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Abstract: Randomized trials involving independent and paired observations occur in many areas of 

health research, for example in paediatrics, where studies can include infants from both single and 

twin births. Multiple imputation (MI) is often used to address missing outcome data in randomized 

trials, yet its performance in trials with independent and paired observations, where design effects 

can be less than or greater than one, remains to be explored. Using simulated data and through 

application to a trial dataset, we investigated the performance of different methods of MI for a 

continuous or binary outcome when followed by analysis using generalized estimating equations to 

account for clustering due to the pairs. We found that imputing data separately for independent and 

paired data, with paired data imputed in wide format, was the best performing MI method, producing 

unbiased point and standard error estimates for the treatment effect throughout. Ignoring clustering 

in the imputation model performed well in settings where the design effect due to the inclusion of 

paired data was close to one, but otherwise led to moderately biased variance estimates. Including a 

random cluster effect in the imputation model led to slightly biased point estimates for binary outcome 

data and variance estimates that were too small in some settings. Based on these results, we 

recommend researchers impute independent and paired data separately where feasible to do so. The 

exception is if the design effect due to the inclusion of paired data is close to one, where ignoring 

clustering may be appropriate. 

 This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/sim.9166

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0002-6930-5406
mailto:thomas.sullivan@sahmri.com
http://dx.doi.org/10.1002/sim.9166
http://dx.doi.org/10.1002/sim.9166
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9166&domain=pdf&date_stamp=2021-08-15


2 
 

Keywords: multiple imputation, clinical trials, clustered data, missing outcome data 

1. INTRODUCTION 

 

Randomized trials involving a mixture of independent and paired data occur in many areas of health 

research. Examples include paediatrics, where studies can include infants from single and multiple 

births,1 and ophthalmology, where one or both eyes may require treatment.2 An important 

consideration in the design and analysis of such trials is the partial clustering that arises due to 

observations from the same pair being correlated but other observations being independent. At the 

design stage, the required sample size assuming all observations are independent can be multiplied 

by an appropriate design effect (DEFF) to account for the inclusion of paired data. Previous work on 

two-arm trials has shown that DEFFs in this setting are most sensitive to the degree of correlation 

between paired observations, the proportion of observations in the dataset belonging to a pair, and 

the method used to randomize the pairs.3 Broadly, DEFFs tend to be close to one when members of 

a pair are randomized individually, greater than one when pairs are randomized as clusters (so that 

both members of a pair are always allocated to the same treatment group), and less than one when 

members of a pair are always randomized to opposite groups.3 At the analysis stage, statistical 

methods for analysing clustered data, such as generalized estimating equations (GEEs) and mixed 

effects models, can be applied to account for the pairs when estimating treatment effects.4 

 

Another consideration in the analysis of randomized trials involving independent and paired data is 

how to address missing data, a problem affecting most randomized trials.5 Although missing data can 

occur in baseline covariates, the main problem in the trial setting is that of missing outcome data. 

Among the more principled approaches to handling missing outcome data, multiple imputation (MI) 

has emerged as a popular approach in contemporary randomized trials due to its considerable 

flexibility and availability in statistical software packages.6 Under this approach, missing values are 

imputed multiple times using a statistical model fitted to the observed data. For “proper” imputation, 

uncertainty in both parameter values from the fitted statistical model and individual predicted values 

should be reflected in the imputed values. Following imputation, the multiple completed datasets are 

then analyzed separately, with results combined across datasets using Rubin’s combination rules.7 In 

its standard implementation, MI provides unbiased estimates when the imputation model is 

compatible with the analysis model and data are missing at random (MAR).8 In a setting with a single 

incomplete outcome variable, MAR is the assumption that the probability of a missing value is 

independent of the value itself given observed data.9 Such an assumption is often sensible for the 

primary analysis of a randomized trial.10 
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In cluster randomized trials or observational studies with clustered data, in which the analysis 

accounts for clustering, a compatible imputation model should also account for clustering. 

Importantly, failure to account for clustering in the imputation model can result in standard error 

estimates for regression coefficients that are biased downwards.11,12 Two common strategies to 

account for clustering are to include either a fixed or a random effect term for cluster in the imputation 

model. Although easily implemented, the fixed effect approach has been criticized for inflating the 

standard error estimates of regression coefficients, particularly in settings with smaller cluster sizes.12-

14 As such, “multilevel MI” incorporating a random effect for cluster in the imputation model is often 

considered the preferred approach for addressing clustering during imputation.11-17 Whether such 

findings are applicable to randomized trials involving a mixture of independent and paired data is 

unclear, however. Unlike cluster randomized trials and observational studies with clustered data, 

randomized trials with a mixture of independent and paired data can involve DEFFs less than one. 

Additionally, the inclusion of independent data and the maximum cluster size of two may present 

problems for the multilevel MI approach and facilitate the use of alternative imputation strategies, 

such as imputing separately by cluster size and imputing paired data in wide format. The performance 

of different MI approaches for addressing missing outcome data in trials with a combination of 

independent and paired data remains to be explored. 

