
Extending XPath to Support Linguistic Queries

Steven Bird�;y, Yi Chen�, Susan B. Davidson�, Haejoong Lee�, and Yifeng Zheng�

�University of Pennsylvania, yUniversity of Melbourne

fsb,yicn,susan,haejoong,yifengg@cis.upenn.edu

ABSTRACT
Linguistic research and language technology development employ
large data repositories of ordered trees, known as “treebanks.” We
define a path language for linguistic trees represented in XML
called LPath, based on XPath, and provide a new labeling scheme
for LPath query evaluation. We report a strategy for evaluating
expressions of the language against treebank data. The language
contains three expressive features which are important for linguistic
query, namely immediate precedence, subtree scoping, and edge
alignment. We motivate and illustrate these features with a variety
of linguistic queries. This work provides a scalable and reusable
model for linguistic tree queries, and relates it to well-understood
semistructured and relational languages.

1. INTRODUCTION
Large repositories of text and speech data are routinely collected,
curated, annotated, and analyzed as part of the task of develop-
ing and evaluating new language technologies. These technolo-
gies include information extraction, question answering, machine
translation, and so forth. Linguistic data repositories may contain
106� 109 words, along with annotations at the levels of phonetics,
prosody, orthography, syntax, dialog, and gesture. For instance,
Penn Treebank [15] consists of over1; 000; 000 words of manually
parsed text from the Wall Street Journal. The Switchboard corpus
contains2; 400 recorded and transcribed telephone conversations,
some with phonetic, prosodic, syntactic and disfluency annota-
tions [10]. In the general case, we begin with time-series data such
as a text or a recording which represents a linguistic artifact; this
“primary data” is usually considered to be immutable. Then we
associate structured annotations with extents of this data, annota-
tions which are usually related to some level of linguistic analysis
or to a particular application domain. The relationship between
linguistic data and linguistic annotations is shown schematically in
Figure 1.

Annotations are often hierarchically organized. For instance, a
segment of a sound file might be annotated with a phonetic tran-
scription. The transcription could then be annotated orthographi-
cally, and then the orthographic representation could be annotated
linguistically (e.g. as a named entity of a particular type). This
hierarchical structure, and its connection to stream data, can be
represented in XML as shown below:

<phoneme id="ph20" span="2045ms-2092ms">f</phoneme>
<phoneme id="ph21" span="2092ms-2132ms">I</phoneme>
<phoneme id="ph22" span="2132ms-2204ms">l</phoneme>
...
<word id="wd03" span="ph20-ph31">Philadelphia</word>
<namex id="n12" span="wd03-wd03" type="location"/>

PRONOUNNAMED
ENTITY

SPEECH DISFLUENCY
ACT

BACKGROUND
MUSIC PHONEME

PITCH
EXCURSIONPHRASE

VERB

ANNOTATION

CHARACTER

ANNOTATION

STREAM

AUDIO
STREAM

Figure 1: Linguistic Annotation: Structured Coding of Extents
of Time-Series Data (e.g. Character Data, Audio Data)

Despite the large amount of attention that has been paid to data
collection and associated computational tools for linguistic anno-
tation, there has been relatively little consideration of efficiency
and scalability. Specialized languages for querying linguistic data
repositories have been proposed [3, 16, 17], but they are ad hoc
and have two critical shortcomings. First, they are tied to specific
data file formats and are difficult to generalize and reuse. Second,
expressiveness is emphasized to the detriment of efficiency, and
in most cases little is known about the computational properties
of the language, how data can be indexed, and how queries can
be optimized.1 As the data repositories grow and find uses other
than those for which they were originally created, reusability and
scalability become critical considerations. In general, the design of
a query language must balance expressiveness and efficiency. First,
it should express, as naturally as possible, the queries that the user
community needs. Second, it should be optimizable, supporting
query rewriting, execution planning and index selection.

The goal of this work is to develop a query language for linguis-
tic data which is sufficiently expressive and which can be imple-
mented efficiently by exploiting the mature technology of relational
databases. We propose a languageLPath, extending the XPath
1.0 syntax,2 supporting immediate precedence, subtree scoping,
and edge alignment. We also propose a labeling scheme which is
effective for both vertical and horizontal navigations, and describe
a query translation algorithm from LPath to SQL.

