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Abstract

We model career design as a recursive contract design problem in an
overlapping generations firm. Agents live two periods. In period 1 they
may be hired as employees, paid a wage, and produce output. In period 2
they may be promoted to become joint owners (partners) of the firm, pro-
ducing no output directly, but setting the rules and receiving the residual
income. Professional partnerships, such as the traditional law firm, are
often organized like this.

Employees are motivated not only by the wage but by the possibility
of promotion to the partnership, and the opportunity to set the rules in
the next period; the reward structure is thus recursive. The contracts that
emerge in this environment are always inefficient. In many circumstances
the inefficiency takes the form of “rat-race” contracts that specify very
low wages and an inefficiently high level of effort.

This conclusion seems to be robust to a range of variations in the
environment.

Keywords recursive contracts, mechanism design, overlapping genera-
tions, rat-race.

1 Introduction

Firms are ongoing organizations. Individuals join them when they are young,
hoping to make a career. As their career develops, they hope to move to positions
of greater responsibility and autonomy, to gain greater rewards, and to exert
some influence over the direction of the firm.
This process can be observed in all large organizations, but it is particularly

clear in firms that are organized as professional partnerships; for example law
firms, accountancy partnerships and management consultants. In these firms
the career path leads towards ownership rights and the ability to make (or at
least to contribute to) management decisions, unrestricted by external owners.
In these firms the employment contract is recursive: the reward for one cohort
derives, at least in part, from the right to choose the contract under which
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the next cohort will work. This leads to a dynamic programming problem in
contract design.
Career design and dynamic (but not recursive) contracts have been studied

quite extensively; see for example Holmstrom [10], Gibbons and Murphy [8],
and Meyer and Vickers [12]. Work norms and career design in an overlapping
generations firm have been discussed by Cremer [4] and, in the context of law
firms, by Carr and Matthewson [3], Gilson and Mnookin [9], Galanter and Palay
[7], O’Flaherty and Siow [13], Ferrall [5], and Landers, Rebitzer and Taylor [11].
Staughton and Talmor [14] have recently considered managerial compensation
as a mechanism design problem, but not in a recursive context.
One theme of this literature is the “up or out” nature of typical contracts,

and the emphasis on low wages and deferred rewards that are paid only to the
successful. Another is the pervasiveness of what appear to be inefficiently high
work levels, or “rat-race” contracts (see also Akerlof [1]).
In this paper we will focus on the nature of recursive contracts, which we

view as a contract design problem in an overlapping generations environment.
We consider here the simplest case, with full information and identical agents.
This will allow us to isolate the recursive contracting structure from any effects
of imperfect information. The results are thus free from any adverse selection
or moral hazard effects. In particular, the source of the rat-race that we will
find is distinct from that identified by Landers, Rebitzer and Taylor [11] (which
is driven by unobservable shirking within partnerships). Recursive contracts
under adverse selection are discussed by Bardsley and Sherstyuk [2].
In a recursive environment, there is an ambivalence in the attitude of agents.

On the one hand, as in any principal-agent relationship, the agent prefers a soft
contract with low effort and high rewards. But on the other hand, the agent
may well become the principal in the next period, and can see the virtues of a
harsher contract, especially if this or a similar contract can be imposed on the
next generation of agents. We find that, as a result of this ambivalence, in many
circumstances principals will design and agents will accept inefficient contracts
that specify low wages and an inefficiently high level of effort. This conclusion
seems to be robust to a range of variations in the environment.
The structure of the paper is as follows. In Section 2 we set out the basic,

risk-neutral model, under both finite horizon and steady state assumptions. One
of the implications of risk neutrality is that the firm may grow very large, even
though this may impose a highly risky contract on the agents. In Section 3 we
explore the implications of risk aversion, and also the effect of congestion costs
associated with increasing the principal’s span of control. Finally, in Section 4
we discuss some implications of the results.

2 The Basic Model

There are n agents born each period, and each agent lives for two periods.
Utility is separable between periods and there is no discounting; all agents are
risk neutral.
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There is a single firm. An agent who is born at date t is, with probability σt,
offered an employment contract (wt,πt, bt) with the firm. This contract specifies
a wage wt, a promotion probability1 πt, and an output level bt. Unemployed
agents, and agents who reject the contract, receive a reservation utility of 0 in
both periods. Agents who are not promoted leave the firm and receive 0 in the
second period. Partners exert no effort, and they share the partnership profits
equally. Thus they have no difficulty in agreeing on the objectives of the firm.
To simplify notation, write w = wt for the current period wage, w+ = wt+1

for the next period’s wage, and w− = wt−1 for the previous wage. A similar
notational convention will be used for other variables.
Let

W = nσ (b−w) (1)

be the current partnership profits (in period t). Let

m = nσ−π− (2)

be the number of partners in the firm in period t. Agents will accept the em-
ployment contract provided that it satisfies the individual rationality constraint

w + π

µ
W+

m+

¶
≥ e (b) , (3)

where e (b) is the cost of exerting effort. We make the following assumptions
about the effort function:

Assumption 1 The effort function is smooth, increasing, convex, and e (0) =
0.

