CHAPTER ELEVEN

Deconstructing Dichotomies: Arguing for a More Inclusive Approach

INTRODUCTION

Education and mathematics education in particular, in attempting to make sense of the world of the classroom, has pursued the established Western tradition of dichotomising all aspects of our experience. This tendency was most explicit in the division of spirit and matter by Greek philosophers of the fifth century BC and became entrenched in the Cartesian division of body and mind. Much more recently, authors such as Fritjof Capra (1976) have drawn Western attention to Eastern philosophies in which the basic assumption is unity and interdependence, and yin and yang are seen as complementary aspects of an essential unity, rather than as in opposition.

My contention in this chapter is that it is in the examination of classrooms across a variety of cultural settings and school systems that we find our educational assumptions most visible and open to challenge. With the growing internationalisation of education, and as the education community gives higher priority to international research, it is timely to examine the insights that accrue from comparative analyses of classrooms that are situated in very different cultures. The contrasts and unexpected similarities offered by research in such culturally-diverse settings reveal and challenge existing assumptions and theories and make essential a reconstruction of some of our most basic dichotomies as complementary elements in more inclusive theories. This questioning of the permanency of pervasive binary opposites is central to the 'deconstructive' stance adopted in this chapter.

The inclination to integrate rather than segregate is also at the heart of the Learner’s Perspective Study (LPS), since it was intended from the project’s inception that any documented differences in classroom practice be interpreted as local solutions to classroom situations and, as such, be viewed as complementary rather than necessarily oppositional alternatives, within a broadly international pedagogy, from which teachers in different countries might choose to draw in light of local contingencies. I am not challenging the need for categorisation, but there appears to be an inclination within the education community to dichotomise and an associated tendency to (i) ignore the connectedness of the dichotomous categories and (ii) on occasion, to privilege one category while denigrating the other. This

D. J. Clarke, J. Emanuelsson, E. Jablonka & I. A. C. Mok (Eds.), Making connections: Comparing mathematics classrooms around the world, 215–236. © 2006 Sense Publishers. All rights reserved.
places the emphasis on the separate and oppositional application of the
dichotomies, rather than on consideration of their complementarity and
interrelatedness.

International research in mathematics education has provided us with a wealth
detail about student achievement levels, curricular content, prevalent problem
types, teacher beliefs, class size, lesson duration, homework, textbooks, teacher
question types, utilisation of real-world contexts, and, more recently, fine-grained
analyses of classroom practices and interactions. The descriptive documentation of
similarity and difference (Clarke, 2003a, 2003b) can only take us so far. The
diversity in international studies of mathematics classrooms provides us with a base from which to interrogate our own practices and the assumptions on
which those practices are predicated.

Among the most central of these assumptions are various dichotomous
categories that act to constrain our theorising about educational settings and the
processes of interest there. This chapter addresses five of these dichotomies:
Teaching and Learning; Abstract and Contextualised mathematical activity;
Teacher-Centred and Student-Centred classrooms; Listening and Speaking as
alternative student actions; and the teacher’s contemporary dilemma – To Tell or
Not to Tell. Very simply, these are false dichotomies. It is my contention that
unless we can integrate each pair of categories as interconnected elements of a
more inclusive theoretical framework, we will remain unable to account for the
diversity we find in international studies of classroom practice. It is precisely the
growing body of data from such international studies that provides us with the
diversity that we need to interrogate and refine our current theoretical position with
regard to classroom practice. In the discussion that follows, I attempt to
demonstrate the consequences of such an inclusive approach.

There are other dichotomies that I will not address here. It has already been
argued persuasively by Cobb, Svard and others, that if we are to move forward, we
must conceive of socio-cultural and constructivist theories of learning not as
competing but as complementary. That they can be constructed so as to be in
competition is evident. Each theoretical frame provides coherent accounts and
explanations for particular forms of learning in particular settings. Any conception
of either theory that precludes the other is arguably inadequate. The identification
(construction) of a theory of learning compatible with a given situation may take
the social or the individual as its starting point but ultimately will be obliged to
make appeal to the other if a coherent account is to be constructed. As Jere Confrey
has succinctly put it: “The self is both autonomous and communal” (Confrey,
1995, p. 36). In this chapter, I have chosen to focus on five specific dichotomies
that I consider central to our theorising and to our advocacy in relation to
mathematics classrooms.

Learning and teaching represent the most fundamental and pervasive dichotomy
around which our understandings of classroom practice have been constructed.
Stepping outside the constraints of culture and language, we find that this central
distinction is conceived very differently by different communities. In fact, the
distinction between teaching and learning is very much an artefact of language.

Previous research and much of our theorizing, has tended to dichotomise
teaching and learning as discrete activities sharing a common context. I have
argued elsewhere (Clarke, 2001) that this dichotomization is a particularly
insidious consequence of the constraints that language (and the English language,
in particular) imposes on our theorizing and that such dichotomisation
misrepresents both teaching and learning and the classroom settings in which these
most frequently occur. It is not my intention to challenge the separate integrity of
‘teacher’ and ‘learner’ as labels for individuals engaged in particular practices or
discourse modes. It is just that classrooms are understood more effectively as sites
for bodies of mutually-sustaining practice that in combination characterise a
process we might call (in English) ‘teaching/learning’.

