The significance of episodic recharge in the Wheatbelt of Western Australia

Marjorie Fay Lewis

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

November 2000

Volume 1

Department of Civil and Environmental Engineering

The University of Melbourne
ABSTRACT

Groundwater levels in the Wheatbelt of Western Australia are rising and causing severe and widespread land salinisation. Evidence from northern Victoria showed that episodic recharge pulses following floods had caused significant groundwater rises. The aim of this study was to determine:
1. whether episodic recharge was significant compared to regular recharge in the Wheatbelt;
2. the conditions under which episodic recharge occurs.

These aims were addressed in three stages. Part I assessed the likelihood of episodic recharge being significant in the Wheatbelt by reviewing published information and by investigating whether Wheatbelt rainfall patterns could lead to episodic recharge (using simple water-balance models). The assessments showed that significant episodic recharge was likely, and that both direct and indirect processes could be involved. The likelihood of episodic recharge increased north-eastwards, reflecting trends in decreasing mean annual rainfall, increasing rainfall variability, and increasing evaporation.

Since there were no suitable methods of distinguishing between episodic and non-episodic recharge in the literature, several indices were developed.

Part II aimed to identify sites where episodic recharge had occurred, so that the conditions at them could be compared to those at sites with regular recharge regimes. Three methods were used: analysis of long-term groundwater hydrographs from three piezometer networks, analysis of groundwater chemistry (principally deuterium and oxygen-18 ratios), and piezometer monitoring at flood-prone sites. None of the methods identified episodic recharge sites, but sites with significant episodic groundwater rises were successfully identified using the long-term hydrographs. These identifications were relevant because salinisation results from groundwater level rises.

The 'long-term' hydrographs were short (all <16 years) and covered only a limited range of landscape locations, so they were augmented with records from northern Victoria. Even then, very few sites had more than one significant episodic rise during the period of record.
Part III aimed to determine which rainfall and site conditions were associated with significant episodic groundwater rises. A surprising finding was that most significant episodic rises did not occur during the years with the highest rainfall. Rainfall pattern during the year was more influential. It was clear that floods were not essential to generate episodic recharge and many of the irregular, large groundwater rises occurred below slopes.

The short Western Australian groundwater records did not show the expected increase in episodicity towards the north-east. Significant episodic groundwater rises occurred in the south-western piezometer network but not the north-eastern one. The long-term (~70 years) rainfall records showed that, during the periods of groundwater records, rainfall was relatively low in the south-west but relatively high in the north-east. Thus, long-term mean annual rainfall is not a good indicator of the likelihood of episodicity over the short-term.

Episodic recharge is not restricted to particular regolith, bedrock or landscape conditions, but can occur under most areas. Groupings of piezometers were identified, based on similarities in hydrograph forms and the years in which large rises occurred. It was found that episodicity increased with groundwater level depth within some groups and that the processes causing this varied. So, episodicity changed from one part of a landscape to another, reflecting groundwater level depth. An additional implication is that at a site where there are long-term groundwater rises, then episodicity also changes with time.

Based on the results of the research, simple conceptual models for predicting how recharge regimes change in response to changes in rainfall and site factors were developed.
DECLARATION

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies, appendices and footnotes.

Marjorie Fay Lewis
PREFACE

Some of the work described in Chapters 3 and 4 was also presented in a conference paper and documented in a technical report:

Although Dr. Glen Walker was my principal supervisor throughout, I was initially enrolled (part-time and off-campus) at Flinders University in South Australia. The early planning for the research in this thesis was carried out at that stage, but the majority of the work was carried out during my enrolment at the University of Melbourne.

All sources of the information used in this thesis are cited in the text.
ACKNOWLEDGEMENTS

I have thoroughly enjoyed the time spent on this PhD and am sorry that it is coming to an end. I would not have felt like this if I had not had generous funding and support from many people.

I am grateful to the Cooperative Research Centre for Catchment Hydrology for the scholarship and project funding, and to Agriculture Western Australia who gave me study leave and operational support.

I was extremely fortunate in having Dr. Glen Walker as my principal supervisor. He manages to be authoritative without being arrogant, and I have appreciated his broad knowledge, clear-thinking and ideas. He was generous with his time - he persisted in pulling my focus back to the questions I was supposed to be addressing, and he patiently and subtly trained me to organise my writing.

I would also like to thank my two other supervisors, Dr. Bob Nulsen and Dr. Q.J. Wang. Although they are both under pressure from too much work, they found time to give me support and advice when asked, and Bob Nulsen reviewed the final draft of the thesis.