Assumption 2 There exists an output level b such that b > e (b) ; (otherwise
the optimal production level will always be 0).

Since the partners are identical and share equally, they will choose (σ, w,π, b)
to maximize the total partnership profit (1) , subject to the participation con-
straint (3) and the feasibility constraints w ≥ 0, b ≥ 0, 0 ≤ σ ≤ 1, and
0 ≤ π ≤ 1. After eliminating w and π the constraints can be rewrittenWn ≤ σb,
W
n ≤ σ (b− e (b)) + W+

n , b ≥ 0, and m+

n ≤ σ ≤ 1; so the principals’ problem is
to maximize

W

n
= min

·
σb,σ (b− e (b)) + W+

n

¸
subject to b ≥ 0, and m+

n ≤ σ ≤ 1.
We note that a solution to this maximization problem always exists, since

σ is restricted to a compact interval, and σ (b− e (b)) + W+

n is coercive in b (it
is negative outside a compact interval, so we can restrict b to this interval). It
is also clear that the individual rationality constraint always binds, for if it did
not then W

n could be made arbitrarily large, violating the existence conclusion.
1Explicit randomization in promotion is unlikely to be seen, but in practice the uncertain

nature of the business environment does the job just as well. When promotion time comes
round nobody is sure exactly who will be promoted, as it depends on a variety of uncertain
factors. But everybody has a good idea of who is likely to get up and who is not; and
sometimes there are surprises.
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2.1 Preliminary Remarks

We show first that, under these assumptions, all agents will be employed.

Lemma 1 (full employment) σ = 1

Proof. We consider separately three cases, showing in each case that W is
increasing in σ.
If W = nσb > nσ (b− e (b)) +W+ then W is clearly increasing in σ.
If W = nσ (b− e (b)) +W+ > nσb, then b maximizes (b− e (b)) . But by

Assumption 2 this function takes non-negative values. Thus (b− e (b)) > 0.
It is also clear that this optimal value of b does not depend on σ. Thus W is
increasing in σ.
Finally, if W = nσ (b− e (b)) +W+ = nσb, then we can write b = b (σ) and

W =W (σ) as functions of σ, and we have W (σ) = nσb and W+ = nσe (b (σ)) .
Writing the derivative as a dot, Ẇ = nσḃ+nσ̇b and 0 = nσe0 (b) ḃ+nσ̇e (b) , so
Ẇ = nσ̇b

³
1− e(b)

be0(b)

´
. SoW is increasing in σ provided that the effort elasticity

be0(b)
e(b) > 1. That is to say, provided that the marginal effort exceeds the average
effort; but this follows from Assumption 1.
Bardsley and Sherstyuk [2] show that if there are hidden types then this

result may no longer be true. Adverse selection and information effects may
endogenously limit the size of the firm.

Corollary 1 The contract is invariant to the size of the partnership.

Proof. Since the constraint m+

n ≤ σ does not bind, the contract is indepen-
dent of the value of m+.
The intuition is straight forward. Firm profits depend only on the actions

of the agents. For a given future level of profit W+, the profit per partner is
W+

m+
, and the probability of promotion is m+

nσ , so the expected future profit per

employee is W+

nσ . Doubling the number of partners halves the profitability of
partnership but doubles the probability of becoming partner. To risk neutral
agents this is the same.
Thus, under the assumptions made here, it is always profitable to employ all

agents, but the size of the partnership is indeterminate. There may be a single
principal (m = 1), with the probability of promotion being 1

n , or there may be
many principals (m = n), with the probability of promotion being 1.
We can also interpret an m partner firm as an amalgam of m single principal

firms, with the span of control of each principal being n
m . Given this interpre-

tation, the partnership size indeterminacy is quite natural: since the principals
do nothing productive (apart from designing the contract) the span of control
is immaterial. So without loss of generality, we may set mt = 1 for all t, and
we may assume that there is a single principal. The results may then be re-
interpreted in the multi-principal case by regarding n as the span of control of
a representative principal2.