The consequences of choosing not to dichotomise teaching and learning are far­
reaching. Perhaps the most compelling illustration of the dangers of
dichotomisation can be seen in the comparison of two translations of the same
paragraph by Vygotsky.

From this point of view, instruction cannot be identified as development, but
properly organised instruction will result in the child’s intellectual
development, will bring into being an entire series of such developmental
processes, which were not at all possible without instruction. (Vygotsky,
1982, p. 121, as quoted in Hedegaard, 1990, p. 350)

Compare this with the following translation.

From this point of view, learning is not development; however, properly
organized learning results in mental development and sets in motion a variety
of developmental processes that would be impossible apart from learning.
(Vygotsky, 1978, p. 90)

The pivotal assertion that must be understood is whether Vygotsky was asserting
the impossibility of certain forms of intellectual development ‘without instruction’
(which presumes an actively interactive more competent other) or ‘apart from
learning’ (which on one level seems a tautology, but which could also be
interpreted as equivalent to the assertion that properly organised interaction with
the environment is essential for certain forms of development to occur). This
distinction is non-trivial, since it calls into question the significance of the
mediation of another more able individual (the teacher/instructor). Given what we
know of the significance Vygotsky attached to the role of the teacher, it would
appear that the most appropriate reading of the major premise is “a variety of
developmental processes would be impossible without instruction”. This accords with the significance attached, in the passage quoted below, to the child’s interaction with “people in his environment” rather than just with all aspects of that environment, with or without the mediation of others.

The conflicting translations arise because of a duality of meaning in the original term employed by Vygotsky. This duality has been noted previously, but its significance seems to have been given scant consideration in the interpretation and application of Vygotsky’s work. As we have seen in the two translations above, the same term (obuchente) is translated both as ‘instruction’ and as ‘learning’ and clearly shares with corresponding terms in other languages the capacity to invoke both teaching and learning, as these are named in English. Once this duality of meaning is recognised, our reading of Vygotsky and our theorising about the teaching/learning process are greatly enriched. For example, in one of the most famous passages from the translated Vygotsky, the word ‘learning’ can be replaced by the word ‘teaching’ and the resultant text is still meaningful – but, perhaps, with a different meaning.

We propose that an essential feature of learning [teaching] is that it creates the zone of proximal development; that is, learning [teaching] awakens a variety of developmental processes that are able to interact only when the child is interacting with people in his environment and in collaboration with his peers. (Vygotsky, 1978, p. 90)

If our framing of instruction in language presumes a complicit learner, whose learning is inextricably entwined with an ‘instructive’ setting, then our interpretations of the activities of the classroom are more likely to identify communal practices and incremental participation in a common discourse as essential features than to fragment the classroom into teaching and learning activities undertaken separately by different individuals.

Speakers of Russian are not alone in their use of a term that combines both teaching and learning. In Japanese, tagushushido combines teaching and learning in the same way. In Dutch, there is one term that means both learning and teaching: leren. To distinguish between the practices of teaching and learning, the Dutch say leren waa to signify learning and leren aan to signify teaching. In French, the term didactique and particularly Brousseau’s use of that term (Brousseau, 1986), invokes a mutuality of responsibility and participation not always found in American or Australian accounts of classroom practice.

In the middle of the last century, the biologist von Uexkull put forward the proposition that a spider’s web is the spider’s model of the fly. This whimsical imagery conceals a powerful reasoning technique. From the structure of a spider’s web: the spacing and strength of the strands, the location and size of the web, and from other characteristics of the spider’s web, we can deduce much about the fly.

Classrooms are a little like the spider’s web. From the way in which a teacher structures the classroom, and the practices for which it is the setting, we can infer much about that teacher’s (and that society’s) model of the student. The types of resources provided, the type and duration of the various activities, the forms of interaction that are encouraged and discouraged, all offer insight into the teacher’s conception of the epistemic student, the student as constructor of knowledge. Within the confines of accepted practice and available resources, teachers attempt to construct classrooms to afford and constrain particular activities. What Brousseau (1986) has brought to our attention is the reciprocity of the construction of classroom practice. Learners (that is, students) engage in practices that afford and constrain teacher actions and the actions of their classmates. Social interaction by an individual within the classroom presumes that the individual has a model of the other classroom participants and can, to some extent, anticipate their capabilities, their needs, their expectations and their responses. What is clear is the extent to which classroom practice is a jointly constituted body of negativistic social interactions that is best investigated and understood in terms of the mutuality and reciprocity of its constituent activities and of its co-construction as Teaching/Learning.

Empirically, the integration of Teaching and Learning has been addressed in analyses of patterns of participation in mathematics classrooms in a variety of countries as part of the Learner’s Perspective Study (LPS). In particular, the classroom practice referred to as ‘Kikan-Shido’ (or ‘Between-Desks-Instruction’) has provided a powerful example of a whole class pattern of participation (Clarke, 2004; Chapter 4, this volume). In making the claim that Kikan-Shido could be so described, it was necessary to demonstrate that it had a recurrent form, recognisable to those participating in it. This is not to say that the meanings attributed to the activity by those participating in it were correspondent. Individuals can participate in a practice whilst being positioned differently within it, and whilst attributing different characteristics to the activity. That is, without being identical, the participants’ descriptions of the activity make it clear that they are talking about essentially the same form, but they may attribute quite different functions to that form. The other essential element in this argument is the need to demonstrate that all participants can shape the particular body of practice signified by Kikan-Shido; that is, that the pattern of participation is co-constructed.

