INOSITOL PHOSPHATE GENERATION IN THE HEART: MECHANISMS AND FUNCTIONAL RELEVANCE

Scot J Matkovich, BA, BSc (Hons.)

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

September 2000

Baker Medical Research Institute, Prahran and
Department of Biochemistry and Molecular Biology,
The University of Melbourne
The studies described in this thesis have used principally the rat neonatal cardiomyocyte (NCM) model to investigate previously unresolved questions regarding inositol phosphate signalling in the heart. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) is known to be an arrhythmogenic molecule in the setting of cardiac ischaemia and subsequent reperfusion, but the mechanisms responsible for its enhanced generation in pathological circumstances, as well as those suppressing its generation during phospholipase C (PLC)-coupled receptor stimulation under physiological conditions, have not been characterised. [³H]InsP generation in response to norepinephrine (NE) was largely insensitive to the PtdIns(4,5)P₂-binding compound neomycin. In contrast, the Ca²⁺ ionophore A23187 stimulated [³H]InsP generation in a manner which was inhibited by neomycin. Further studies in permeabilised NCM showed that elevation of Ca²⁺ generated a larger proportion of [³H]Ins(1,4,5)P₃ than direct G protein stimulation, and introduction of excess unlabelled Ins(1,4,5)P₃ protected more [³H]Ins(1,4,5)P₃ in the setting of Ca²⁺ elevation than of GTPγS stimulation. Analysis of these effects demonstrated that while elevated intracellular Ca²⁺ is required to generate substantial amounts of Ins(1,4,5)P₃, G protein activation of NCM leads to an InsP response which is largely independent of Ins(1,4,5)P₃. As the major InsP isomer which accumulated in NCM is Ins(4)P, which can only be formed from Ins(1,4)P₂, these studies provided
strong evidence that the InsPs formed in response to G protein activation derive from \(\text{Ins}(1,4)P_2 \).

Thus, InsP responses in heart may involve generation of principally \(\text{Ins}(1,4)P_2 \) or \(\text{Ins}(1,4,5)P_3 \). It was hypothesised that alternate PLC isoforms may be involved in mediating these two different responses, and that the highly \(\text{Ca}^{2+} \)-sensitive isoform PLC-\(\delta_1 \) may mediate \(\text{Ca}^{2+} \)-stimulated InsP responses. Adenoviral manipulation of PLC-\(\delta_1 \) content in NCM was performed in order to establish a role or otherwise for PLC-\(\delta_1 \) in the InsP response to elevated \(\text{Ca}^{2+} \). Despite marked effects on PLC-\(\delta_1 \) expression, antisense PLC-\(\delta_1 \) adenovirus did not reduce, and sense PLC-\(\delta_1 \) adenovirus did not enhance, InsP generation in response to A23187, providing no evidence for PLC-\(\delta_1 \) as the mediator of the response to elevated \(\text{Ca}^{2+} \). Surprisingly, PLC-\(\delta_1 \) overexpression decreased NE-stimulated responses in intact NCM. Further experiments showed reduced GTP\(\gamma \)S responses in permeabilised NCM, suggesting diminished activity of either the G protein or PLC involved in NE responses. To address this, the cellular content of G\(\alpha_1 \), PLC-\(\beta_1 \) and PLC-\(\beta_3 \) was examined. PLC-\(\delta_1 \) overexpression affected the content of PLC-\(\beta_1 \) but not of G\(\alpha_1 \) or PLC-\(\beta_3 \), demonstrating specific coupling of G\(\alpha_1 \) to PLC-\(\beta_1 \) in NCM. Thus, these data show that G protein (presumably G\(\alpha_1 \)) stimulation of \(\text{Ins}(1,4)P_2 \) generation in NCM is mediated by PLC-\(\beta_1 \). The identity of the PLC responsible for \(\text{Ca}^{2+} \)-activated InsP generation in NCM remains unknown.

A transgenic mouse line with inhibited G\(\alpha_1 \) signalling was studied in an attempt to further confirm the role of G\(\alpha_1 \) in \(\alpha_1 \)-adrenergic receptor-mediated InsP generation in the heart. Although hypertrophy in response to pressure overload in the hearts of these mice was reduced, no changes were evident in InsP generation. However, the
low magnitude of agonist-stimulated InsP responses in mouse heart means that these studies remained inconclusive.

As the heart responds to PLC stimulation by generation of either Ins(1,4)P$_2$ or Ins(1,4,5)P$_3$, preferential Ins(1,4)P$_2$ generation in the heart could represent a mechanism for DAG production without concomitant Ins(1,4,5)P$_3$ generation, or could implicate Ins(1,4)P$_2$ itself in an aspect of cardiac function. Transfection studies using hypertrophied NCM outlined a novel antihypertrophic role for the enzyme responsible for metabolism of Ins(1,4)P$_2$, inositol polyphosphate 1-phosphatase (INPP). Thus, it appears that the generation of Ins(1,4)P$_2$ in the heart may not only act to prevent Ins(1,4,5)P$_3$ generation, but may also have a signalling function of its own.
Declaration

This is to certify that:

(i) the thesis comprises only my original work;

(ii) due acknowledgment has been made in the text to all other material used;

(iii) and the thesis is less than 100,000 words in length, exclusive of tables, figures and bibliographies.