2 In a model where the partners exert some effort, partnership size might be limited by free
riding between partners (See Landers, Rebitzer and Taylor [11] for a model that focuses on
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2.2 Efficiency

We now show that recursive contracts are always inefficient. The concept of
efficiency that we will use is ex-ante Pareto efficiency. A contract is efficient if
no generation can be made better off without reducing the welfare of another
generation. Using the notation set out above, the ex-ante expected utility of
the current generation is (after eliminating w and π)

u = σ
¡
w + πW+ − e (b)¢

= σ (b− e (b)) + (W
+ −W )
n

.

It is worth noting explicitly that the utility of the current principal plays no
direct part in the efficiency criterion because his or her utility has already been
accounted for in the utility of agents of the previous generation. The feasibility
constraints on the contract are b ≥ 0, 0 ≤ σ ≤ 1, and 0 ≤W ≤ nσb.
We first establish some baseline results that can be used to assess efficiency.

It is natural to conjecture that a feasible contract (σt, bt,Wt) will be efficient
provided that there is full employment (σt = 1), that there is efficiency in
production in every period (e0 (bt) = 1). We will confirm this in the two cases
that are of interest to us. We consider first the case where it is known that the
firm will cease to exist after a certain date T.

Lemma 2 (finite horizon efficiency criterion) Assume that the firm will
cease to exist after a finite date T, that σt = 1 for all t ≤ T, that e0 (bt) = 1 for
all t ≤ T, and that the contract is feasible. Then it is efficient.

Proof. Assume that there exists a Pareto improvement (∆σ,∆b,∆W ) .

Then ∆u = ∆ [σ (b− e (b))] + (∆W+−∆W)
n ≥ 0, with a strict inequality hold-

ing for some generation. But (σ, b) already maximizes σ (b− e (b)) period by
period, so ∆ [σ (b− e (b))] ≤ 0. Thus ∆W+ ≥ ∆W. So the change ∆W is non-
decreasing through time. But after the terminal date ∆W = 0, since then W
is constrained to be zero. Thus ∆W = 0 at all dates. It then follows that
∆u = ∆ [σ (b− e (b))] ≤ 0, so the variation cannot have been a Pareto improve-
ment.
We note in passing that the condition in this Lemma is sufficient but not

necessary. One can find optimal allocations that do not satisfy this criterion.
We now consider stationary allocations, imposing the constraint σ+ = σ,

b+ = b, W+ = W . The ex-ante utility of a representative generation is then
u = σ (b− e (b)) .
Lemma 3 (infinite horizon efficiency criterion) Consider the stationary con-
tract (σ, b,W ). If σ = 1, e0 (b) = 1 and 0 ≤W ≤ nb then the contract is efficient
subject to the stationarity constraint.

free riding).
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Proof. Under stationarity all generations are treated identically, so a Pareto
optimal allocation is simply one that maximizes σ (b− e (b)) subject to the fea-
sibility constraints b ≥ 0, 0 ≤ σ ≤ 1, and 0 ≤ W ≤ nσb. From the convexity of
σ (b− e (b)) it follows that this will happen when the constraint 0 ≤ W ≤ nσb
does not bind, σ = 1, and b− e (b) is maximized.
We will refer to the contract (σ = 1, W = 0, e0 (b) = 1), with full employ-

ment, no intergenerational transfers, and efficient production in each period, as
the infinitely repeated myopic contract.

Corollary 2 Under either the finite horizon assumption, or the constraint of
stationarity, the infinitely repeated myopic contract is efficient. Furthermore, it
yields every agent a strictly positive ex-ante expected utility.

Corollary 3 The recursive contract will always be inefficient.

Proof. Since the individual rationality constraint always binds, the ex-ante
utility of every generation is zero. But by the preceding corollary, there exists
a feasible contract that yields to every generation a positive utility.
The intuition is straight forward. The current principal has monopoly power

to impose a contract on the next generation, and naturally chooses to extract
all the surplus. However the previous principal was in the same position. Going
back through time, everybody loses out.