This paper is organized as follows. Inx2 we introduce our working
example, then present the LPath language inx3. In x4 we give the

1We refer the reader to [6, 11] for a discussion of linguistic tree
query language requirements.
2We focus on the discussion of XPath 1.0 without functions in this
paper. As with XPath, LPath can have a function library.

root1

S2

NP3
lex:I

VP4

V5

lex:saw
NP6

NP7

Det8
lex:the

Adj9
lex:old

N10

lex:man

PP11

Prep12
lex:with

NP13

Det14
lex:a

N15

lex:dog

NP16
type:tmp

N17

lex:today

. . .

S: sentence; NP: noun phrase; VP: verb phrase; PP: prepositional phrase;
Det: determiner, Adj: adjective; N: noun; Prep: preposition; V: verb; tmp:
temporal (NB. Nodes are indexed to facilitate the discussion.)

Figure 2: Tree representation

translation to the relational model, before closing with a summary
of the work and a discussion of future work inx5.

2. QUERYING LINGUISTIC TREES
Figure 2 shows the representation of a parsed sentence of English.
Here the immutable, primary data is the sentence comprising the
fringe of the tree, while the linguistic analysis is an ordered tree
built over the primary data. Non-terminal nodes are annotations
of sequences of one or more terminal nodes (i.e. the words) or of
other non-terminals. For instance, the nodeNP7 (noun phrase) is
an annotation of theDet8, Adj9 and N10 annotations. Linguistic
trees are navigated vertically via the hierarchical relationships, and
also horizontally via a precedence relation, which we turn to next.

The terminals of a linguistic tree are linearly ordered; this order-
ing induces an ordering on the non-terminals. For instanceV5

immediately precedesNP6, NP7 and Det8. (A formal definition
will be given later, in Algorithm 1.) Traditionally, this precedence
relation has been understood with respect to the context-free gram-
mar which licenses trees such as the one in Figure 2. We can
apply grammar productions in reverse to a sentence in order to get
sequences, or so-called “proper analyses” [7], as illustrated below:

CFG Productions Some Proper Analyses
S ! NP VP (NP) I saw the old N with NP today

VP ! V NP (NP) I V the Adj man PP today
NP ! NP PP NP saw NP with a telescope NP
NP ! Det Adj� N I VP NP
PP ! Prep NP I saw NP today

Large-scale empirical linguistics involves searching and collating
tree data. We have compiled a representative sample of linguistic
tree queries below, and give their result for a query against the tree
in Figure 2.

Q1 Find noun phrases that immediately follow a verb:fNP6,
NP7g (both nodes immediately follow V5)

Q2 Find nouns that follow a verb which is a child of a verb
phrase:fN10, N15, N17g (all three followV5)

Q3 Within a verb phrase, find nouns that follow a verb which is
a child of a verb phrase:fN10, N15g (within VP4, N10 and
N15 follow V5)

Q4 Find noun phrases which do not have an adjective descen-
dant:fNP3, NP13, NP16g

Q5 Find noun phrases which are the rightmost child of a verb
phrase:fNP6g

Q6 Find noun phrases which are the rightmost descendant of a
verb phrase:fNP6, NP13g (both are descendants ofVP4, and
no other descendants ofVP4 follow them)

Q7 Find all verb phrases that are comprised of a verb, a noun
phrase, and a prepositional phrase:fVP4g (VP4 is comprised
of V5, NP7 andPP11)

A natural candidate for representing and querying linguistic data
is XML. Its associated query language, XPath, has been much
studied within the database community in terms of expressiveness
[14, 9]. Various evaluation and optimization techniques have been
proposed, leveraging relational databases [2, 5, 12].

It is clear that XPath can express some of the sample queries
given earlier:Q2 can be expressed as//VP/V/following::N ,
Q4 can be expressed as//NP[not(boolean(//Adj))] andQ5

as //VP/_[last()][self::NP] .3 However, there are several
problems with XPath with respect to the other sample queries. For
the remainder of this section we show why linguistic tree queries
cannot be expressed naturally or, in some cases, expressed at all,
using XPath.