Scot J Matkovich

September 2000
Publications and communications

Peer-reviewed journals:

Abstracts and posters:

Acknowledgments

Dr Elizabeth Woodcock - for being not just a supervisor but truly a mentor, helping to keep my feet on the ground during times of both frustration and success, being incredibly generous with time and support, and providing important career guidance and much-needed coffee drinking sessions

Past and present members of the Cellular Biochemistry Laboratory, Baker Medical Research Institute - for invaluable advice, support and humour over the course of my studies

Past and present housemates, as well as my wonderful network of family and friends - for their tolerance in living through the trials and tribulations of writing this thesis and encouragement to keep going. Special thanks to Dad, Heidi, Lynn, Tim, Phil, Ange, Emma, Ross and Jackie

St. Jude’s Carlton - for spiritual respite and renewal, strong teaching, and provision of musical sanity

Rod, Trish, Paul, Jamie, Dave and Mono - for the cathartic experience of travelling to Onkirk and back

Cathy and John - for the wonders of the Franck sonata, a mellow Yamaha grand and raisin toast

And to all of my other partners in musical crimes as well as to everyone else who has helped to keep me together over the last three years; I couldn’t have managed this without you.
‘...our complicated experiments have no longer anything to do
with nature in her own right, but with nature changed and transformed
by our own cognitive activity.’

Werner Heisenberg (1901-1976)
Commonly used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP</td>
<td>atrial natriuretic peptide (atrial natriuretic factor)</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>DAG</td>
<td>sn-1,2-diacylglycerol</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>N,N,N',N'-ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ET-1</td>
<td>endothelin-1</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>InsP</td>
<td>inositol phosphate</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MLC-2v</td>
<td>myosin light chain-2, ventricular isoform</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NCM</td>
<td>neonatal rat cardiomyocytes</td>
</tr>
<tr>
<td>NE</td>
<td>norepinephrine (noradrenaline)</td>
</tr>
<tr>
<td>PE</td>
<td>phenylephrine</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PtdIns</td>
<td>phosphatidylinositol</td>
</tr>
<tr>
<td>PTX</td>
<td>pertussis toxin</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>sec</td>
<td>second(s)</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
</tbody>
</table>
Table of contents

Summary.. i
Declaration... iv
Publications and communications.. v
Acknowledgments... vii
Commonly used abbreviations.. ix
Table of contents.. x
List of figures and tables.. xv

1. **General introduction**... 1

1.1 Preamble... 1

1.2 Inositol phosphates and phospholipids as signalling molecules................................. 4

1.2.1 Ins(1,4,5)P\(_3\) as a second messenger.. 4

1.2.1.1 Ins(1,4,5)P\(_3\) receptors... 5

1.2.2 Ins(1,4,5)P\(_3\) metabolism... 7

1.2.3 Role of Ins(1,4)P\(_2\)... 9

1.2.4 Functions of other InsPs... 14

1.2.4.1 Ins(1,3,4,5)P\(_4\)... 14

1.2.4.2 Ins(3,4,5,6)P\(_4\)... 14

1.2.4.3 Other higher InsPs... 15

1.2.5 PtdIns(P) molecules: synthesis and function.. 16

1.2.5.1 Synthesis... 16

1.2.5.2 Functions of PtdIns(4,5)P\(_2\)... 21

1.2.5.3 Phosphoinositide 3-kinase products.. 22

1.3 Ca\(^{2+}\) regulation and the role of Ins(1,4,5)P\(_3\) in the heart... 25

1.3.1 Ca\(^{2+}\) regulation in the heart... 25

1.3.1.1 Importance of cardiac Ca\(^{2+}\) regulation... 25

1.3.1.2 Properties of the cardiac sarcoplasmic reticulum.. 28

1.3.1.3 Calcium-induced calcium release... 29

1.3.1.4 Ryanodine receptors... 30

1.3.1.5 Removal of Ca\(^{2+}\) from the cytosol.. 32

1.3.2 Ins(1,4,5)P\(_3\) and cardiac function.. 33

1.3.2.1 Localisation of Ins(1,4,5)P\(_3\) receptors in the heart... 33

1.3.2.2 Direct studies of Ins(1,4,5)P\(_3\) on cardiac Ca\(^{2+}\) release.................................. 33

1.3.2.3 Ins(1,4,5)P\(_3\) and arrhythmia.. 36

1.3.3 Suppression of Ins(1,4,5)P\(_3\) generation in the heart.. 38
3. Preferential generation of Ins(1,4)P$_2$ in rat neonatal cardiomyocytes

3.1 Introduction

3.2 Experimental procedures
3.2.1 Stimulation of [H]InsP generation
3.2.2 Inositol polyphosphate 1-phosphatase activity
3.2.3 Materials
3.2.4 Treatment of data