Without reproducing the argument in full here, any theory of classroom practice must conceive of the activities in the classroom as co-constructed. Kikan-shido as it has been reported (Clarke, 2004; Chapter 4, this volume) is clearly a dance done by teachers and students, where the steps are improvised according to need. The participants in the classroom, teacher and students, are complicit (co-conspirators) in this improvisation. Acceptance of this point has implications for the research designs by which we study the activities occurring in classroom settings.

DICHOTOMIES OF TASK: CONTEXT AND THE ‘RELEVANCE PARADOX’

Suppose that one society seeks to develop understanding and proficiency in mathematical proof, attaching significance to the development of those forms of reasoning and argumentation idiosyncratic to mathematics, while another attaches greater priority to equipping its people with an understanding of mathematical procedures and proficiency in utilising these in everyday practical situations, while
a third society emphasises (and rewards) concept development, mathematical creativity and collaborative problem solving. There is no reason why these goals are incompatible or mutually exclusive, but they do reflect a valuing of different aspects of mathematical activity, and a curriculum that prioritised one such goal would not necessarily resemble a curriculum that prioritised another. The comparative study of the methods and success of each society in addressing its local curricular goals has the potential to be mutually enriching as one community learns from the practices of the other and adopts and adapts some of its goals and methods for local use.

Many countries, especially Korea and the Netherlands, emphasised solving problems. Japan, Sweden, and the United States emphasized 'recalling' mathematical information, and Hong Kong and Israel emphasized 'justification and proof'. (Schmidt, McKnight, Valverde, Houang & Wiley, 1997, p. 136)

In her analysis of LPS data from Sweden and China, Svan examined the 'Relevance Paradox' postulated by Niss (1994), in which the objective relevance of mathematics in society was contrasted with its subjective irrelevance as perceived by many students. Svan was not comparing 'mathematics teaching' in Sweden and China, but rather looking at the beliefs and values communicated and held in two different classrooms: one in Shanghai and one in Uppsala. Both classrooms were addressing the same mathematics topic (coordinate systems and graphing linear functions).

Svan's analysis contrasted the Chinese and Swedish mathematics classrooms from the perspective of the emphasis given by the teacher and the students to the real-world perspective of the mathematics being learned. In the Swedish classroom, the students demanded that the teacher justify the relevance of what was being taught, and the teacher provided lengthy justifications on several occasions. It was clear that the Swedish teacher felt that the demonstration of relevance was a reasonable expectation and accepted responsibility for providing this. Despite the teacher's efforts, students were outspoken in their lack of belief in the relevance of the mathematics they were studying. Both the Swedish classroom data and post-lesson interview data seemed to provide a powerful illustration of Niss's relevance paradox.

By contrast, in the classroom in Shanghai, mathematics tasks tended to be very abstract in character and the teacher made no effort to demonstrate or argue for the abstract real-world applicability of the mathematics being studied. The Chinese students did not appear, either during the lesson or in interview, to require this sort of justification of the content being studied. However, in the post-lesson interviews, the Chinese students consistently expressed strong beliefs in the utility of mathematics in general and in relation to the specific mathematics they were studying. One Chinese student said:

I think basically, I should grasp the fundamental points that are necessary for students and also I have to use these points in my everyday life. (Shanghai School 1, Lesson 4, post-lesson student interview)

Svan concluded that analysis of the interviews with 15 of the Chinese students showed that there was a shared belief that mathematics was useful not only in future work and study, but also in their current everyday lives. It is not yet clear how the students developed those beliefs as they were not introduced to anything but abstract mathematics during the lessons.

Svan has christened this the 'Expanded Relevance Paradox' (Svan & Clarke, to appear in a future volume in this series) and means, by this term, to refer to the paradoxical character of application-oriented mathematics teaching associated with subjective irrelevance and pure mathematics-oriented mathematics teaching associated with subjective relevance.

To recapitulate: The majority of the tasks in the Swedish classroom were 'word problems' and involved contexts from everyday life, more or less relevant to the students. Despite the teacher's very public commitment to demonstrating the relevance of the content, the students strongly questioned its utility. The students in the Shanghai classroom experienced teaching and tasks that focused on abstract mathematics, yet the students appeared quite certain of the immediate and future relevance of the content.

Clarke and Helme (1998) identified the importance of recognising context as a social construction, and distinguished the 'Figurative Context' invoked by the task from the 'Social Context' in which the task was undertaken. As reported by Clarke and Helme, students appear to attend to the figurative context to different degrees.