 

Our aim in this paper was to evaluate the performance of different methods of MI when addressing 

missing outcome data in randomized trials including both independent and paired data. Specifically, 

we considered the performance of MI for imputing continuous and binary outcomes, where completed 

datasets are analyzed using linear and logistic GEEs to estimate the effect of the randomized treatment 

while accounting for the clustering within pairs. The remainder of the paper is structured as follows. 

In the next section, we describe in more detail the different methods of MI applicable in this setting, 

drawing attention to potential limitations of each. This is followed by an outline of the simulation 

methods used to evaluate the MI approaches and a summary of simulation results. The MI approaches 

are then applied to a real clinical trial dataset. Finally, we conclude the article by discussing key 

findings and providing suggestions for practice. 

 

2. METHODS 

 

2.1 Setting  

 

Let 𝑌𝑌𝑖𝑖𝑖𝑖 denote an outcome of interest for the jth member of the ith cluster of size 𝑛𝑛𝑖𝑖 = 1 or 2, and 𝑋𝑋𝑖𝑖𝑖𝑖 

a corresponding baseline variable. Although only a single baseline variable is considered for 
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simplicity, the methods are easily extended to the case of multiple baseline variables. Suppose an 

analysis will be performed to estimate the effect of randomization to treatment 𝑇𝑇𝑖𝑖𝑖𝑖 (0 = control, 1 = 

intervention) based on the adjusted mean model 𝑔𝑔(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖𝑖𝑖, where 𝜇𝜇𝑖𝑖𝑖𝑖 =

𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖|𝑇𝑇𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖) and 𝑔𝑔 is an appropriate link function (identity for continuous outcomes, logit for binary 

outcomes). Note we focus on adjusted treatment effect estimates in this paper, since adjustment can 

lead to substantial increases in power for testing the effect of treatment18,19 and is important when 

randomization involves stratification or minimization.20 To account for clustering, suppose estimation 

will be performed using GEEs, with a robust sandwich estimator of the variance and an independence 

or exchangeable working correlation structure. In order for the robust sandwich estimator to produce 

reliable variance estimates, at least 40 clusters are recommended21; for studies with fewer clusters, 

adjustments to this estimator have been proposed.22 There are several reasons for choosing GEEs for 

analysis in this setting. In the absence of missing data, GEEs produce consistent parameter estimates 

provided the mean model is correctly specified, even if the working correlation structure is 

misspecified.23 Compared to mixed models, GEEs are less likely to encounter convergence problems 

(i.e. fail to produce parameter estimates) or produce biased regression parameter estimates when 

analyzing binary outcomes.4,24 GEEs may also be preferred for their ability to produce population 

averaged treatment effects, which are often more relevant for health policy decision making than the 

cluster-specific treatment effects provided by mixed models.25,26  

 

2.2 Multiple imputation approaches 

 

Suppose that missing data occur in the outcome 𝑌𝑌 but not in the baseline variable 𝑋𝑋, as is often the 

case in randomized trials, and that MI will be employed to address missing data under a MAR 

assumption. Suppose also that an additional variable 𝑊𝑊 associated with the outcome, and possibly 

also the probability of missingness in the outcome, will be included in the imputation model as an 

auxiliary variable to improve the efficiency of MI. Below we describe several approaches for 

implementing MI in this setting. Given the large number of small-sized clusters in trials containing a 

mixture of independent and paired data, we do not consider the approach of including a fixed effect 

for cluster in the imputation model. 

 

2.2.1 MI assuming independence 

 

Clearly, one could simply ignore the clustering due to paired observations and assume independence 

in the imputation model. With missing data confined to the outcome, imputations could be generated 
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by regressing observed values of 𝑌𝑌𝑖𝑖𝑖𝑖 on 𝑋𝑋𝑖𝑖𝑖𝑖, 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑊𝑊𝑖𝑖𝑖𝑖 and taking draws from the posterior predictive 

distribution of the model (i.e. using a univariate imputation model). In the more general setting of 

multiple incomplete variables (e.g. missing data also in the auxiliary variable or in other outcome 

variables) the missing values could instead be imputed using fully conditional specification 

(FCS),27,28 in which a univariate imputation model is specified for each variable with missing data, 

or using a joint imputation model such as the multivariate normal.29 By failing to account for the 

dependency between observations within pairs, assuming independence in the imputation model 

could lead to biased standard error estimates for the treatment effect.11,12 

 

2.2.2 Multilevel MI 

 

Clustering could also be accounted for in the imputation process by fitting a multilevel imputation 

model including a random effect for cluster. Assuming missing data are confined to continuous 𝑌𝑌𝑖𝑖𝑖𝑖, 

imputation could be based on a linear mixed effects model of the form 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛿𝛿2𝑋𝑋𝑖𝑖𝑖𝑖 +