3.3 Results
3.3.1 Timecourse of NE and A23187 stimulation of InsP generation
3.3.2 Neomycin sensitivity of NE and A23187 total [H]InsP responses
3.3.3 Effects of neomycin on [H]InsP isomers in response to NE and A23187
3.3.4 Ca$^{2+}$-activated and G protein-stimulated [H]InsP responses in permeabilised NCM
3.3.5 Blockade of [H]Ins(1,4,5)P$_3$ breakdown during G protein-stimulated and Ca$^{2+}$-activated [H]InsP generation in permeabilised NCM
3.3.5.1 Effect of 300 µM Ins(1,4,5)P$_3$ on inositol polyphosphate 1-phosphatase
3.3.6 Controls for protection of [H]Ins(1,4,5)P$_3$ by 300 µM Ins(1,4,5)P$_3$

3.4 Discussion
3.4.1 Neomycin effects on NE and A23187 responses
3.4.2 G protein stimulation in permeabilised NCM
3.4.3 Inhibition of [H]Ins(1,4,5)P$_3$ breakdown by unlabelled Ins(1,4,5)P$_3$
3.4.4 Preferential Ins(1,4)P$_2$ generation in the heart

4. Role of PLC-δ in NCM InsP responses: evidence for selective coupling of G$_q$α and PLC-β in the heart
4.3.1 PLC-δ₁ expression and [³H]Ins(1,4,5)P₃ retention following infection with sense or antisense adenovirus constructs.. 126
4.3.2 Effects of PLC-δ₁ adenoviruses on [³H]InsP responses to A23187 .. 128
4.3.3 Effects of PLC-δ₁ adenoviruses on NE-stimulated [³H]InsP responses................................... 128
4.3.4 PLC-δ₁ overexpression and GTPγS responses in permeabilised NCM................................. 129
4.3.5 qα and PLC-β₁ expression in Ad-PLC-δ₁ NCM... 130

4.4 Discussion .. 139
4.4.1 Role of PLC-δ₁ in the heart.. 139
4.4.2 Implications of PLC-β₁ downregulation.. 141

5. InsP studies on transgenic mice with inhibition of Gq signalling. 144

5.1 Introduction .. 144
5.2 Experimental procedures ... 148
5.2.1 Generation of GqI transgenic mice ... 148
5.2.2 Screening of transgenic mice .. 148
5.2.3 [³H]InsP generation and extraction from mouse right ventricle................................. 149
5.2.4 Separation and quantitation of [³H]inositol-labelled phospholipids from mouse right ventricle. ... 151
5.2.5 Protein analysis of mouse heart .. 151

5.3 Results ... 154
5.3.1 InsP responses to NE and ET-1 in wild-type and transgenic GqI mice 154
5.3.2 GqI protein analysis .. 156
5.3.3 Inhibition of hypertrophy in response to pressure overload in GqI transgenic mice........... 158

5.4 Discussion .. 169
5.4.1 Lack of effect of GqI on InsP responses .. 170
5.4.2 Implications of the distinctive InsP response observed in mouse heart......................... 172

6. A potential novel role for inositol polyphosphate 1-phosphatase.. 175

6.1 Introduction .. 175
6.2 Experimental procedures ... 178
6.2.1 Preparation of high-density, beating NCM ... 178
6.2.2 Stimulation of [³H]InsPs .. 179
6.2.3 NCM transfection ... 179
6.2.4 Luciferase activity determination ... 180
List of figures and tables

Figures and tables in which experimental data are presented are located at the end of the Results sections of chapters 3 to 6. Other figures and diagrams are located as follows:

Figure 1.1. Numbering of the carbon atoms of myo-inositol..3

Figure 1.2. Diversity of inositol phosphate generation and metabolism11

Figure 1.3. Synthesis of phosphatidylinositol (PtdIns) and interconversion of inositol phospholipids...19

Figure 1.4. Major ion channels and pumps responsible for control of cytosolic Ca\(^{2+}\) in the heart ..26

Figure 1.5. Proposed pathways of InsP generation and metabolism in intact rat heart41

Figure 1.6. Comparison of HPLC profiles gained from adult rat heart and neonatal cardiomyocytes..56

Figure 2.1. Appearance of low-density NCM cultures...63

Table 2.1. Total [\(^3\)H]InsP responses to various G protein-coupled receptor agonists67

Figure 2.2. Representative HPLC profiles of [\(^3\)H]InsPs generated in NCM74

Figure 2.3. HPLC profiles of [\(^3\)H]InsP fractions separated on Dowex-1 anion-exchange columns...77

Figure 6.6. Involvement of G\(_aq\) and Ras in cardiac hypertrophic signalling196
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Matkovich, Scot J.

Title:
Inositol phosphate generation in the heart : mechanisms and functional relevance

Date:
2000-09

Citation:

Publication Status:
Unpublished

Persistent Link:
http://hdl.handle.net/11343/38813

File Description:
Inositol phosphate generation in the heart : mechanisms and functional relevance

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.