Context in our view is neither a neutral background for the negotiation of mathematical meanings, nor merely a catalyst mediating between task content and the individual's mathematical tool kit. Rather we should speak of the personal task context as an outcome of the realization of the figurative context within the broader social context. (Clarke & Helme, 1998, p. 130)

There is a recent commitment in South Africa to contextualising the curriculum around themes of societal significance, such as substance abuse or HIV/AIDS. Analysis of student-student interactions in the South African classrooms studied in the LPS project, led Sethole, Adler and Vithal (2002) to conclude:

The context AIDS, is not understood as a 'veneer' to mask the mathematical intentions of the lesson but a genuine context to be engaged. To this end, and drawing from Skovsmose's notion on critical mathematics, the new practice may be seen as an inescapable consequence of blurring the boundary between the mathematics and the everyday. (Sethole, Adler & Vithal, 2002, p. 11)

The Relevance Paradox proposed by Niss (1994) is based on a dichotomisation of the function of mathematics in society and in the classroom, and postulates a dislocation between these two contexts that is experienced by students as a lack of connection (subjective irrelevance). LPS data problematises this schism in two
On the basis of this evidence, student agency for knowledge generation was accorded a high level of significance in the Australian classrooms analysed in this study (Clarke, 2001) and the results of this study could be interpreted as providing further support for the advocacy of the 'student-centred' classroom, a key element in the recent reform agenda of most Western educational systems.

By contrast, Asian classrooms have been typified as teacher-centred by both Western and Asian researchers, yet the students in these classrooms are highly successful in international studies of student achievement ("The Asian Learner Paradox") (Leung, 2001). Recent research in Chinese classrooms suggests that classroom practice is misrepresented by such a dichotomy (Huang, 2002) and that a theoretical framework is needed by which the 'teacher-centred' and 'student-centred' characteristics of classrooms can be more usefully characterised and investigated, without the assumption of an absolute dichotomy.

How can teacher dominance and student-centeredness coexist and work well in Chinese mathematics classrooms? (Huang, 2002, p. 226)

There is a general assumption in most of the educational literature that classroom discourse encompasses any form of interaction that takes place in a classroom. Nevertheless, research involving classroom interactions has tended to focus on either the teacher’s talk (Wilson, 1999; Young and Nguyen, 2002) or teacher-students' interactions in either whole class (e.g., Klassen and Lijnse, 1996; Seah, 2004) or group discussion (e.g., Knuth and Peressini, 2001). There have been very few studies, if any, that took into account the role of student-student private interactions in generating knowledge in the classroom. Clarke and Seah (2005) adopted a more integrated and comprehensive approach, by analysing, within a subset of the LPS data, both public interactions in the form of whole class discussion and interpersonal interactions that took place between teacher and student and between student and student during Kikan-Shido (between-desks-instruction). Interpersonal student-student interactions available for analysis in any one lesson were restricted to a focus group of up to four students. While this approach did not allow all interactions that took place in the classroom to be studied, it provided an avenue to track the generation of knowledge that could occur in both the public and interpersonal domains.

Analysis was carried out on a selection of video and post-lesson interview data related to mathematics lessons in Hong Kong, Melbourne, Shanghai and San Diego. All teacher classroom utterances and all statements by focus students, together with post-lesson interviews with teacher and students were transcribed and translated into English. The classroom transcript of each lesson was scanned for terms or phrases that expressed, represented, illustrated or explained mathematical concepts or understandings. These terms or phrases were referred to as 'mathematics-related terms'. These might take the form of conventional mathematical terms such as 'gradient' or everyday expressions such as 'slope' or 'steepness'.

In a parallel analysis of student cognitive engagement, Helme and Clarke presented evidence for the significance of student-student interactions in promoting high-level cognitive engagement and consequent learning.

We would argue that student-student interactions appeared to offer more scope for high-level cognitive engagement [by students] than teacher-student interactions, both in whole-class instruction and in interactions with small groups. (Helme and Clarke, 2001, p. 191)
Those 'secondary terms' that were subordinate to or supportive of the teacher's main instructional goals (usually previously-introduced or familiar terms which served to explicate the meaning of the terms central to the lesson's intended focus), those terms that appeared infrequently and fleetingly in the course of classroom discussion (in either public or interpersonal statements). These were referred to as 'transient terms.' The occurrence of each term was then displayed in a tabular form analogous to the mathematics-related terms are thought of as resources drawn upon during the collaborative process of classroom knowledge construction, then the analogy is not inappropriate.

Table 1 has been significantly abridged for reasons of space: Only the first 6 minutes of the lesson are displayed and only a subset of the lesson's mathematics-related terms are included. The terms are separated within the table by bold lines into the three categories and a brief description is provided of the classroom activity coincident with the occurrence of the various terms. Each vertical column corresponds to one minute and the occurrence of each term is designated by seconds and if the utterance was an 'interpersonal' rather than a 'public' utterance.

The capacity of this analytical approach to distinguish between classrooms is most evident in a comparison of eighth-grade mathematics classrooms in Shanghai schools analysed was such that the teachers generally provided the scaffold needed for students to reach the solution to the mathematical problems without 'telling' which the teacher had not taught, that were introduced by the students during public discussion. A particularly powerful example of this devolution was when the teachers generally stated very explicitly every step for solving the mathematical problem in a somewhat formalized way. The type of teaching was aimed at helping students see the lesson's main ideas and how to use these ideas to solve problems. The occurrence of the lesson's main ideas and how to use these ideas to solve problems is important for the lesson's success.
These mathematics-related terms were classified into three categories:

1. **Primary terms** that corresponded to the teacher’s stated instructional goals (in lesson plan or interview).
2. **Secondary terms** that were subordinate to or supportive of the teacher’s main instructional goals (usually previously-introduced or familiar terms which served to explicate the meaning of the terms central to the lesson’s intended focus).
3. **Transient terms** that appeared infrequently and fleetingly in the course of classroom discussion (in either public or interpersonal statements). These were referred to as ‘transient terms.’