𝛿𝛿3𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, where 𝑎𝑎𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑎𝑎2) is a random cluster effect and 𝑒𝑒𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒𝑖𝑖2 ) the error term in 

the ith cluster. A similarly specified logistic mixed effects model could be used in the case of binary 

𝑌𝑌𝑖𝑖𝑖𝑖. Various methods have been proposed for drawing imputed values from a random effects model; 

for a review of available approaches and technical considerations, see Audigier et al.17 To avoid over-

fitting issues with small-sized clusters, in the current article we focus on an approach that assumes 

the error variance 𝜎𝜎𝑒𝑒𝑖𝑖2  is constant across clusters. Using Bayesian mixed models with non-informative 

priors, the “FCS-GLM” approach can accommodate both continuous and binary variables that may 

be entirely or partially missing within clusters.17 A potential drawback of this approach is the 

suboptimal performance of mixed effects models for analysing binary outcomes in trials with 

independent and paired data, with mixed models previously associated with biased estimation and 

problems with convergence, particularly when the proportion of paired observations is low or the ICC 

is high.4,24 This could have flow-on effects to the quality of the imputed values.  

 

2.2.3 MI by cluster size 

 

Given the maximum cluster size of two, an alternative strategy is to fit separate imputation models to 

independent and paired observations. For independent observations, the imputation of missing values 

could proceed as described in Section 2.2.1. For paired observations, standard imputation procedures 

such as FCS or a joint imputation model could be applied once data have been rearranged into wide 

format; that is, with a single row for each pair and separate columns for 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖2 (and similarly for 
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𝑋𝑋,𝑇𝑇 and 𝑊𝑊). This approach is consistent with recommendations for the application of MI in 

longitudinal studies with a fixed number of repeated measurements, where the wide format allows 

the imputation model to account for the correlation between repeated measurements.30-32 Following 

imputation, the completed datasets for the paired data would be rearranged into long format and 

appended with completed datasets for the independent observations for subsequent analysis. As well 

as accounting for clustering, a benefit of imputing pairs in this way is that observed data from the 

opposing member of a pair is conditioned on during imputation. A potential disadvantage of splitting 

the data for imputation is a loss of efficiency in the imputation process due to increased uncertainty 

about parameters in each imputation model.33 The approach also relies on having enough independent 

and paired observations to allow for the fitting of separate imputation models.  

 

2.3 Simulation study 

 

The performance of the three different MI approaches for addressing missing outcome data was 

evaluated in a simulation study, the details of which are described below (for a continuous outcome) 

or in Appendix S1 (for a binary outcome). The statistical code for implementing the simulation study 

is included in Appendix S1.  

 

2.3.1 Data generation 

 

For each simulation scenario, 2,000 datasets of 500 observations were generated. A sample size of 

500 observations was chosen as this provides approximately 90% power under individual 

randomization to detect a standardized mean difference of 0.3 for the treatment effect. In a first step, 

clusters were assigned to be of size two with probability 0.2 or 0.4, corresponding to the expected 

proportion of mothers with twins in a preterm population and the mean proportion of participants 

contributing data for both eyes in ophthalmology trials.1,2 Next, observations were allocated to 

treatment group 𝑇𝑇𝑖𝑖𝑖𝑖 using simple randomization, with members of a pair randomized individually (i.e. 

𝑇𝑇𝑖𝑖1 and 𝑇𝑇𝑖𝑖2 assigned independently), cluster randomized to the same treatment group (i.e. 𝑇𝑇𝑖𝑖1 = 𝑇𝑇𝑖𝑖2) 

or randomized to opposite groups (i.e. 𝑇𝑇𝑖𝑖2 = 1 − 𝑇𝑇𝑖𝑖1). Outcome data were then generated according 

to the model 

 

𝑌𝑌𝑖𝑖𝑖𝑖 = 0.3𝑇𝑇𝑖𝑖𝑖𝑖 + 0.2𝑋𝑋𝑖𝑖 + 𝑎𝑎𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 
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with 𝑋𝑋𝑖𝑖~𝑁𝑁(0,1) a cluster-level baseline covariate, 𝑎𝑎𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑎𝑎2) a random cluster effect and 

𝑒𝑒𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2) the error term. The values of (𝜎𝜎𝑎𝑎2,𝜎𝜎𝑒𝑒2) were fixed to give a total variance of one (i.e. 