2.3 Finite Horizon Contracts

We now show how the inefficiency of recursive contracts may take the form of a
“rat-race,” with very low (in fact zero) wages, and excessively high effort levels.
The best contract for the principal to offer at time t depends on the expected

partnership profit W+ at time t+1. If agents are optimistic about the future of
the firm then deferred payment is attractive; but this may not be so if the firm
is declining. Here we consider the finite horizon case and compute the optimal
contract by backward induction.
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Figure 1. Finite Horizon Contracts

Consider the function φ (b) = b − e (b), which is shown in Figure 1. The as-
sumptions on the effort curve imply that φ (b) is strictly concave, that its graph
passes through the origin with a slope that is strictly positive but less than 1,
and that it is eventually negative. Thus it crosses the axis at a point b∗ > 0,
and it reaches a maximum at a point b0 such that 0 < b0 < b∗. The output
level b0, where marginal effort equals 1, is the efficient output level that would
be chosen by a conventional profit maximizing firm. For simplicity of exposition
we will call b0 the efficient point3. We will call b∗, where average effort equals
1, the rat-race point.
The principal’s problem is to maximize W

n subject to the constraints Wn ≤ b
(the non-negativity constraint on w), and W

n ≤ φ (b) + W+

n (the individual
rationality constraint). Figure 1 shows graphs of these constraints. Notice
φ (b) + W+

n shifts vertically up or down as W+ varies, so its maximum remains
fixed at b0. We also note that the functions b and φ (b)+

W+

n cross at the point

where b = e−1
³
W+

n

´
, or equivalently where W+

n = e (b0) . There are thus two

regimes, depending upon the size of the future partnership profit W+.
3 If b = b0 in all periods then the contract is efficient in the sense of Section 2.2. However

we note that the converse is not true. There may exist Pareto optimal contracts in which
b > b0 at some dates, due to binding of the w ≥ 0 constraint.
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Regime 1: W+

n < e (b0). In this regime the constraint W
n ≤ b does not bind,

so the principal chooses b to maximize φ (b). Output b is set at the efficient
level b0, and the wage paid is w = b0− W

n = e (b0)− W+

n , which is strictly
positive. The partnership profit is W = n (b0 − e (b0))+W+ > W+. Thus
partnership profits are declining through time, which has the consequence
that once the firm enters this regime it will not leave it. The wage paid to
the agents is increasing through time. The output level b = b0 does not
change, and remains fixed at the efficient level.

Regime 2: W+

n ≥ e (b0). In this regime both the constraints bind, so the con-
tract is pushed away from the efficient production point b0. Since the con-
straint W

n ≤ b binds, w = 0 and the wage is fixed at zero. In this regime
all rewards are deferred and agents are compensated for their effort only
by the expectation of promotion. The output level is b = e−1

³
W+

n

´
≥ b0,

so output is inefficiently high. Since the wage is zero, Wn = b = e
−1
³
W+

n

´
so W+

n = e
¡
W
n

¢
and b+ = e (b) . This allows us to explore the dynamics

of the contract. If b = b∗ then b+ = e (b∗) = b∗ = b, so the contract is
stationary. If b > b∗ then b+ > b, so output and partnership profits are
growing. If b < b∗ then b+ < b, so output and partnership profits are
declining; this is the only type of trajectory that is consistent with the
terminal conditions.

In both regimes we have, by the results of Section 2.1, full employment. So
σ = 1 and the promotion probability π = 1

n is constant through time and across
both regimes.
We can now get a clear idea of the sequence of contracts by proceeding

backwards from the terminal period. Let the terminal horizon be at time 0.
Since the firm no longer exists after this date, W+ = 0 and we are in regime 1,
with b0 at the efficient level, W0

n = b0 − e (b0) > 0, w0 = e (b0) > 0 and π0 =
1
n ;

in fact the value of π0 is irrelevant in this terminal period.
In the previous period the individual rationality constraint shifts upwards.

Let us assume (as in Figure 1) that we are still in regime 1; this will be so
provided that W0

n = b0 − e (b0) < e (b0) , that is to say
e(b0)
b0

> 1
2 . Then out-

put remains at the efficient value, the partnership profit increases to W−1
n =

(b0 − e (b0)) + W0

n = 2 (b0 − e (b0)) , and the wage falls to w−1 = e (b0)− W0

n =
2e (b0)− b0.
Moving backwards in time, partnership profit Wn increases until we enter the

second regime, where the constraint W
n ≤ b binds and the wage falls to zero.

The output b rises above the efficient level, tending in the distant past to the
“rat-race” level b∗. Partnership profit also rises as we move back in time. Agents
exert an inefficiently high level of effort, they receive a zero wage, and they are
compensated purely by the expectation that they may be promoted.
As noted in Corollary 3, this contract is inefficient. It is instructive to
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consider exactly why the principal chooses such an inefficient outcome4. Let us
start first with the myopic efficient contract of Corollary 2, which is just the
terminal contract repeated infinitely often. Production is always at the efficient
level b0, the agent receives the whole of his or her output as wage, and there
are no intergenerational transfers. Beginning from this baseline, each principal
would like to extract some rent. There are two instruments that can be used,
w and b. The most straight-forward way to proceed is to reduce the wage w;
by doing so some of the surplus can be extracted without upsetting production
efficiency5. However there is a limit to what can be done, because of the non-
negativity constraint on wages6. But the principal is concerned not with ex-ante
efficiency but with the ex-post pay-off, conditional on having been promoted.
Having no other instrument to use, he or she is quite happy to push up effort
levels even at the cost of production efficiency.
We summarize as follows.