The occurrence of each term was then displayed in a tabular form analogous to the resource utilisation planning charts of engineers (Table 1) (see also Barnes’ ‘flow of ideas’ (Barnes, 2004), which derives from the same source). If these mathematics-related terms are thought of as resources drawn upon during the collaborative process of classroom knowledge construction, then the analogy is not inappropriate.

Table 1 has been significantly abridged for reasons of space: Only the first 6 minutes of the lesson are displayed and only a subset of the lesson’s mathematics-related terms are included. The terms are separated within the table by bold lines into the three categories and a brief description is provided of the classroom activity coincident with the occurrence of the various terms. Each vertical column corresponds to one minute and the occurrence of each term is designated by speaker (T = teacher; Andrea, etc = student), by time-code (eg 06:20, seconds and frames, within the designated minute) and by ‘P’ if the utterance was an ‘interpersonal’ rather than a ‘public’ utterance.

The capacity of this analytical approach to distinguish between classrooms is most evident in a comparison of eighth-grade mathematics classrooms in Shanghai and Hong Kong, since both sets of classrooms could be described as being embedded in a Confucian-heritage culture. The style of teaching in the Shanghai schools analysed was such that the teachers generally provided the scaffold needed for students to reach the solution to the mathematical problems without ‘telling’ them everything. Hence, one could find quite a few mathematics-related terms, which the teacher had not taught, that were introduced by the students during public discussion. A particularly powerful example of this devolution of responsibility occurred when the teacher in SH2-04 (Shanghai School 2, Lesson 4) drew the class’s attention to an alternative method of solving simultaneous equations being used by a student which the teacher described as more ‘elegant’ than the standard (textbook) method.

Students in the Hong Kong classes studied were generally not given the same opportunities to contribute during lessons, in comparison with classes in the other three cities studied in this analysis (Shanghai, Melbourne and San Diego). The teachers generally stated very explicitly every step for solving the mathematical problems discussed. In other words, students were guided through the steps for each problem type with very little opportunity for original thought or input into class discussion. Where a new mathematics-related term was introduced into whole
class public discussion, this was either done by the teacher or by a student in response to very explicit prompting from the teacher. There were, however, mathematics-related terms that occurred for the first time in interpersonal conversation between students, but were not subsequently voiced in the public arena.

As examples of 'Asian' classroom practice, in several respects the Hong Kong and Shanghai lessons analysed displayed more extreme differences in practice than those evident from comparison of 'Asian' and 'Western' lessons. Within the sets of lessons analysed for each city, significant variation was evident from the perspective of the distribution of responsibility for knowledge generation. The practices of the classroom in Shanghai School 2 provided some powerful supporting evidence for the contention by Huang (2002) and Mok and Ko (2000) that the characterisation of Confucian-heritage mathematics classrooms as teacher-centred conceals important pedagogical characteristics related to the agency accorded to students, albeit an agency orchestrated and mediated by the teacher.

A unique teaching strategy consisting of both teacher's control and students' engagement in the learning process emerges in Chinese classrooms. (Huang, 2002, p. 227)

Once the distribution of responsibility for knowledge generation is adopted as the analytical framework, the oppositional dichotomisation of teacher-centred and student-centred classrooms can be reconceived. The deconstruction of the teacher-centred/student-centred dichotomy has specific consequences for teacher practice. In particular, one of the most contentious entailments of this dichotomy can be revisited; the legitimacy of teacher 'telling'.

TO TELL OR NOT TO TELL: DICHOTOMIES OF TEACHER PRACTICE

One common interpretation of the constructivist manifesto (i.e., that "knowledge is the result of a learner's activity rather than of the passive reception of information or instruction," von Glasersfeld, 1991, p. xiv) has been that it became no longer legitimate for teachers to 'tell' students anything. This position is not a logical consequence of adherence to constructivist learning theory, which suggests that students inevitably construct their own mathematics, whatever the classroom situation (Cobb, 1995). However, Telling or Not-Telling have been constructed oppositionally with such success that publications on contemporary pedagogy (such as Wood, Nelson & Warsfield, 2001), while usefully discussing many pedagogical strategies, see no need to address any strategies that might be construed as analogous to 'telling' and even articles that purport to address the issue (such as Chazan and Ball, 1999) offer teachers little insight into how (and, as importantly, when) their mathematical knowledge might be articulated explicitly to the benefit of their students.

Definitions of 'telling' have been based on the *form* (i.e., whether or not the teacher is making a declarative statement or other type of assertion) rather than on the *function* of the teacher's action.
class public discussion, this was either done by the teacher or by a student in response to very explicit prompting from the teacher. There were, however, mathematics-related terms that occurred for the first time in interpersonal conversation between students, but were not subsequently voiced in the public arena. As examples of 'Asian' classroom practice, in several respects the Hong Kong and Shanghai lessons analysed displayed more extreme differences in practice than those evident from comparison of 'Asian' and 'Western' lessons. Within the sets of lessons analysed for each city, significant variation was evident from the perspective of the distribution of responsibility for knowledge generation. The practices of the classroom in Shanghai School 2 provided some powerful supporting evidence for the contention by Huang (2002) and Mok and Ko (2000) that the characterisation of Confucian-heritage mathematics classrooms as teacher-centred conceals important pedagogical characteristics related to the agency accorded to students; albeit an agency orchestrated and mediated by the teacher.