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑒𝑒2 = 1) and an intra-cluster correlation coefficient (ICC) of 0.4 or 0.8 (with ICC =

𝜎𝜎𝑎𝑎2 (𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑒𝑒2)⁄ ). Although ICCs rarely exceed 0.1 in studies with larger clusters,34 they are typically 

much higher for paired outcomes such as those measured in ophthalmology studies and paediatric 

trials involving twins.2,35 Assuming GEEs with an independence working correlation structure will 

be used for analysis (see Section 2.3.2) and letting 𝛾𝛾𝑝𝑝 denote the proportion of observations belonging 

to a pair, the theoretical DEFF due to the inclusion of paired data is 1 for individual randomization, 

1 + ICC × 𝛾𝛾𝑝𝑝 for cluster randomization, and 1 − ICC × 𝛾𝛾𝑝𝑝 for opposite randomization.3 Our chosen 

values for the ICC and proportion of clusters of size two therefore resulted in theoretical DEFFs that 

ranged between 0.54 for opposite randomization and 1.46 for cluster randomization (see Table 1).3  

 

<Insert Table 1 here> 

 

Next, a continuous auxiliary variable was generated according to the model 𝑊𝑊𝑖𝑖𝑖𝑖 = 0.95𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑖𝑖, with 

𝑧𝑧𝑖𝑖𝑖𝑖  ~𝑁𝑁(0,1) so that the correlation between 𝑊𝑊𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 was approximately 0.70. Although the 

magnitude of this correlation was not expected to affect the relative performance of the MI 

approaches, we chose a strong correlation since auxiliary variables for incomplete outcomes tend to 

be of little benefit for correlations less than 0.5.36,37  

 

After the generation of complete datasets, 40% of outcome values (𝑌𝑌𝑖𝑖𝑖𝑖) were set to missing according 

to one of the following mechanisms: 

 

1) Missing completely at random (MCAR): 𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 0� = 0.4, with 𝑅𝑅𝑖𝑖𝑖𝑖 denoting whether 𝑌𝑌𝑖𝑖𝑖𝑖 is 

observed (0 = missing, 1 = observed). 

2) MAR-individual:  logit 𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 0� = 𝛾𝛾0 + log(3)𝑊𝑊𝑖𝑖𝑖𝑖, with 𝛾𝛾0 chosen to give 40% missing data.  

3) MAR-cluster:  logit 𝑃𝑃(𝑅𝑅𝑖𝑖 = 0) = 𝜏𝜏0 + log(3)𝑊𝑊�𝑖𝑖∙, with 𝑅𝑅𝑖𝑖 = 0 indicating missing outcome data 

for all 𝑗𝑗 in cluster i, 𝑊𝑊�𝑖𝑖∙ the average of 𝑊𝑊𝑖𝑖𝑖𝑖 in cluster i, and 𝜏𝜏0 chosen to give 40% missing data. 

Unlike the MCAR and MAR-Individual mechanisms which involve setting individual values to 

be missing, entire clusters are set to missing under the MAR-cluster mechanism. 

 

Combined with the two proportions of pairs in the dataset, three methods of randomization for pairs 

and two ICCs for the outcome, the three missing data mechanisms led to a total of 36 simulation 

scenarios for investigation. 
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2.3.2 Analysis methods and performance measures 

 

For each simulated dataset, missing outcome values were imputed using the MI assuming 

independence, multilevel MI and MI by cluster size strategies, with 40 imputations used throughout 

based on the extent of missing data.38 In the absence of an interaction effect involving treatment group 

in the data generation model (not considered for brevity), imputation was carried out across all 

observations rather than performed separately by treatment group.  

 

For MI assuming independence and the imputation of independent data under MI by cluster size, 

missing values were imputed from the linear regression of 𝑌𝑌𝑖𝑖𝑖𝑖 on 𝑋𝑋𝑖𝑖, 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑊𝑊𝑖𝑖𝑖𝑖 using the mi impute 

regress command in Stata 16.0. For multilevel MI, missing values were imputed from a linear mixed 

effects model including a random cluster effect and fixed effects for 𝑋𝑋𝑖𝑖, 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑊𝑊𝑖𝑖𝑖𝑖. We used the 

FCS-GLM approach (method “mice.impute.2l.glm.norm”) in the R package micemd39 to draw 

imputed values, as this method is recommended over alternative multilevel MI methods for studies 

involving small sized clusters.17 For MI by cluster size, paired data were rearranged into wide format 

and missing values imputed using FCS with linear regression models for 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖2 (including 𝑇𝑇𝑖𝑖1, 

𝑇𝑇𝑖𝑖2, 𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, 𝑊𝑊𝑖𝑖1 and 𝑊𝑊𝑖𝑖2). In scenarios involving cluster or opposite randomization, note that 𝑇𝑇𝑖𝑖2 

was omitted from the imputation model given its collinearity with 𝑇𝑇𝑖𝑖1. Additionally, 𝑊𝑊𝑖𝑖2 was excluded 

from the conditional imputation model for 𝑌𝑌𝑖𝑖1, since 𝑌𝑌𝑖𝑖1 ⊥ 𝑊𝑊𝑖𝑖2|𝑌𝑌𝑖𝑖2 under our data generation 

mechanism (and similarly for 𝑊𝑊𝑖𝑖1 when imputing 𝑌𝑌𝑖𝑖2). Imputation was performed using the mi impute 

chained command in Stata 16.0, with the default of 10 cycles used for generating each imputed 

dataset. For comparison with the MI approaches, a complete case analysis (CCA) of observations 

with complete data on the outcome (i.e. where 𝑅𝑅𝑖𝑖𝑖𝑖 = 1) was also performed. With the inclusion of a 

strongly predictive and fully observed auxiliary variable in the imputation model, we expected CCA 

to produce treatment effects with wider confidence intervals than the MI approaches for all scenarios 

and potentially introduce bias when missing data were induced under the two MAR mechanisms. 