Immediate Precedence. It is possible to define an immediate
precedence relation as a new XPath navigation axis. We call this
axis immediate-followingand show how it is computed in Algo-
rithm 1.4 For a given noden, the node sets reachable by the
immediate-following axis is comprised of the nodes on the left-
most path in the subtree rooted atm, wherem is the immediate-
following sibling of the nearest ancestor-or-self ofn. The XPath
following axis is the transitive closure of the LPath immediate-
following axis. From the definition of immediate following, we
can see that it cannot be expressed in XPath.

XPath supports vertical navigation through parent/child, ances-
tor/descendant relationships, however the horizontal axis only sup-
ports “following/preceding sibling” and “following/preceding”. Nei-
ther of these is adequate for expressing the “immediately follows”
of queryQ1.

Subtree Scoping.In many cases, linguistic tree queries must cir-
cumscribe tree navigations so that they remain inside the subtree

3Instead of using� to denote a wildcard to match any tag name as
defined in XPath specification, we useas wildcard, since� is used
to denote transitive closure in this paper.
4We focus on the extension of LPath to XPath without functions
here. Lines 10-15 can be simplified using XPath’s position function
as follows: m m/ [position()=first()].

Algorithm 1 Immediate Following Axis of Noden
1: m n . n is the input node
2: while m=immediate-following-sibling:: = ; and

m=parent:: 6= ; do
3: m m=parent::
4: end while . m is the first ancestor having a following sibling
5: s ;
6: if m=immediate-following-sibling:: 6= ; then
7: m m=immediate-following-sibling::
8: s s [fmg
9: while m/ 6= ; do

10: children m/
11: for all c 2 children do
12: if c=preceding-sibling::= ; then
13: m c
14: end if
15: end for
16: s s [fmg
17: end while
18: end if
19: return s . s is the set of nodes which immediately follown

rooted at a specified node. QueryQ3 exemplifies this requirement
with respect toQ2 which is not constrained in this way. Observe
that N17 is part of the solution toQ2, but not of the solution for
Q3 since N17 is outside the scope of VP4. This subtree scoping
cannot be expressed in XPath.

Edge Alignment. QueriesQ5 andQ6 illustrate edge alignment.
The alignment of a child node with the left or right edge of its
parent can be expressed using XPath, as we have already seen
above forQ5. However, XPath cannot describe more deeply nested
alignments, as required forQ6. A putative XPath equivalent is:
//VP//_[last()][self::NP] . However, this XPath expression
evaluates tofNP13g on our running example, whileQ6 evaluates
to fNP6, NP13g. The key difference is that̂ and $ are sensi-
tive to node order in an XML subtree, while the XPath position
function considers a node’s position in the sequence obtained from
subquery evaluation which may be unrelated to its position in the
original XML tree. In other words, the order restrictions imposed
by edge-alignment are part of specifying a tree pattern match, and
not expressible using the position function which considers a node
sequence independently of the XML tree.

In light of these expressive shortcomings of XPath, we now develop
some syntactic extensions which permit our queries to be expressed
(x3), then show how the extended language can be evaluated (x4).

3. LPATH: A PATH LANGUAGE FOR LIN-
GUISTIC TREES

Three extensions to XPath were motivated in the last section:
immediate precedence, subtree scoping, and edge alignment.

Immediate Precedence. We introduce four new axes, namely
immediate-following, its inverse immediate-preceding, and the sib-
ling versions of these axes, namely immediate-following-sibling
and immediate-preceding-sibling. These elementary horizontal
navigations are intransitive, and none are supported by XPath
(although their closures are supported). A summary of these LPath
axes and their slash or arrow abbreviations is given in Table 1 (note
that all closures use Kleene plus). For example, to expressQ1 to

Table 1: Linguistic Tree Navigation Primitives
Vertical Navigation
/ child
// descendant (/ +)
\ parent
\\ ancestor (\ +)
Horizontal Navigation
-> immediate-following
--> following (-> +)
<- immediate-preceding
<-- preceding (<- +)
Sibling Navigation
=> immediate-following-sibling
==> following-sibling (=>+)
<= immediate-preceding-sibling
<== preceding-sibling (<=+)

find all noun phrases that immediately follow a verb, we can write
//V->NP .