A unique teaching strategy consisting of both teacher's control and students' engagement in the learning process emerges in Chinese classrooms. (Huang, 2002, p. 227)

One common interpretation of the constructivist manifesto (i.e., that "knowledge is the result of a learner's activity rather than of the passive reception of information or instruction," von Glasersfeld, 1991, p. xiv) has been that it became no longer legitimate for teachers to 'tell' students anything. This position is not a logical consequence of adherence to constructivist learning theory, which suggests that students inevitably construct their own mathematics, whatever the classroom situation (Cobb, 1995). However, Telling or Not-Telling have been constructed oppositionally with such success that publications on contemporary pedagogy (such as Wood, Nelson & Warfield, 2001), while usefully discussing many pedagogical strategies, see no need to address any strategies that might be construed as analogous to 'telling' and even articles that purport to address the issue (such as Chazan and Ball, 1999) offer teachers little insight into how (and, as importantly, when) the teacher might best address the need to address the student's needs. In response to very explicit prompting from the teacher, there were, however, mathematics-related terms that occurred for the first time in interpersonal conversation between students in response to very explicit prompting from the teacher. There were, however, mathematics-related terms that occurred for the first time in interpersonal conversation between students, but were not subsequently voiced in the public arena. As examples of 'Asian' classroom practice, in several respects the Hong Kong and Shanghai lessons analysed displayed more extreme differences in practice than those evident from the perspective of the distribution of responsibility for knowledge generation. The practices of the classroom in Shanghai School 2 provided some powerful supporting evidence for the contention by Huang (2002) and Mok and Ko (2000) that the characterisation of Confucian-heritage mathematics classrooms as teacher-centred conceals important pedagogical characteristics related to the agency accorded to students; albeit an agency orchestrated and mediated by the teacher.
A teacher’s communicative act must be addressed from the related perspectives of the teacher’s intention, the nature of the act, and the interpretations of the act by the recipients or audience. By focusing on function (intention, action and interpretation) rather than form, we overcome some of the difficulties experienced in analysing the efficacy of teacher practices from a constructivist perspective. Constructivist learning theory has been extrapolated to the domain of teaching practice, and ‘constructivist teaching’ has been set up in opposition to ‘transmissive teaching’ (Richardson, 2001, for example). Criticism of transmissive teaching has an extensive history and has sometimes led to simplistic exhortations to avoid ‘telling’ without serious discussion of these teaching actions that involve introducing new ideas directly.

Clarke and Lobato (2002) (and subsequently Lobato, Clarke & Ellis, 2005) have proposed a theoretical reformulation of teachers’ communicative acts in terms of function rather than form. This reformulation is founded on the distinction between ‘eliciting’ and ‘initiating’. Such a framework offers a more incisive tool for the analysis of the teacher’s contribution to classroom discourse. It is entirely analogous to the empirically-grounded distinction between ‘Monitoring’ and ‘Guiding’ reported by O’Keefe, Xu and Clarke (Chapter 4, this volume). Figure 1 displays the relative proportions of monitoring and guiding activities employed by 15 teachers from five countries during the lesson event, Kikan-Shido (Between-Desks-Instruction). It is clear from Figure 1 that some teachers have constructed a much more interventionist instructional practice than others. Superficial similarities in teacher orchestration of classroom practice among the LPS teachers in Hong Kong and Shanghai conceal profound differences in pedagogy associated with more or less interventionist instructional approaches.

The distinction between eliciting and initiating teacher actions offers a language in which to frame the devolution of the responsibility for knowledge generation from the teacher to the student, or, alternatively, the concentration of that responsibility in the teacher. For example, teacher acts that take the form of a question but have the function of telling can be identified and the responsibility for the initiation of a new mathematical idea can be correctly located with the teacher rather than the responding student. Equally, as has been argued above, the capacity of the student to contribute to the generation of knowledge can be recognised, and classrooms can be compared according to the extent to which the student is accorded the opportunity to make this contribution. The fundamental consideration is the distribution of responsibility for knowledge generation.

Clarke and Lobato (2002) asserted the importance of interweaving the two functions initiating and eliciting. Since it is the development of the students’ mathematics that we aspire to promote, it is the students’ mathematics that takes priority. However, the teacher’s mathematics can also find legitimate voice in the classroom in the interest of stimulating the development of the student’s mathematics. Initiating/eliciting is not a simplistic dichotomy like ‘tell/not tell’ – it is not an either/or. Both categories of action are necessary and their use is interrelated. Eliciting has typically been defined in terms of the form of the communicative act (e.g., asking questions such as “Could you explain your reasoning?”) or in terms of the degree of student involvement (e.g., the use of open-ended mathematical activities). Elicitation occurs when the teacher wants to learn more about students’ images, ideas, strategies, conjectures, conceptions and ways of viewing mathematical situations. When the teacher’s communicative act constitutes ‘eliciting’, in order to provide experiences that might challenge students to reorganize their thinking, teachers need to develop models of their students’ mathematical realities (Simon, 1995; Steffe & Thompson, 2000). The adequacy of these models will depend on the teacher’s ability to elicit the students’ mathematics.