Proposition 1 Assume that the firm will cease to exist after a finite date T.
Let N be the largest integer such that N−1N < e(b0)

b0
. Then

1. In all except the last N periods the wage is fixed at zero and effort is
inefficiently high. In the distant past the output level b tends to the “rat-
race” level b∗; it declines through time towards the efficient level b0.

2. In the final N periods output is fixed at the efficient level b0, and the wage
w is positive and increasing through time.

3. The contract is inefficient, yielding an ex-ante expected utility of zero to
every generation.

2.4 Steady State Contracts

As the terminal horizon recedes into the future the finite horizon contract ap-
proaches a steady state. So we now consider steady state contracts, under the
assumption that the firm may cease to exist with probability α at any time. This
can also be considered as a model of an infinitely lived firm with discounting.
The contract design problem is now to maximize W = n (b−w) subject to

the constraints
4 I would like to thank the members of the theory group at the University of Sydney for a

very lively seminar and dinner where this point was clarified.
5We do not consider here the question of allocative inefficiency. See the next section, where

allocative effects are seen more easily.
6Without a constraint that imposes a lower bound on wages no equilibrium would exist.

The model becomes a Ponzi game: the current generation can extract any surplus that they
wish, passing the cost back, generation by generation, into the distant past.
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nπ = 1 (4)

w + (1− α) πW ≥ e (b) (5)

w ≥ 0 (6)

0 ≤ π ≤ 1. (7)

We have imposed the stationarity constraints W = W+, w = w+, π = π+, set
σ = 1 and normalized the number of partners to 1; the justification for this is
similar to that set out previously.

W
n

0b *b

0W
n

W
n

0b *b

W
n

0b *b

0W
n

Figure 2. Steady State Contracts

Eliminating π, w, and once again writing φ (b) = b− e (b) , we find that
W

n
= max

b≥0
min

·
b,
φ (b)

α

¸
in the case α > 0, and to

W = max {W :W ≤ b,φ (b) ≥ 0}
in the case α = 0. This last case leads immediately to the pure rat-race contract
b = b∗, w = 0, π = 1

n , and requires no further discussion.
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Once again, there are two regimes, depending on how confident agents can
be about the future.

Regime 1: α > φ(b0)
b0
. In this regime in this regime the risk of failure is high.

The constraint W
α ≤ b does not bind, so the principal chooses b to max-

imize φ (b). Thus b is set at the efficient level b0, and a strictly positive
wage w = b0 − φ(b0)

α is paid.

Regime 2: 0 < α ≤ φ(b0)
b0
. In this regime it is very likely that the firm will

continue into the next period, and the constraint W
α ≤ b binds. The

wage is zero, with the agents compensated only through the expectation
of promotion. Output b is inefficiently high, being characterized by the
average effort condition e(b)

b = 1−α > e(b0)
b0
. As α→ 0 the contract tends

to the pure rat-race contract with b = b∗.

In both regimes there is full employment and the promotion probability is
π = 1

n . Once again, the outcome is inefficient.
As before, it is instructive to see why the principal is prepared to choose

such an inefficient outcome. Consider first the efficient contract b = b0, w = b,
W = 0. The principal can improve his or her pay-off by reducing the wage w,
keeping output at b = b0. This does not disturb production efficiency, but it
does lead to allocative inefficiency, at least provided that α > 0. To see this,
note that the ex-ante welfare of a representative generation can be written

u = b− e (b)− απW.

Reducing the wage shifts income forward between generations, and incurs the
cost of doing so. In the current model, this cost arises because of the risk
that the firm might go out of business before the transfer is realized in the next
period. The non-negativity constraint on w means that reducing the wage alone
is not enough to extract all the surplus. So, as discussed in the finite horizon
model, the principal will also push up the effort level beyond b0.
We summarize as follows.

Proposition 2 Let α be the failure probability.

1. If α ≤ φ(b0)
b0

then the wage w is zero, and output b is inefficiently high,
tending to the pure rat-race level b∗ as α tends toward zero.

2. If α > φ(b0)
b0

then the output level b = b0 is efficient and a positive wage is
paid; the wage is increasing in α.