 

Following imputation, the treatment effect in each completed dataset was estimated using linear 

regression of 𝑌𝑌𝑖𝑖𝑖𝑖 on 𝑇𝑇𝑖𝑖𝑖𝑖, with adjustment for 𝑋𝑋𝑖𝑖 and using GEEs with an independence working 

correlation structure to account for clustering. An exchangeable structure could have been applied 

under our data generating mechanism, but we note this structure is not recommended for estimating 

average treatment effects when the effect of treatment depends on cluster size, which is often a 

possibility in trials involving independent and paired data.40  
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The performance of the different analysis approaches in estimating the true treatment effect of 0.3 

was evaluated in terms of relative bias, the coverage of estimated 95% confidence intervals, and 

empirical and model-based standard errors. Since the main concern in this setting is producing 

appropriate variance estimates for the treatment effect, coverage and the ratio of empirical to model- 

based standard errors were the key measures of interest. 

 

2.3.3 Sensitivity analyses 

 

Additional analyses were undertaken to explore whether findings were sensitive to choices made 

during model fitting or to the simulation parameters considered. Specifically, we considered 

additional scenarios where 𝑋𝑋 was specified to be an individual-level covariate with an ICC of 0.5 

rather than a cluster level covariate, where completed datasets were analyzed using linear mixed 

models rather than GEEs, or where multivariate normal imputation was used instead of FCS for the 

MI by cluster size approach. 

 

2.3.4 Binary outcome data 

 

To investigate whether the relative performance of the MI approaches depends on variable type, we 

repeated the simulation study with binary 𝑊𝑊𝑖𝑖𝑖𝑖 and binary 𝑌𝑌𝑖𝑖𝑖𝑖 generated under a logistic mixed effects 

model. Given the similarities with the continuous simulation study described above, we provide 

details of the binary simulation study in Appendix S1. 

 

3. RESULTS 

 

3.1 Continuous outcome data 

 

There were no issues with non-convergence in the simulation study for continuous outcome data, 

with all MI approaches producing treatment effect estimates throughout. Figure 1 displays the relative 

bias of the treatment effect estimates under the different approaches for addressing missing data 

across the 36 simulation scenarios investigated. The three methods of MI produced treatment effect 

estimates with minimal bias, with absolute relative bias at most 3% for MI assuming independence 

and MI by cluster size, and 4% for multilevel MI. Conversely, CCA produced treatment effects that 

were moderately biased towards the null under the two MAR mechanisms. 
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<Insert Figure 1 here> 

 

CCA was also the worst performing approach according to the average of the model-based standard 

errors for the estimated treatment effect (Figure 2). Again, this can be attributed to the presence of a 

correlated auxiliary variable to inform the prediction of missing values in MI. Conversely, multilevel 

MI produced the smallest average model-based standard errors across scenarios involving cluster or 

individual randomization. Compared to MI assuming independence, MI by cluster size produced 

larger average model-based standard errors when there was cluster randomization and smaller 

standard errors when pairs were randomized to opposite groups. In line with the theoretical DEFFs 

presented in Table 1, average model-based standard errors for all analysis approaches were highest 

under cluster randomization when the ICC was 0.8 and the proportion of pairs 0.4, and lowest for the 

same values of the ICC and proportion of pairs when pairs were randomized to opposite groups.  

 

<Insert Figure 2 here> 

 

Figure 3 displays the ratio of average model-based to empirical standard errors across the 36 

simulation scenarios for the four missing data approaches, our key indicator of the unbiasedness of 

model-based standard errors for the treatment effect. As shown in the figure, average model-based 

standard errors for CCA and MI by cluster size remained close to empirical standard errors 

throughout. In contrast, MI assuming independence produced average model-based standard errors 

that were too small in scenarios involving cluster randomization and too large when pairs were 

randomized to opposite groups, with performance deficits most noticeable in scenarios where the 

proportion of pairs was 0.4 and the ICC 0.8 (i.e. where the DEFF was further away from 1). Like MI 

assuming independence, multilevel MI produced average model-based standard errors that were 

around 5% smaller than empirical standard errors in scenarios involving cluster randomization. There 

was also a tendency for multilevel MI to produce conservative standard errors in scenarios when pairs 

were randomized to opposite groups, but not to the same degree as MI assuming independence. 

Coverage results for the MI approaches produced similar findings (data not shown), with MI by 

cluster size producing confidence intervals with the best coverage performance across the 36 

simulation scenarios (range 94.2% to 95.9%), followed by multilevel MI (range 92.9% to 96.0%) and 

then MI assuming independence (range 92.8% to 97.4%).  