Subtree Scoping. We introduce braces into the language to per-
mit scopes to be expressed. These will force all navigation to be
constrained to a subtree. When ‘f’ occurs after a query noden,
all the axes between ‘f’ and ‘g’ are evaluated within the XML
subtree rooted at the XML node matchingn. For example, con-
siderQ3 which is a scoped version ofQ2. Q2 can be expressed as
//VP/V -->N , and we can add the scope restriction required forQ3

as follows: //VP{/V -->N} . Consider the XML tree in Figure 2:
althoughN17 is a following node forV5 in the whole tree, it out of
the scope ofVP4, therefore it is not part of the result forQ3.

Edge Alignment. Linguistic queries need to refer to nodes at the
left or right edge of the subtree rooted at a specified node (e.g.Q6).
To support queries involving edge alignment, we introduce syntac-
tic sugar̂ to force left-alignment, and$ to force right-alignment.
(These choices are motivated by the syntax of popular regular
expression languages.) These operators are defined as follows:
ˆA = A[not <--_] ; A$ = A[not -->_] . Accordingly,Q6 can be
expressed as://VP{//NP$} .

3.1 LPath Grammar
The grammar of the query language is presented in Figure 3. A path
expressionP is an absolute path optionally followed by a scoped
path. The absolute path expressionsAP are composed of stepsS.
A step consists of an axisA, a tag testT , and an optional restriction
(or predicate)R. The axisA represents the navigations we can
perform between nodes. The tag testT can be a string equality
test, or a wildcard which matches any tag.R is the restrictions
introduced by “[]” to filter a node set. The restriction is a logical
expression composed of one or more sub-expressions, connected
by “and”, “or” and “not”.

Unlike the child and descendant axes which retrieve qualifying
nodes within the subtrees of context nodes, several axes – parent,
ancestor, immediate following/preceding and following/preceding
– take node navigationout of the current subtree to the global data
tree. Thus in queryQ3, if we specify the relationship betweenAdj
andN using the following axis--> , all N nodes that appear after
Adj nodes qualify.

P ::= AP | AP ‘ f’ P ‘ g’
AP ::= | S AP
S ::= A T | A T ‘[’ R ‘]’
A ::= ‘/’ | ‘//’ | ‘.’ | ‘\ | ‘\\’

| <= | => | <== | ==>
| <- | -> | <-- | -->

T ::= Qname | _ | ‘@’ Qname C Qname
R ::= R ‘or’ R | R ‘and’ R | ‘not’ R | ‘(’ R ‘)’

| P | P C ‘"’ Qname ‘"’
C ::= ‘=’ | ‘<=’ | ‘>=’ | ‘<>’ | ‘like’

P: Path expression; AP: Absolute Path expression; S: Step, A: Axis; T: Tag;
R: Restriction (predication)

Figure 3: The grammar of LPath

3.2 LPath Examples
Now that we have discussed the syntax of the proposed language,
let us consider how it can be used to represent the sample linguistic
queries fromx1.

Q1 Find noun phrases that are immediately following a verb.
//V->NP

Q2 Find nouns that follow a verb which is a child of a verb
phrase.
//VP/V -->N

Q3 Within a verb phrase, find nouns that follow a verb which is
a child of a verb phrase.
//VP{/V -->N} . Compared toQ2, Q3 restricts the follow-
ing axis navigation within the scope of the noun phrase.

Q4 Find noun phrases which do not have an adjective descen-
dant.
//NP[not(//Adj)]

Q5 Find noun phrases which are the rightmost child of a verb
phrase.
//VP{/NP$} , where$ is used to align the match to the right-
most child of a verb phrase.