3. In all cases the contract is inefficient, there is full employment (σ = 1)
and π = 1

n .
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3 Risk aversion and congestion

In this section we investigate the robustness of the conclusions that we have
drawn, by introducing some complicating factors into the basic model.
In both of the models considered so far, there is full employment (σ = 1 and

π = 1
n) and the firm can grow to be very large. One consequence is that the

promotion probability of any one individual may become very small, although
the ultimate reward may be great. Another is that the span of control 1π may
become very large. In this section we investigate the effect of risk aversion, and
of congestion or span of control costs. We are interested in whether these effects
may provide an endogenous limit on the size of the firm, and whether they may
mitigate the “rat-race” nature of contracts.

3.1 Risk Aversion

Introducing risk aversion into the models as already specified has a very simple
consequence. There is no intrinsic uncertainty in these models; all uncertainty is
introduced by the contract through random promotion. As discussed in Section
2, the size of the partnership is indeterminate in these risk neutral models.
Uncertainty can be completely eliminated by setting m = n and promoting
everybody. That is to say, instead of giving all of the deferred reward to one
individual we share it equally across the whole cohort.
To eliminate this uninteresting case, it is necessary to make an assumption

that limits the size of the partnership. There are many ways to justify such an
assumption. For example, if partners were required to exert some effort, then
equal sharing will induce free riding, which may limit the size of the partnership.
Here we will simply assume that there is an upper bound on the size of the
partnership, and set that bound equal to 1.
We will also make the simplest possible assumption about risk preferences,

assuming constant absolute risk aversion. Without loss of generality we may
assume that u (0) = 0 and u0 (0) = 1, so that the utility function is a quadratic
of the form u (x) = x − Ax2 with A = − u00(x)

2u0(x) > 0. We consider steady state
contracts, setting the failure rate α = 0; so the firm will with certainty continue
to exist forever.
The contract design problem is to choose σ, w, π, b to maximize W subject

to

πσn = 1

W = σn (b−w)
(1− π)u (w) + πu (w +W ) ≥ e (b)

0 ≤ σ ≤ 1
0 ≤ π ≤ 1
b ≥ 0
w ≥ 0.
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Eliminating w and σ, and expanding the quadratic utility function u as a Taylor
series expansion about b, these constraints can be written

1

n
≤ π ≤ 1 (8)

b ≥ 0 (9)

πW ≤ b (10)

Aπ (1− π)W 2 ≤ φ (b) . (11)

where φ (b) = u (b)− e (b) . We note that φ is concave, since u is concave and e
is convex. The efficient output level b0 is now characterized by φ0 (b0) = 0 (this
is the output level at which marginal effort equals marginal utility; this is the
output level that would be chosen by a profit maximizing firm) and the rat-race
level b∗ by φ (b∗) = 0. It is clear that the constraint 11 must bind, for otherwise
W can be made arbitrarily large be letting b→∞; this constraint can be used
to eliminate W, leading to a final reformulation of the problem as

maximize J (π, b) =W 2 =
φ (b)

Aπ (1− π)

subject to
1

n
≤ π ≤ π̄ (b) .

Here we write π̄ (b) = Ab2

Ab2+φ(b) =
Ab2

b−e(b) , and we put aside for the moment the
possibility that π = 1.
See Figure 3, where the graph of π̄ (b) is shown. Note that π̄ (b) is monotonic

increasing, since bπ0(b)
π(b) = 2 − bφ0(b)

φ(b) ; but φ (b) − bφ0 (b) ≥ φ (0) = 0, since φ is

concave, so bφ0(b)
φ(b) ≤ 1 and bπ0(b)

π(b) ≥ 1. We also note that π̄ (b∗) = 1 and (by

l’Hôpital’s rule) that π̄ (0) = 0. The feasible region is
©
(b,π) : 1n ≤ π ≤ π̄ (b)

ª
;

this shrinks to the right as the risk aversion parameter A tends to 0. We also

note that along this locus J (b) = J (b, π̄ (b)) =
³
b−e(b)
Ab

´2
=
³

b
π̄(b)

´2
, which is a

decreasing function of b. In fact, this relationship holds even when π = 1, so no
further separate argument will be needed for that case. For future convenience,
let b1 be the output level such that π̄ (b1) = 1

n .
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b1 b*b0

π

1
n

11 n−

b1 b*
Figure 3. The Optimal Recursive Contract under Risk

aversion

We consider separately the optimal choice of π, holding b fixed, and the
optimal choice of b, holding π fixed. The objective φ(b)