Much of the work in this thesis depended on data collected by others. In Western Australia, Greg Bartle and Jim Prince supplied the groundwater level data from the Cuballing, East Perenjori and Wallatin Creek networks. Both of them were as helpful as anyone could wish, and they spent time ensuring that the quality of the data they provided was as high as possible. Leah McCloy, Cec McConnell and Peter Lacey were also key people in field data collection in Western Australia. David Hall willingly provided Esperance data and showed me the sites.

In Victoria, Mark Reid and David Heislers delved into their databases with gusto and provided the bulk of the hydrograph records used in this project. In addition, Phil Cooke and his associates gathered together maps of the piezometer locations and provided useful hints on how to find them.

The dye-tracer experiments could not have been done without the rainfall simulator and all who helped me prepare it and use it. In particular, I owe thanks to Peter Hanson, Hernan
Ortiz, Jim Prince and Ed Solin, and to Dave Imrie who let me dye his laboratory blue with hardly any complaints. Soil pit discussions and descriptions were of high quality because of the presence of Noel Schocknecht, Paul Galloway, Bill Verboom and Mir Frahmand.

Megan le Fournour, Fred Leaney, John Dighton, Andrew Holub, Kerry McEwan and Corinne Le Gal La Salle all tried very hard to train me in the arts of deuterium and oxygen-18 analyses. That none of them lost their tempers is testament to their patient and generous personalities. Jeff Turner was as helpful as usual when he gave me rainfall isotope data.

The water-balance models I used were based on programs supplied by Ashleigh Kennett-Smith and Hamish Creswell, and Ian Foster, Les Heinrich, the staff at the Bureau of Meteorology and Tam Hoang took time to provide me with evaporation and rainfall data.

One of the many good things about being granted time for PhD research is the ability to read the literature without feeling you should be doing something else instead. So, I would like to thank all those who reported their research in accessible publications, and especially to those who did it on interesting topics in exotic places, who did it clearly, who were honest about the assumptions they employed, and who reported all sides of the story, not just the bits that fitted their agendas.

I would have had much less to read if the superb staff at the library at Agriculture WA had not been so helpful and so good at tracking down the things I was after. Also, many people generously loaned me relevant publications or provided copies.

I should also thank Phil Dyson and Phil Macumber. I can't remember which one of them first said "episodic recharge" to me, but they must both bear some responsibility for the topic of this thesis.

Friends have been wonderful. In particular, I want to thank Deb O'Connell for her sharp eyes, questioning mind and encouraging comments, and for her dedication to reading the thesis when she could have been playing with Jaslyn instead. And thankyou Jaslyn for your artistic comments. Very special thanks are also due to Naomi Segal, Jenny Davis, Ian Bennett and Tony Proffitt who have been particularly empathetic and encouraging.
And finally, thankyou Bruce Mattinson for the typically unique ways in which you provided all sorts of support, and inspiration too ("What's the problem? Just finish it.").
CONTENTS

ABSTRACT iii
DECLARATION v
PREFACE vi
ACKNOWLEDGEMENTS vii
CONTENTS x
LIST OF FIGURES xiv
LIST OF TABLES xxviii

1. INTRODUCTION
1.1 Episodic recharge 1
1.2 Background 1
1.3 Research aims and outline 7
1.4 Usage of the terms ‘recharge regime’, and ‘direct’ and ‘indirect’ recharge 8

PART I: IS EPISODIC RECHARGE LIKELY TO BE SIGNIFICANT IN THE WHEATBELT OF WESTERN AUSTRALIA?
Introduction to Part I 11

2. EPISODIC RECHARGE IN WESTERN AUSTRALIA AND ELSEWHERE: A LITERATURE REVIEW
2.1 Introduction 13
2.2 Published observations from south-western Western Australia 13
2.3 Groundwater hydrographs as indicators of episodic recharge 16
2.4 Episodic recharge elsewhere in the world 20
2.5 Implications for the south-west of Western Australia 45
2.6 Summary and conclusions 51

3. HOW CAN A SIGNIFICANT EPISODIC EVENT BE IDENTIFIED?
3.1 Introduction 53
6. USING HYDROGRAPHS TO IDENTIFY SIGNIFICANT EPISODIC RECHARGE SITES