 

<Insert Figure 3 here> 
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In sensitivity analyses, a similar pattern of results was observed when multivariate normal imputation 

was used instead of FCS for imputing paired data in the MI by cluster size approach, or when 𝑋𝑋 was 

specified to be an individual-level covariate with an ICC of 0.5 rather than a cluster-level covariate. 

Similar results were also observed when completed datasets were analyzed using linear mixed models 

rather than GEEs, albeit the degree to which average model-based standard errors were too 

conservative for MI assuming independence and multilevel MI under opposite randomization was 

more pronounced for analysis with linear mixed models (data not shown). 

 

3.2 Binary outcome data 

 

Results for binary outcome data were mostly consistent with those for continuous outcomes, with the 

main exception being the poorer performance of multilevel MI relative to the other imputation 

approaches. Of note, multilevel MI produced moderately biased treatment effect estimates (range in 

relative bias 1.4% to 13.0%), resulted in average standard errors up to 10% lower than empirical 

standard errors under cluster randomization, and was less precise than MI by cluster size for 

individual and opposite randomization. These performance deficits may have been a product of 

incompatibility between a mixed effects model for imputation and the use of GEEs for analysis, given 

these models estimate a different treatment effect in the case of logistic regression. Overall, MI by 

cluster size remained the optimal approach in the binary simulation study, while MI assuming 

independence again produced standard errors for the treatment effect that were too small under cluster 

randomization and too large under opposite randomization. Full results for the binary simulation 

study are presented in Appendix S1. 

 

3.3. Applied example 

 

The N−3 Fatty Acids for Improvement in Respiratory Outcomes (N3RO) trial was a blinded, 

randomized controlled trial conducted in 13 centers across Australia, New Zealand, and Singapore.41 

1273 infants born less than 29 weeks gestation were randomized within 3 days of commencing enteral 

feeds to receive an enteral emulsion providing docosahexaenoic acid (DHA) at a dose of 60mg/kg/day 

or a control emulsion without DHA until 36 weeks of postmenstrual age (i.e. gestational age plus 

chronological age). Infants from a single or multiple birth were eligible to participate and infants from 

a multiple birth were randomized individually. The primary outcome was physiological 

bronchopulmonary dysplasia (BPD, a type of chronic lung disease) among surviving infants at 36 

weeks postmenstrual age or at the time of discharge home, whichever occurred first. To illustrate the 

application of the MI approaches, here we consider analysis of the composite outcome of clinical 
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BPD or death at 36 weeks postmenstrual age. Only one infant had missing data on this outcome, a 

very low count for a randomized trial, offering the opportunity to induce missing data and investigate 

the ability of the imputation methods to recover the (almost) full-data estimate.  

 

To simplify the N3RO trial data for illustration purposes, we excluded the single infant with missing 

outcome data along with 10 sets of triplets; we return to the issue of paediatric trials with triplet and 

higher order births in the discussion. Following exclusions, the example dataset consisted of 614 

infants in the DHA group and 628 infants in the control group, including 155 sets of twins and 932 

singletons. Overall, 345/614 (56.2%) and 327/628 (52.1%) infants experienced clinical BPD or death 

in the DHA and control groups, respectively. Using logistic regression with GEEs assuming an 

independence working correlation structure, and with adjustment for gestational age at birth (a key 

prognostic variable), the log odds ratio of clinical BPD or death due to DHA treatment (compared to 

control) was estimated to be 0.147 in the full dataset (standard error 0.130). The ICC for clinical BPD 

or death in the full dataset was estimated to be 0.40, as obtained from a logistic mixed effects model 

with a random cluster effect and fixed effects for treatment group and gestational age at birth 

(calculated on the logistic scale as 𝜎𝜎𝑎𝑎2 [𝜎𝜎𝑎𝑎2 +⁄ 𝜋𝜋2/3], with 𝜎𝜎𝑎𝑎2 denoting the variance of the random 

cluster effect).42 

 

To match the simulation study, clinical BPD or death was set to missing with probability 0.4. An 

MCAR mechanism was used, as the performance of the MI approaches in the simulation study did 

not appear sensitive to the specific MAR mechanism considered. Missing values were imputed using 

the MI assuming independence, multilevel MI and MI by cluster size strategies, with 40 imputations 

used throughout. Days of respiratory support between randomization and the assessment of clinical 

BPD or death was included as an auxiliary variable in imputation models given its strong association 

with the outcome in the full dataset (odds ratio per 10-day increase = 2.05; 95% confidence interval 

1.91 to 2.21), with the measure available for 1173/1242 infants (94.4%). Imputation models were fit 

using a similar approach to the binary simulation study (see Appendix S1), with 𝑌𝑌𝑖𝑖𝑖𝑖 denoting clinical 