π(1−π) is convex in π and

symmetrical about π = 1
2 . Thus, for a given b, the optimal choice of π is π = π̄ (b)

provided that π̄ (b) − 1
2 ≥ 1

2 − 1
n ; otherwise it is π =

1
n . The locus of optimal

choices for π is shown as a solid line in the Figure. Conversely, for a given π
the optimal choice of b is b0 provided that it is feasible; that is if π ≤ π̄ (b0) .
Otherwise it is the smallest value of b such that π̄ (b) ≥ π. The locus of optimal
choices for b is shown as a dashed bold line in the Figure.
It is now clear that risk aversion (at least under the assumption of constant

absolute risk aversion) will not limit the size of the firm, and the optimal contract
will always be a full employment contract with π = 1

n . For if not, then the
optimal contract must lie on the locus {b, π̄ (b)} . But ¡b1, 1n¢ is the smallest
feasible contract on this locus, and the objective J (b) is decreasing in b along
this locus. Thus the contract

¡
b1,

1
n

¢
will dominate any contract for which

π > 1
n .
There are thus two possible types of contract, depending on whether b1 is

to the left or to the right of b0 (both of these points vary with the risk aversion
parameter A, shifting to the right as A tends to 0). Let us write, for the moment,

ψ (b) = b− e (b) , let b̃ be the point such that b̃ψ
0(b̃)

ψ(b̃)
= 1

n , and let Ã be the value

of the risk aversion parameter such that ψ0
³
b̃
´
= 2Ãb̃. One can check that such

14



a point exists and that b1 < b0 if and only if A > Ã.
In the first regime (low risk aversion), we have A < Ã and b1 > b0. The

optimal contract is then
¡
1
n , b1

¢
. This is a rat-race contract: output and effort

are inefficiently high, and a zero wage is paid. As A → 0 it approaches the
pure, risk-neutral rat-race contract. In the second regime, we have A > Ã and
b1 < b0. The optimal contract is then

¡
1
n , b0

¢
. The output level is efficient, and

a positive wage is paid. We summarize in the following Proposition.

Proposition 3 If the agents display constant absolute risk aversion then the
optimal contract still leads to full employment. For high levels of risk aversion
the contract implements the efficient output level, and a positive wage is paid. If
the coefficient of risk aversion falls below a critical level then effort is inefficiently
high and a zero wage is paid. As the coefficient of risk aversion decreases to 0
the contract converges to the risk-neutral pure rat-race contract.

3.2 Congestion Effects.

Another effect that may be expected to limit the size of the firm is congestion, or
diseconomies of scale associated with an excessively large span of control when
there are many agents to each principle. To explore this effect we assume that
the agent’s marginal effort depends both on output b and on the the span of
control 1π . For simplicity we assume that the effect of congestion is additive and
linear:

e (b,π) = e (b) +
γb

π
,

where γ > 0 is a parameter that indicates the strength of the congestion effect.
We normalize the number of principals to 1, and once again we assume risk
neutrality.
For for future convenience we write

π1 (b) =
γb
φ(b)

π2 (b) =
γ

φ0 (b)
.

We note (by l’Hôpital’s rule) that π1 (0) = π2 (0) =
γ

φ0(0) > 0, that both func-
tions are monotone increasing, that π1 (b)→∞ as b→ b∗ and that π2 (b)→∞
as b→ b0 (see Figures 4 and 5).
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3.2.1 Baseline case

It is useful first of all to establish the efficient baseline. Given complete infor-
mation, a profit maximizing firm would choose σ, π, w, b to maximize

J (b,π) = nσ (b− e (b,π))

=
b− e (b)− γb

π

π

=
φ (b)

π
− γb

π2
,

where φ (b)− b− e (b) , subject to 1
n ≤ π ≤ 1.

π

1
n

( )1 bπ

b *b0b

( )2 bπ

π

1
n

( )1 bπ

b *b0b

( )2 bπ

Figure 4. Baseline Contract under Congestion

We note that, for a given b > 0, J (b,π) has a global maximum (as a func-
tion of π) if π = 2 γb

φ(b) = 2π1 (b). Thus the optimal choice of π, holding b

fixed, occurs along the locus
©¡
b,max

¡
1
n ,min (1, 2π1 (b))

¢¢ª
. For a given value

of π, J is maximized as a function of b if π = γ
φ0(b) = π2 (b) . Thus the optimal

choice of b, holding π fixed, occurs along the locus
©
(b,π2 (b)) :

1
n ≤ π2 (b) ≤ 1

ª∪©
(0,π) : 1n ≤ π ≤ π2 (0)

ª
. These loci are shown in bold in Figure 4. For sim-

plicity we will assume that n is large enough that the constraint 1
n ≤ π does

not bind, and that γ is small enough that the constraint π ≤ 1 does not bind.
This means that the congestion effect is strong enough to limit the size of the
firm to less than n, but not to reduce it to a firm with only a single employee.
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Then the baseline optimal production plan
³
b̃, π̃
´
occurs in Figure 4 where the

two loci cross: it is characterized by the fact that
b̃φ0(b̃)
φ(b̃)

= 1
2 , and π̃ = γ

φ0(b̃) .