6.1 Introduction 145
6.2 Data and methods – Western Australian piezometer networks 148
6.3 Data and methods – northern Victorian piezometer networks 157
6.4 Results 158
6.5 Discussion 171
6.6 Summary and conclusions 177

7. USING GROUNDWATER CHEMISTRY TO IDENTIFY EPISODIC RECHARGE SITES

7.1 Introduction 179
7.2 Sites and methods 186
7.3 Results 188
7.4 Discussion 193
7.5 Summary and conclusions 206

8. MONITORING LIKELY EPISODIC RECHARGE SITES

8.1 Introduction 209
8.2 Methods 210
8.3 Results 211
8.4 Discussion 212
8.5 Conclusions 212

Conclusions to Part II 213

PART III: RAINFALL AND SITE CONDITIONS WHICH LEAD TO EPISODIC GROUNDWATER RISE

9. RAINFALL AND SIGNIFICANT EPISODIC GROUNDWATER RISES

9.1 Introduction 216
9.2 Methods used to address the questions 223
9.3 Results and discussion 231
9.4 Summary and conclusions 254

10. SITE FACTORS AND SIGNIFICANT EPISODIC GROUNDWATER RISES

10.1 Introduction 257
10.2 Simple site inventories and episodic recharge 261
10.3 Direct recharge through fractured bedrock, deep sand profiles, fractured calcrete and preferred paths 265
10.4 Preferred path flow and episodic groundwater rises 278
10.5 Indirect recharge from lakes, pools, watercourses and floodplains 289
10.6 Groundwater level depth and episodic groundwater rises 302
10.7 Rainfall thresholds and episodic groundwater rises 319