BPD or death, 𝑋𝑋𝑖𝑖 gestational age at birth, 𝑊𝑊𝑖𝑖𝑖𝑖 days of respiratory support, and 𝑗𝑗 determined according 

to birth order (i.e. 𝑗𝑗 = 2 for second born of a twin pair). The main departure from the simulation study 

is that 𝑊𝑊𝑖𝑖𝑖𝑖 is continuous and partially missing here. Consequently, FCS with 10 cycles was applied 

in all imputation approaches, with 𝑊𝑊𝑖𝑖𝑖𝑖 imputed using linear regression in the MI assuming 

independence and MI by cluster size strategies (mi impute chained command in Stata), and using a 

linear mixed effects model for multilevel MI (“mice.impute.2l.glm.norm” method in R). 
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In line with simulation results for individual randomization, we found little difference in average 

treatment effect estimates and model based standard errors between the MI assuming independence 

and MI by cluster size approaches (see Table 2). As expected with the inclusion of a correlated 

auxiliary variable in the imputation model, both MI approaches were more precise than CCA. 

Multilevel MI produced treatment effect estimates that were moderately biased towards the null 

(relative bias = -18.2%) with smaller model-based standard errors than the other MI approaches. The 

bias of multilevel MI was in the opposite direction to what was observed in the binary simulation 

study and may be related to the use of a continuous and partially missing auxiliary variable here (the 

direction of association between the outcome and the auxiliary variable was the same as in the 

simulation study). 

 

<Insert Table 2 here> 

 

4. DISCUSSION 

 

In this article we investigated the performance of different methods of MI for addressing missing 

outcome data in randomized trials including both independent and paired observations, where 

completed datasets are analyzed using GEEs. MI by cluster size, where separate imputation models 

are fitted to independent and paired observations, was the best performing approach, producing 

unbiased point and standard error estimates for the treatment effect across all the scenarios 

considered. MI assuming independence performed well in scenarios involving individual 

randomization but led to moderately biased standard error estimates for the treatment effect under 

cluster and opposite randomization. Lastly, multilevel MI produced slightly biased treatment effect 

estimates in the context of binary outcome data and standard errors that were a little too small when 

randomization was at the cluster level. Based on these results, MI by cluster size can be recommended 

where numbers of independent and paired observations are large enough to permit such a strategy. 

Otherwise, MI assuming independence can be adopted in trials where the DEFF due to the inclusion 

of paired data is close to one, as occurs in trials using individual randomization or where the 

proportion of pairs or the ICC is low. 

 

Although the simulation study identified shortcomings with the MI assuming independence and 

multilevel MI strategies, it should be emphasized that performance deficits were relatively small in 

magnitude. Unlike some other clustered data settings, the maximum DEFF for trials involving a 

mixture of independent and paired observations is two, which may limit the adverse effects of an 

inappropriate imputation strategy. Additionally, provided the substantive analysis model accounts for 
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clustering, the consequences of inadequately addressing clustering during imputation on standard 

error estimates will be proportional to the amount of outcome data requiring imputation. As such, the 

choice of imputation strategy may be less influential in settings with lower amounts of missing 

outcome data than the 40% considered in the simulation study. 

 

Although it performed well, an important drawback of the MI by cluster size approach is that it relies 

on having enough independent and paired observations to allow for the fitting of separate imputation 

models in these two groups. In practice, imputation models may involve many more variables than 

the small number considered in our simulation study and analysis of the N3RO trial. For example, it 

is not uncommon for researchers to collect data on a long list of secondary outcomes, all of which 

may be included in a single imputation model. Trial datasets may also be smaller or involve fewer 

paired or independent observations. All these factors could contribute to over-fitting or convergence 

problems when applying the MI by cluster size approach. Another practical shortcoming is that 

imputation is often performed separately by treatment group in randomized trials to allow for 

potential effect modification.33 Further stratification by cluster size may not be feasible, particularly 

in small trials, and the approach would only be feasible when paired observations are cluster 

randomized to the same treatment group (otherwise members of a pair can end up in separate strata 

for the imputation process). Finally, MI by cluster size is not easily applied in trials predominantly 

involving independent and paired data but where the maximum cluster size exceeds two, as with the 

N3RO trial where a small number of triplets participated. However, outside of paediatric trials, such 

a pattern of clustering may be uncommon. 

 

CCA was noticeably less efficient than the MI approaches in the majority of simulation scenarios 

considered and in the example analysis of the N3RO trial. Except for scenarios involving an MCAR 

mechanism, CCA also led to biased treatment effect estimates in the continuous outcome simulation 

study. This pattern of results can be attributed to the inclusion of an auxiliary variable in each 

imputation model that was strongly associated with the outcome.37 In the absence of auxiliary 

variables, CCA has been shown to produce similar treatment effect estimates to MI when the 

probability of missing outcome data depends on fully observed baseline characteristics and those 

characteristics are adjusted for in the analysis model.43,44 In settings where useful auxiliary variables 

for the outcome are lacking and an assumption of covariate-dependent missingness is plausible, CCA 

can be applied in preference to MI. 