Q6 Find noun phrases which are rightmost descendant of a verb
phrase.
//VP{//NP$}

Q7 Find verb phrases comprised of a verb, a noun phrase, and a
prepositional phrase.
//VP[{//ˆV->NP->PP$}] . Notice that “comprise” is a
common notion in linguistic queries. To express it, we
require the ability to scope, express left and right alignment
and immediate following. As shown in the query,^ forces
V to align to the leftmost of all descendants ofV P , and$
forcesPP to align to the rightmost descendant.

4. EVALUATION
As we discussed in section 1, the two key features of a good
language are expressibility and efficiency. We have justified the
expressiveness of the proposed language according the linguistic
query requirements in section 3, now we will justify its efficiency.

We begin by introducing a labeling scheme which efficiently rep-
resents both vertical and horizontal axis navigation. Based on the
labeling scheme, we then transform XML data into relations, and
translate XPath queries into SQL which can be efficiently evaluated
over those relations.

T left right depth id pid name value
1 . 0 1 0 root
1 10 1 2 1 S
1 2 2 3 2 NP
1 2 2 3 3 @lex I
2 9 2 4 2 VP
2 3 3 5 4 V
2 3 3 5 5 @lex saw
3 9 3 6 4 NP
3 6 4 7 6 NP
3 4 5 8 7 Det
3 4 5 8 7 @lex the
.
.

Figure 4: Relational representation

Interval Labeling. A simple interval-based labeling scheme sup-
ports evaluation of all LPath axes, i.e. we can detect all relation-
ships between tree nodes by inspecting these labels. This labeling
can be constructed in a single pass over the XML representation of
a tree, or equivalently using a depth-first traversal of a tree. This
labeling is defined for a single tree, but it can easily be extended to
multiple trees by introducing tree identifiers.

Definition 4.1: The labeling scheme assigns each node a tuple
<left, right, depth, id, pid, name, value>, shortened as<l, r, d,
id, pid, name, value>, in the following fashion:

1. Letn be the leftmost leaf node. Then assignn:l = 1.
2. Letn be a leaf node. Then assignn:r = n:l+ 1.
3. Letm andn be consecutive leaf nodes wherem is on the

left. Then assignm:r = n:l.
4. Let n be a non-terminal node which dominates leaf nodes

a1; : : : ; ak. Then assignn:l = a1:l andn:r = ak:r.
5. For each noden, let n:d be the distance ofn from the root

(i.e. the depth ofn), where the root has a depth of0.
6. For each noden, assign nonzeroid as its unique identifier

(= f(l; r; d) wheref is a Skolem function).
7. For each noden, assignn:pid to ben’s parent node identi-

fier; if n is the root node, assignn:pid = 0.
8. For each noden, itsname is either the tag name or attribute

name;value stores attribute values or nullable text value.

Data Storage.The data loader handles events generated by a SAX
parser reading the XML document of linguistic data. For each
element node, it generates a tuple<left, right, depth, id, pid, name,
value>. Part of the relation generated for the sample annotation
tree in Figure 2 is shown in Figure 4.

Query Translation. The query translation algorithm converts an
LPath query into SQL statements based on the labeling scheme.
First we convert each axis into a join over tuples. We detect axis
relationships between any pair of nodes simply by checking their
labels. This check can be implemented as a joinT ./C T , where
C is the required constraint shown in Table 2.5

5Note that the conditionn:d < m:d for the descendant axis is
required just for the case of unary branching. Reflexive versions of
the axes are defined as follows: axis-or-self(m;n) =def axis(m;n)
_m = n.

Table 2: Axes and their Corresponding Join Constraints
Vertical Navigation
child(m; n) n:id = m:pid

descendant(m; n) m:l � n:l;m:r � n:r;m:d > n:d

parent(m; n) m:id = n:pid

ancestor(m; n) m:l � n:l;m:r � n:r;m:d < n:d

Horizontal Navigation
immediate-following(m; n) m:l = n:r

following(m; n) m:l � n:r

immediate-preceding(m; n) m:r = n:l

preceding(m; n) m:r � n:l

Sibling Navigation
immediate-following-sibling(m; n) m:l = n:r;m:pid = n:pid

following-sibling(m; n) m:l � n:r;m:pid = n:pid

immediate-preceding-sibling(m; n) m:r = n:l;m:pid = n:pid

preceding-sibling(m; n) m:r � n:l;m:pid = n:pid

The only remaining innovation of the language is the subtree scop-
ing constraint, expressed using{} . For this we employ a stack;
when we encounter a nodem followed by a{ , we savem’s label
on a stack, and we require that any noden falling inside this scope
be bounded bym, i.e. m:l � n:l, n:r � m:r, andn:d > m:d.
Once the corresponding} is met, we pop the current environment
from the stack.

