004.

[22] U. of Pennsylvania. The Penn Treebank Project, 1995.
http://www.cis.upenn.edu/ treebank/home.html.

[23] R. Pito. TGrep manual.
http://mccawley.cogsci.uiuc.edu/corpora/tgrep.pdf.

[24] B. Randall. CorpusSearch, 2000.
http://www.cis.upenn.edu/ bran-
dall/CSStuff/CSManual/Contents.html.

[25] D. Rohde. TGrep2 manual.
http://tedlab.mit.edu/ dr/Tgrep2/tgrep2.pdf.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Bird, S;Chen, Y;Davidson, SB;Lee, H;Zheng, Y

Title:
Designing and evaluating an XPath dialect for linguistic queries

Date:
2006-10-17

Citation:
Bird, S., Chen, Y., Davidson, S. B., Lee, H. & Zheng, Y. (2006). Designing and evaluating
an XPath dialect for linguistic queries. Proceedings - International Conference on Data
Engineering, 2006, IEEE. https://doi.org/10.1109/ICDE.2006.48.

Persistent Link:
http://hdl.handle.net/11343/29365

http://hdl.handle.net/11343/29365

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