Part III: Summary of conditions and conclusions 343

11. GENERAL SUMMARY AND DISCUSSION OF IMPLICATIONS

11.1 Summary 345
11.2 Implications 349
11.3 Concluding remarks 357

REFERENCES 359

APPENDICES A1 TO A11 Volume 2
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>South-western Western Australia. This vegetation index image from March 1996 (produced by Department of Land Administration from NOAA imagery) indicates relative 'greenness' (and by implication, relative evapotranspiration rates) ...</td>
<td>3</td>
</tr>
<tr>
<td>1-2</td>
<td>Mean annual rainfall (mm), south-western Western Australia (agricultural areas are to the south and west of the 300 mm isohyet)</td>
<td>4</td>
</tr>
<tr>
<td>1-3</td>
<td>Two figures from Macumber (1991) showing hydrographs with large episodic pulses of recharge following floods</td>
<td>5</td>
</tr>
<tr>
<td>1-4</td>
<td>Example of a hydrograph from a mid-slope site in the Western Australian Wheatbelt (Lewis, M.F. 1998, unpublished data) which appears to have episodic rises (bgl: below ground level)</td>
<td>6</td>
</tr>
<tr>
<td>1-5</td>
<td>Examples of recharge regimes: a. uniform winter recharge regime; b. variable winter recharge regime; c. uniform winter with variable summer recharge regime; d. occasional recharge regime</td>
<td>9</td>
</tr>
<tr>
<td>2-1</td>
<td>a: Australian locations mentioned in the text of Chapter 2; b. locations (other than Australian) mentioned in the text of Chapter 2</td>
<td>14</td>
</tr>
<tr>
<td>2-2</td>
<td>a: Example of a hydrograph which has infrequent rises markedly larger than others; b. example of a hydrograph which has clear irregular steps (both hydrographs were adapted from Nulsen (ed., 1998, p. 33 and p. 86 respectively)</td>
<td>18</td>
</tr>
<tr>
<td>2-3</td>
<td>Annual rainfall from Giles and Alice Springs and groundwater hydrographs from Docker River and Alice Springs, adapted from Jolly and Chin (1991)</td>
<td>28</td>
</tr>
<tr>
<td>2-4</td>
<td>Measured and modelled groundwater levels and rainfall for near Yulara ... (adapted from Barnes et al. 1994)</td>
<td>30</td>
</tr>
<tr>
<td>2-5</td>
<td>Groundwater rises for 1989 and depth to groundwater from bores near Yulara, adapted from Barnes et al. (1994)</td>
<td>30</td>
</tr>
<tr>
<td>2-6</td>
<td>Annual rainfall and groundwater levels from Douglas/Daly and Gove, adapted from Jolly and Chin (1991)</td>
<td>32</td>
</tr>
<tr>
<td>2-7</td>
<td>Tracks of tropical cyclones in the Australian region over a ten-year period (from Crowder 1995)</td>
<td>46</td>
</tr>
<tr>
<td>2-8</td>
<td>Upper metre of a deep (~5 m) sandy gravel profile with old tree roots. The site was cleared of forest about 12 years before the photograph was taken.</td>
<td>48</td>
</tr>
<tr>
<td>2-9</td>
<td>Laterite duricrust with discontinuities which can act as preferred paths for water (and roots)</td>
<td>48</td>
</tr>
<tr>
<td>2-10</td>
<td>Part of an aerial photograph of a Wheatbelt valley floor (in the Lake Bryde catchment - see Chapter 5) showing shoestring sand deposits</td>
<td>49</td>
</tr>
<tr>
<td>3-1</td>
<td>Illustration of some problems with using specific limits (0.01 and 0.05) for significance levels on a hypothetical example of ranked monthly recharge</td>
<td>61</td>
</tr>
<tr>
<td>3-2</td>
<td>The SE grading scale</td>
<td>69</td>
</tr>
<tr>
<td>3-3</td>
<td>Bar charts of annual recharge data sets used in examples</td>
<td>71</td>
</tr>
<tr>
<td>3-4</td>
<td>Groundwater hydrographs used in examples</td>
<td>71</td>
</tr>
<tr>
<td>3-5</td>
<td>Accumulated annual recharge (as a percentage of total recharge) vs. time for recharge data sets</td>
<td>73</td>
</tr>
<tr>
<td>3-6</td>
<td>Accumulated annual groundwater rise vs. time for hydrographs</td>
<td>73</td>
</tr>
<tr>
<td>3-7</td>
<td>Cusums (accumulated deviation from the mean annual recharge vs. time) for recharge data sets</td>
<td>74</td>
</tr>
<tr>
<td>3-8</td>
<td>Cusums (accumulated deviation from the mean annual groundwater rise vs. time) for the hydrographs</td>
<td>74</td>
</tr>
<tr>
<td>3-9</td>
<td>Double mass curves (accumulated annual recharge vs. accumulated annual recharge for M4) for recharge data sets</td>
<td>75</td>
</tr>
<tr>
<td>4-1</td>
<td>Locations of places mentioned in Section 4.2</td>
<td>81</td>
</tr>
<tr>
<td>4-2</td>
<td>Changes in maximum available soilwater storage (in mm) of Buckets 1 and 2 during a year, for Soil-Root Model 1 with a maximum root depth of 150 cm</td>
<td>84</td>
</tr>
<tr>
<td>4-3</td>
<td>Cumulative percentage of 33-year total rain and recharge (for Corrigin SRM2 with 50 cm roots) by months</td>
<td>88</td>
</tr>
<tr>
<td>4-4</td>
<td>Annual recharge vs. annual rainfall for 50 cm deep roots, 1960-1992</td>
<td>89</td>
</tr>
<tr>
<td>4-5</td>
<td>Mean annual recharge vs. mean annual rainfall at a range of root depths for four rainfall stations, SRM2 (R is mean annual recharge as % of mean annual rainfall) for Corrigin</td>