Example 4.1: //NP{//Adj -->N} (Q3) is translated to the fol-
lowing SQL query. The scope constraint requires that N node must
be a descendant NP, and this is implemented by the conditions in
italic.

select l l3, r r3, d d3, l2, r2, d2, l1, r1, d1 from T,
(select l l2, r r2, d d2, l1, r1, d1 from T,

(select l l1, r r1, d d1 from T where T.name = ’NP’) T1
where T.name = ’Adj’ and T.l >= l1 and

T.r <= r1 and T.d > d1) T2
where T.name = ’N’ and T.l >= r2 and

T.l >= l1 and T.r <= r1 and T.d > d1

For translating from LPath with predicates to SQL, we use the
techniques in [8]. When a ‘[]’ predicate is met, we add the key-
word EXISTS to the WHERE clause. Logical operator AND
(resp. OR) in LPath predicates are directly mapped to keyword
AND (resp. OR) in SQL. The key feature of the LPath-to-SQL
mapping is that we also initialize the processing environment for
expressions in the predicates to be the current environment. Another
difference compared to [8] is that, since “not” can appear in
the predicates in an LPath expression, we translate it using NOT
EXISTS in the SQL where clause.

As an optimization, rather than processˆ and $ directly accord-
ing to their definitions, we can evaluate these constraints very effi-
ciently as follows. LetT 0 the relation at the top of the environment
stack. ˆA means thatT:name = A andT:left = T 0:left and
T:depth > T 0:depth. Similarly, A$ means thatT:name = A and
T:right = T 0:right andT:depth > T 0:depth.

5. CONCLUSIONS AND FUTURE WORK
We have addressed the problem of defining an expressive and effi-
cient language for linguistic tree queries. Our language, LPath,
extends the XPath syntax in three respects: immediate prece-
dence, subtree scoping, and edge alignment. We review each of

these in turn. First, several new axes are proposed for immedi-
ate precedence: immediate-following (->), immediate-following-
sibling (=>), immediate-preceding (<-), and immediate-preceding-
sibling (<=). These “horizontal” axes are not supported by XPath,
even though their closures are. Once added, there is a natural sym-
metry between horizontal and the vertical axes (cf. Table 1).

Second, a new kind of bracketing is proposed for subtree scop-
ing, using{} : for example,//VP{/V -->N} will only return those
nodes labeledN which have aVP ancestor. Finally, new edge-
alignment operatorŝ and $ are introduced. When used in con-
junction with {} , these force the specified node to be aligned to
the left or right edge of the subtree. For example,//VP{//NP$}

matches all noun phrases which are the rightmost descendant of a
verb phrase.

For efficient evaluation of LPath queries, we have proposed a label-
ing scheme which supports both horizontal and vertical naviga-
tions. Additionally, this labeling scheme serves as relational stor-
age for linguistic tree data. We have implemented a translator
which converts LPath expressions to SQL queries.6

We believe this work has implications beyond linguistics. XPath
provides theancestor and descendant axes, which are tran-
sitive closures of the parent and child axes. However, from the
standpoint of this work, XPath is incomplete in that it defines tran-
sitive relationsfollowing , preceding , following-sibling ,
preceding-sibling , without defining their primitives. Further-
more, the evaluation of LPath queries employs a labeling scheme
which may prove useful for general XPath query processing. The
subtree scoping operator may be useful for general trees, not just
ordered trees.

Additionally, the navigation requirements of linguistic trees presents
an interesting challenge to work on semistructured data and query-
ing. The fringe of a linguistic tree is a collection of words – a
sentence – constituting the immutable primary data upon which
different linguistic theories construct their trees. These words form
a total ordering, which in turn induces a partial ordering on the
node set. Further research is required to apply semistructured data
models and query languages to this domain.