3.2.2 Recursive case

We now consider the optimal recursive contract. The principal’s problem is to
maximize W subject to

1

n
≤ π ≤ 1

πW ≤ b
φ (b) ≥ γb

π
.

π

1
n

( )1 bπ

*b0b

( )2 bπ

π

1
n

( )1 bπ

*b0b

( )2 bπ

Figure 5. The Recursive Contract under Congestion

Assuming again that n is sufficiently large that the constraint 1n ≤ π does not
bind, this is equivalent to the problem of minimizing π

b subject to the constraint
π ≥ γb

φ(b) = π1 (b) , and the optimal contract is characterized geometrically by
tangency between the curve π1 (b) and the ray through the origin (see Figure 5).
Thus π1 (b) = bπ01 (b) , which implies that φ0 (b) = 0. Hence b = b0 > b̃; output
is above the efficient baseline level. However it is not possible to say, without
restricting the effort function e (b) , whether the size of the firm 1

π0
= φ(b0)

γb0
is

greater than or less than the base-line firm size.
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If the constraint 1
n ≤ π binds then the shifts to the right along the π1 (b)

curve, so the output level is even higher.
In either case the constraint πW ≤ b binds, so the agent’s wage is always

zero. We summarize.

Proposition 4 Assume that the firm is subject to a linear congestion external-
ity of the form e (b)+ γb

π . If nγ ≥ b0
φ(b0)

(that is, if the population is large or the

congestion cost is high) then the firm size is limited to 1
π =

φ(b0)
γb0

< n, and the

output level b0 is inefficiently high. If nγ < b0
φ(b0)

then there is full employment,

but the output level b (which is such that φ(b)
b = nγ) is even higher, tending to

b∗ as γ → 0. In all cases the wage is zero, and the agent is compensated only
through the prospect of promotion.

4 Discussion

In the OLG firm agents are motivated not only by current rewards but also by
the prospect of becoming principal in the next period, and getting a chance to
set the rules next time round. We find that the recursive contracts that emerge
in such an environment are always inefficient.
The typical structure of such contracts is illustrated most clearly by the

steady state rat-race contracts of Section 2.4. Agents are paid a zero wage,
being compensated for their effort only by the probability of promotion. They
work inefficiently hard, accepting contracts under which they produce up to the
point where all surplus is dissipated and their average product falls to zero. The
wage is zero because the agents are risk neutral and there is no discounting, so
they do not mind exchanging a current wage for an equivalent future gamble.
But the principal clearly prefers to reduce the current wage to zero rather than
to leave some surplus to the next generation. The effort level is high because the
principal, who designs the contract, cares not about efficiency but only about
the ex-post payoff conditional on having been promoted. The agents are willing
to accept such a harsh contract because they can impose a similar contract on
the next generation.
This conclusion seems to be robust to a range of variations in the environ-

ment. In a finite horizon model, rat-race contracts, with a zero wage and an
inefficient level of effort, can be sustained up until a finite number of periods
before the final horizon. In a stationary model, where the firm may go out of
business with a constant probability in any period, rat-race contracts can be
sustained if the failure probability is not too great. Rat-race contracts can be
sustained (under constant absolute risk aversion) provided that the degree of
risk aversion is not too great. They can also be sustained under congestion
effects associated with the costs that may be imposed by an increasing span of
control.
There are several interesting areas for further investigation. Bardsley and

Sherstyuk [2], for example, have investigated a recursive contracting model with
adverse selection.
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Recursive contracts may occur in the purest form in overlapping generation
partnership firms, such as the large commercial law firm, where there is no
outside equity, and where ownership and control rest with the partners. However
something similar may occur in firms with a more conventional structure. If
ownership is divorced from day to day control, then there may be a career
structure within the firm where lower managers hope to be promoted to senior
management, with the right to exercise control. However the extent of this
control, and the contracts which would be designed, would be constrained by
right of the owners to appoint from outside the firm. It would be interesting to
investigate the recursive contracts that would emerge in this environment.
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