Initiating is most profitably used in conjunction with eliciting. Initiating is often preceded by eliciting, so that the teacher can gather information about students’ thinking before making a judgment whether to work with and structure the students’ ideas or to introduce new information. Initiating involves the insertion of new ideas into the conversation, ideas that the teacher assumes will be interpreted in many different ways rather than passively received. Once the teacher engages in initiation, she then steps back and elicits to see what the students did with that information. Both actions have their function within the teacher’s promotion of student conceptual development. The mutuality and complicit nature of these interactions bring us back to the spider’s web, the epistemic student, and the constructed nature of teaching/learning. The agenda that frames such classroom activity is initially the teacher’s agenda, but this agenda is iteratively modified in response to the progress of the ensuing classroom discussion in order to accommodate the students’ prior and emerging understandings (see Lobato, Clarke & Ellis, 2005, for specific examples). The complicit character of the teacher’s and students’ actions can be seen in the discussion of Kikan-Shido in Chapter 4 of this volume.

Where do we see the purposeful alternation of elicitation and initiation most clearly? One example can be found in the classroom in Shanghai, already referred to above. Unlike an Australian classroom, the students in this classroom rarely ever talked directly to each other – classroom conversation was always mediated by the teacher – yet the students were clearly learning most effectively. Part of the explanation came in the interview after the lesson. The teacher said, “Don’t teach them mechanically, don’t teach them mechanically, let them brainstorm, enhance their flexibility.” He added:

I was not afraid that students had all sorts of questions. I just let them appear. . . Sometimes if you restrict them from doing this or that, their problems won’t appear, right? But the problems will appear tomorrow, even if they didn’t today, right?

This is an articulate summary of the heart of the contemporary reform agenda in Western education and demonstrates a commitment to the purposeful elicitation of the students’ mathematics. But, for cultural reasons, the opportunities for student discussion of the content were provided in a teacher-led whole class approach. With regard to the value attached to the students’ mathematics, once elicited, in the
lesson referred to earlier, this same teacher said to the class, “Look at Shiqi’s solution! This is much better than the usual method. Everyone copy this down.” As was evident in the analysis of the distribution of responsibility for knowledge generation in this classroom, the responsibility was shared between teacher and students and, in so far as the teacher’s intentions could be put into effect, the classroom discourse was a purposeful alternation of initiation and elicitation.

It is in this manner that the utilisation of the distribution of responsibility for knowledge generation provides an explanatory framework that problematises teacher-centred and student-centred characterisations of the classroom and resolves the false opposition of dichotomous practices by replacing them with a conception of alternative interrelated (and fundamentally complementary) classroom practices.

TO LISTEN OR TO SPEAK: DICHOTOMIES OF STUDENT PRACTICE

It is worth appending one final dichotomy that revisits the same classroom situations from the perspective of the student. This is the decision by the student to listen or to speak. It has already been noted that in several of the LPS classrooms (notably in Shanghai and Tokyo) students seldom spoke directly to each other. By contrast, students in the mathematics classroom in Melbourne, San Diego, Berlin and Uppsala frequently spoke directly to each other without teacher mediation. Students in these classrooms, and in Hong Kong, would also make self-initiated contributions to public discussion. In this diversity, we can see that the student decision to speak was variously enacted and variously constrained in the different classrooms.

Student listening is more difficult to identify from the video record, although inferences of student attentiveness could be made wherever one student made explicit reference to a previous statement by the teacher or by a classmate. The value and significance accorded to the act of listening was a feature of many interviews with Chinese and Japanese students. Students in Berlin, Melbourne, San Diego and Uppsala were much less likely to stress the importance of attentive listening to the teacher (or to their classmates).

The interplay of speaking and listening by both students and teachers can be examined from the dual perspectives of Revoicing (Ohtani, 2003) and Selective Attention (Mason, 2003). A more detailed analysis of the dynamic between student speaking and listening will be undertaken employing both revoicing and selective attention as analytical frames and reported in a subsequent LPS publication. For the purposes of this chapter, research into one particular educational setting provides sufficient illustration of the cultural groundedness and implications of this particular dichotomy.

Recent educational innovations, such as Problem-Based Learning (PBL), use small group collaborative learning and the discussion of ‘authentic’ problems to promote deep learning approaches (Lloyd-Jones, Margetson & Bligh, 1998). PBL has been described as a ‘student-centred’ approach, with a major emphasis on student development of self-directed learning skills (Whitehill, Stokes & MacKinnon, 1997). Rather than carrying the responsibility for disseminating content knowledge to students, PBL teachers or tutors have a role in facilitating student engagement with the PBL process.

The dialogic nature of small group collaborative learning is well recognised, and collaborative learning models such as problem-based learning (PBL) require verbal contributions from students to progress individual and group learning. Remedios and her colleagues have argued that in such settings speaking is often privileged over listening as a collaborative act. An imbalance in these values can become embedded in the classroom culture. For example, listening, as a core collaborative skill has not been foregrounded in the PBL literature. In the ‘student-centred’ classrooms central to the advocacy of the Western reform agenda, ‘just listening’ (Remedios, Clarke and Hawthorne, 2006).

