Dynamic Properties of Nickel-Titanium Instruments

A thesis submitted to the
School of Dental Science
University of Melbourne

by

Boonrat Sattapan
DDS (Prince of Songkla University, Thailand)

In partial fulfilment of the requirements
for the degree of Master of Dental Science

1997
Acknowledgements

This study would not have been possible without the help and support of a number of these people. I would like to express my sincere gratitude to those involved especially:

Professor Harold H. Messer, my supervisor, for his invaluable guidance, enthusiasm, endless patience and understanding an overseas student throughout not only this research but also the entire MDSc Program

Dr. Garry J. Nervo, my co-supervisor, for his kindly suggestion and support for materials used in this study

Dr. Joseph E. A. Palamara for his technical support and data analysis

Tycom Dental for providing devices and materials used in this study

Mr. Chris Owen and Mr. Tad Dobrostanski for their assistance in creating slides and photographs associated with this thesis

Dr. Suwachai Phrukanon for his technical support

The school of Dental Science Research Committee for their generous research grant
My colleague in the Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University for taking my workload during my study for MDS. in Australia

Prince of Songkla University where I graduated from and the Royal Thai Government who gave me an opportunity for further study

Finally and most of all, my special thanks is reserved for my parents and aunts for their love, concern and encouragement.
Table of Contents

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 3

2.1 Properties of nickel-titanium alloys 3

2.2 NiTi endodontic instruments 4

2.2.1 NiTi hand files 5

2.2.2 NiTi engine-driven rotary files 5

2.2.3 Other NiTi endodontic instruments 6

2.3 NiTi instrument designs 6

2.3.1 NiTi hand files 6

2.3.2 NiTi engine-driven rotary files 7

2.4 Evaluation of NiTi instruments 8

2.4.1 Flexibility 8

2.4.2 Torsional properties 9

2.4.3 Flexural fatigue 10

2.4.4 Effect of sterilization 11

2.5 Instrumentation with NiTi files 11

2.5.1 Canal transportation 11

2.5.2 Cutting efficiency 13

2.5.3 Debris removal 13
2.5.4 Apical debris extrusion 14
2.5.5 Speed of instrumentation 15
2.5.6 Complications 15
2.5.7 Study rationale 16
2.5.8 References 17

CHAPTER 3 TORQUE DURING CANAL INSTRUMENTATION 24
USING ROTARY NiTi FILES
(A manuscript prepared for submission to the
Journal of Endodontics)
Abstract 27
Introduction 28
Materials and Methods 29
Results 33
Discussion 35
References 41

CHAPTER 4 DEFECTS IN ROTARY NiTi FILES FOLLOWING 52
CLINICAL USE
(A manuscript prepared for submission to the
Journal of Endodontics)
Abstract 55
Introduction 56