 

Several methods of multilevel MI have been proposed in the literature, but no single approach appears 

suitable in all situations.17,31,45 We focused on the FCS-GLM method for multilevel MI in this article 
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since it directly handles missing data in binary variables and has been recommended for datasets 

involving small-sized clusters.17 A limitation of the approach is that it can introduce bias and a lack 

of variability in imputed values for binary variables where some but not all members of a cluster have 

missing data.17 Biased point and standard error estimates with FCS-GLM were evident in our 

simulation study for binary outcome data and have been seen in other clustered data settings.17,31 As 

well as the specific method of multilevel MI applied, the performance deficits in our binary simulation 

study may have been due to incompatibility between a logistic mixed effects model for imputation 

and subsequent analysis using logistic GEEs, or known limitations of logistic mixed effects models 

in settings with independent and paired data.4,24   

 

A practical consideration when imputing missing data for trials with independent and paired 

observations is choosing which member of a pair should be assigned the first position in the cluster. 

Throughout this article we assumed that observations within a cluster were exchangeable and ordering 

did not matter, but such an assumption might not always be plausible. In practice, we suggest 

assigning cluster position in a systematic manner, for example assigning the first born of a twin pair 

or the left eye to the first position in a cluster. Any association between cluster position and outcome 

could then be accounted for during imputation through the addition of a fixed effect for cluster 

position in the case of MI assuming independence or multilevel MI. Such an association is implicitly 

taken into account when performing MI by cluster size and hence no modifications to this approach 

are necessary. 

Though we anticipate findings will be broadly applicable to many trial settings, a clear limitation of 

the current article is that conclusions were based on a restricted set of simulation scenarios. For 

instance, the simulation study only considered missing data in a single outcome variable in settings 

where cluster size had no relationship with the outcome. Additionally, we only considered simple 

randomization, whereas randomly permuted blocks or minimization are often used in practice.46 For 

individual randomization using randomly permuted blocks, the probability that members of a pair are 

allocated to opposite groups increases with a decreasing block size. With only paired data in the study 

and blocks of size two, for example, members of a pair will always be allocated to opposite groups 

(assuming members of a pair are randomized sequentially). As a result, MI assuming independence 

and multilevel MI could produce conservative standard error estimates for the treatment effect in 

trials involving individual randomization and small block sizes. Another limitation is that we did not 

evaluate alternatives to MI for handling missing outcome data, for example inverse probability 

weighting. Although inverse probability weighting tends to be less efficient than MI, particularly in 

the presence of auxiliary variables, it may have merit in settings where MI by cluster size is infeasible 

and MI assuming independence and multilevel MI are expected to produce biased standard error 
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estimates. Finally, we focused on the FCS-GLM method of multilevel MI as this has been 

recommended for datasets involving small-sized clusters,17 however other methods of multilevel MI 

might also be evaluated in this setting.  

 

In conclusion, provided it is feasible to fit separate imputation models to the independent and paired 

data, MI by cluster size is recommended for handling missing outcome data in randomized trials 

involving a combination of independent and paired data. Often this approach may not be practical, 

however, for example in small trials, in settings with few pairs or where imputation is implemented 

separately by randomized group. In such cases, MI assuming independence can be applied provided 

the DEFF due to the inclusion of paired data is expected to be close to one; generally this will be the 

case for trials using individual randomization or where the proportion of pairs or the ICC is low. 

Despite holding much promise, the FCS-GLM method of multilevel MI exhibits some performance 

deficits in trials involving a combination of independent and paired data, particularly in the case of 

binary outcome data, and cannot be recommended without further development.  
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TABLES 

 

Table 1: Design effects due to the inclusion of paired data. 

Proportion of 
clusters of size 2 

Proportion of 
observations belonging 

to a pair (𝛾𝛾𝑝𝑝) 

ICC DEFF cluster 
Rx 

DEFF individual 
Rx 

DEFF opposite 
Rx 

0.2 0.33 0.4 1.13 1 0.87 

0.2 0.33 0.8 1.27 1 0.73 

0.4 0.57 0.4 1.23 1 0.77 

0.4 0.57 0.8 1.46 1 0.54 
Abbreviations: ICC = intra-cluster correlation coefficient, DEFF = design effect, Rx = randomization. 
 

Table 2: Treatment effect estimates for clinical BPD or death from the N3RO trial. 

Analysis Mean estimate Relative bias (%) Average standard error 

Full dataset 0.147 - 0.130 

Complete case analysis 0.146 -1.0 0.167 

MI assuming independence 0.143 -2.7 0.154 

MI by cluster size 0.143 -2.8 0.154 

Multilevel MI 0.121 -18.2 0.147 
Abbreviations: BPD = bronchopulmonary dysplasia, MI = multiple imputation. 
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