The dialogic character of Problem-Based Learning has been shown to pose significant challenges for students from some Asian countries (Remedios, 2005). However, these same analyses have demonstrated the possibility of over- emphasising speaking at the expense of attentive listening (Remedios, Clarke & Hawthorne, 2006). It is possible that the optimisation of pedagogical innovations such as PBL may be best achieved by purposefully exploiting the attentive listening skills so evident in some classrooms, in combination with the skills of student-initiated articulation evident in other classrooms.

Once again, the explicit promotion of student speaking in Western reform classrooms and the dominance of student listening in Asian classrooms gives the appearance of a dichotomisation of student practice into either speaking or listening. Consistent with the theme of this chapter, an inclusive approach is advocated that acknowledges the potential value of both student activities. Acceptance of the potential value of such a synthesis has the effect of shifting the debate from the separate optimisation of either speaking or listening to the recognition of the essential interconnectedness of speaking and listening, and the more challenging goal of identifying the criteria for the optimisation of the negotiation of meaning in classroom settings (Clarke, 2001), in which the role of listening is seen as integral to the dialogic process of negotiation. Whether such synthesis can be achieved remains to be seen, but the sites for such experimentation will be the ever-increasing number of multi-cultural classrooms in schools and universities around the world.

CONCLUDING REMARKS: ALTERNATIVES TO DICHOTOMISATION

In an international comparative study, any evaluative aspect is reflective of the cultural authorship of the study. If the authors make judgements of merit, whether they are about student achievement or classroom practice, they do so from the position of the authoring culture. The design of international comparative studies must implement collaborative processes through which multiple educational, philosophical and cultural positions are given voice in the interpretation of data and the reporting of the research. The OECD study of innovative programs in mathematics, science and technology education went some way towards addressing...
The cultural positioning of pedagogical practice is an essential precursor to its adaptation and application in other settings.

Oppositional dichotomies such as teacher-centred versus student-centred classrooms, real-world versus abstract tasks, telling versus not-telling, and listening offer mathematics educators falsely exclusive choices, sanctifying one alternative while demonising the other. International research offers insight into possible explanatory frameworks within which such choices are no longer figuratively disconnected similar to the examples that have provided the focus of this chapter. Happily, the utilisation of mixed methods designs (Johnson & Onwuegbuzie, 2004) is a notable and most welcome exception. This chapter has attempted to demonstrate the capacity of international classroom research to problematise and deconstruct some of our most fundamental dichotomies and their frequent construction as oppositional. In each case, the alternative that is being offered to the prevalent segregated practice is an integrative perspective in which such alternatives are seen as complementary and interrelated aspects of a broader conception. Further, research, in applying such inclusive frameworks, must employ similarly inclusive methodologies.

The next generation of research questions pertains to how these tools help to structure the classroom’s social rules. (Fuller & Clarke, 1994, p. 144)
ACKNOWLEDGEMENTS

I would like to pay tribute to my friends, colleagues, and collaborators: Sue Helme, Joanne Lobato, Carmel Meslin, Catherine O’Keeffe, Louisa Remedios, Seah Lay Hoon, Katja Svan and Li Hua Xu, whose research has made this chapter possible.

REFERENCES

David Clarke
International Centre for Classroom Research
Faculty of Education
University of Melbourne
Australia

APPENDIX A

The LPS Research Design

INTRODUCTION

The originators of the LPS project, Clarke, Keitel and Shimizu, felt that the methodology developed by Clarke and known as complementary accounts (Clarke, 1998), which had already demonstrated its efficacy in a large-scale classroom study (subsequently reported in Clarke, 2001) could be adapted to meet the needs of the Learner’s Perspective Study. These needs centered on the recognition that only by seeing classroom situations from the perspectives of all participants can we come to an understanding of the motivations and meanings that underlie their participation. In terms of techniques of data generation, this translated into three key requirements: (i) the recording of interpersonal conversations between focus students during the lesson; (ii) the documentation of sequences of lessons, ideally of an entire mathematics topic; and, (iii) the identification of the intentions and interpretations underlying the participants’ statements and actions during the lesson.

Miles and Huberman’s text on qualitative data analysis (Miles & Huberman, 2004) focused attention on ‘data reduction.’

Even before data are collected ... anticipatory data reduction is occurring as the researcher decides (often without full awareness) which conceptual framework, which cases, which research questions, and which data approaches to use. As data collection proceeds, further episodes of data reduction occur (p. 10).

This process of data reduction pervades any classroom video study. The choice of classroom, the number of cameras used, who is kept in view continuously and who appears only given particular circumstances, all contribute to a process that might better be called ‘data construction’ or ‘data generation’ than ‘data reduction.’ Every decision to zoom in for a closer shot or to pull back for a wide angle view represents a purposeful act by the researcher to selectively construct a data set optimally amenable to the type of analysis anticipated and maximally aligned with the particular research questions of interest to the researcher. The process of data construction does not stop with the video record, since which statements (or whose voices) are transcribed, and which actions, objects or statements are coded, all

D. J. Clarke, J. Emanuelsson, E. Jablonka & I. A. C. Mok (Eds.), Making connections: Comparing mathematics classrooms around the world, 237–251, © 2006 Sense Publishers. All rights reserved.