Another area for further investigation is the expressiveness of the
language. We would like to support simple kinds of path closures
(e.g. (->NP)*); as well as querying “overlapping trees” arising
from multiple linguistic annotations over the same text. Existing
linguistic query languages need to be examined in depth, partic-
ularly for their use of variables and quantification, in case there
are new expressive requirements. Standard benchmarks need to
be established to provide objective measures of the scalability of
different approaches to querying linguistic trees. Finally, we plan
to extend LPath with update operations, permitting local rearrange-
ments of linguistic trees, and facilitating the curation of treebanks.

6. ACKNOWLEDGMENTS
We would like to thank Val Tannen, Peter Buneman, and James
Bailey for their valuable feedback on the work reported here. This
research is sponsored by the National Science Foundation under
Grant No. 0317826Querying Linguistic Databases.

6This implementation is available fromhttp://www.ldc.
upenn.edu/Projects/QLDB/

7. REFERENCES
[1] S. Bird, P. Buneman, and W.-C. Tan. Towards a query

language for annotation graphs. InProceedings of the
Second International Conference on Language Resources
and Evaluation, 2000.

[2] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. InProceedings of
SIGMOD, 2002.

[3] S. Cassidy and J. Harrington. Multi-level annotation of
speech: an overview of the EMU speech database
management system, 1999.

[4] Y. Chen, S. Davidson, and Y. Zheng. Indexing keys in
hierarchical data. Technical Report MS-CIS-01-30,
University of Pennsylvania, Computer and Information
Science Department, 2001.

[5] Y. Chen, S. Davidson, and Y. Zheng. BLAS: An Efficient
XPath Processing System. InProceedings of SIGMOD,
2004.

[6] S. Cassidy. XQuery as an Annotation Query Language: a
Use Case Analysis InProceedings of the Third International
Conference on Language Resources and Evaluation, 2002.

[7] N. Chomsky. Formal properties of grammars. In E. Galanter
D. Luce, R. R. Bush (eds),Handbook of Mathematical
Psychology, volume 2, pages 323–418. New York: Wiley and
Sons, 1963.

[8] D. DeHaan, D. Toman, M. P. Consens, and T. Ozsu. A
comprehensive XQuery to SQL translation using dynamic
interval encoding. InProceedings of SIGMOD, 2003.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for
Processing XPath Queries. InProceedings of VLDB, 2002.

[10] D. Graff and S. Bird Many Uses, Many Annotations for
Large Speech Corpora: Switchboard and TDT as Case
Studies. Proceedings of the Second International Conference
on Language Resources and Evaluation, 2000.

[11] C.. Lai and S. Bird. Querying and Updating Treebanks: A
Critical Survey and Requirements Analysis Unpublished
manuscript, 2004.

[12] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. InThe VLDB Journal, pages
361–370, 2001.

[13] X. Ma, H. Lee, S. Bird, and K. Maeda. Models and Tools for
Collaborative Annotation. InProceedings of the Third
International Conference on Language Resources and
Evaluation, 2002.

[14] M. Marx. Conditional XPath, the first order complete XPath
dialect. InProceedings of PODS, 2004.

[15] U. of Pennsylvania. The Penn Treebank Project, 1995.
http://www.cis.upenn.edu/˜treebank/home.html

[16] R. Pito. Tgrep manual.http:
//mccawley.cogsci.uiuc.edu/corpora/tgrep.pdf

[17] B. Randall. CorpusSearch, 2000.
http://www.cis.upenn.edu/˜brandall/CSStuff/
CSManual/Contents.html

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
BIRD, STEVEN;Chen, Yi;Davidson, Susan;Lee, Haejoong;Zheng, Yifeng

Title:
Extending XPath to support linguistic queries

Date:
2005

Citation:
Bird, S., Chen, Y., Davidson, S., Lee, H., & Zheng, Y. (2005). Extending XPath to support
linguistic queries. In,Proceedings, Programming Language Technologies for XML (PLANX),
Long Beach, USA.

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/34055

http://hdl.handle.net/11343/34055