<td>90</td>
</tr>
<tr>
<td>4-6</td>
<td>Ratio of mean annual recharge to mean annual rainfall at a range of root depths for three soil types at Corrigin</td>
<td>90</td>
</tr>
<tr>
<td>4-7</td>
<td>Cumulative recharge from 1960-1992 for five root depths at four sites (three SRMs at Corrigin)</td>
<td>93</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4-8</td>
<td>Percentage of total recharge due to SE recharge vs. mean annual recharge</td>
<td>95</td>
</tr>
<tr>
<td>4-9</td>
<td>Number of times SE recharge occurred at each of five root depths</td>
<td>96</td>
</tr>
<tr>
<td>4-10</td>
<td>Mean monthly rainfall for 1960-1992 for the four stations modelled</td>
<td>98</td>
</tr>
<tr>
<td>4-11</td>
<td>Maximum daily rainfall in each month for the period 1960-1992 for three of the stations modelled</td>
<td>98</td>
</tr>
<tr>
<td>4-12</td>
<td>Total daily recharge for Beverley from 1960-1992 for 50 cm-deep roots, SRM2</td>
<td>99</td>
</tr>
<tr>
<td>4-13</td>
<td>Total daily recharge for Southern Cross from 1960-1992 for 50 cm-deep roots, SRM2</td>
<td>99</td>
</tr>
<tr>
<td>4-14</td>
<td>Percentage of total recharge due to SE recharge vs. modelled maximum storage for SRM2 at four stations</td>
<td>100</td>
</tr>
<tr>
<td>4-15</td>
<td>Percentage of total recharge due to SE recharge vs. mean annual recharge</td>
<td>100</td>
</tr>
<tr>
<td>4-16</td>
<td>Groundwater hydrographs for three sites in the Morbinning Catchment near Beverley</td>
<td>106</td>
</tr>
<tr>
<td>4-17</td>
<td>Effect of summer rain (early 1990) on groundwater hydrograph at Brown's (hydrograph provided by R. George and C. McConnell, Agriculture Western Australia)</td>
<td>107</td>
</tr>
<tr>
<td>4-18</td>
<td>Effect of summer rain (19 March 1993) on groundwater hydrographs at Kettlerock Gully</td>
<td>107</td>
</tr>
<tr>
<td>4-19</td>
<td>Significant SE recharge as % of total recharge at Western Australian stations, 1950-1979; MAXST values: a: 30 mm; b: 60 mm; c: 140 mm</td>
<td>113</td>
</tr>
<tr>
<td>4-20</td>
<td>Significant SE recharge as % of total recharge at northern Victorian stations, 1960-1989; MAXST values: a: 30 mm; b: 60 mm; c: 140 mm</td>
<td>114</td>
</tr>
<tr>
<td>4-21</td>
<td>Variability of annual rainfall vs. variability of annual recharge for Western Australian (WA) (1959-1979) and northern Victorian (1960-1989) stations</td>
<td>118</td>
</tr>
<tr>
<td>4-22</td>
<td>Percentage of SE recharge that occurred during January, February and March, Western Australia, 1959-1979; MAXST 60 mm</td>
<td>119</td>
</tr>
<tr>
<td>5-1</td>
<td>Locations of Western Australian piezometer networks</td>
<td>127</td>
</tr>
<tr>
<td>5-2</td>
<td>Boundaries of the southern part of the Yilgarn Craton and locations of drainage and salt lake systems in south-western Western Australia (adapted from Soils of south-western Australia, Ministry of Education, Western Australia 1998)</td>
<td>128</td>
</tr>
<tr>
<td>5-3</td>
<td>Hypothetical catchment with landscape components typical of the Wheatbelt of Western Australia</td>
<td>129</td>
</tr>
<tr>
<td>5-4</td>
<td>Annual class A pan evaporation (mm), with birdguard (without birdguard), from Luke et al. 1987</td>
<td>130</td>
</tr>
<tr>
<td>5-5</td>
<td>Hypothetical catchment (see Figure 5-3) with a: examples of geological structures which could affect groundwater flow and discharge; b: examples of groundwater discharge sites which could develop in association with the illustrated geological structures and landscape components</td>
<td>134</td>
</tr>
<tr>
<td>5-6</td>
<td>Locations of places in Victoria mentioned in the text</td>
<td>137</td>
</tr>
<tr>
<td>5-7</td>
<td>Locations of northern Victorian piezometer networks</td>
<td>137</td>
</tr>
<tr>
<td>6-1</td>
<td>Barometric pressure fluctuations at Perth Airport at midnight, at Perth Airport at 9 a.m. and at Cunderdin at 9 a.m., in January and July 1991</td>
<td>151</td>
</tr>
<tr>
<td>6-2</td>
<td>Example of the effect on the corrected water level of assuming different barometric efficiencies (0.2 was chosen in this case)</td>
<td>152</td>
</tr>
<tr>
<td>6-3</td>
<td>Examples showing differences in the effectiveness of corrections for barometric pressure fluctuations</td>
<td>155</td>
</tr>
<tr>
<td>6-4</td>
<td>Hydrographs and examples of accumulated step rises</td>
<td>156</td>
</tr>
<tr>
<td>6-5</td>
<td>The distribution of the MG3 ratio values of the hydrographs in terms of the groundwater record lengths</td>
<td>172</td>
</tr>
<tr>
<td>6-6</td>
<td>Relationship between MG3 ratio and coefficient of variation of the annual step rises</td>
<td>173</td>
</tr>
<tr>
<td>6-7</td>
<td>A selection of hydrographs which have unexplained annual fluctuations, peaking early in the year, except for W58, where troughs occur at this time</td>
<td>174</td>
</tr>
<tr>
<td>6-8</td>
<td>Comparison of groundwater level fluctuations (those for piezometer P7C used as an example), inverted midnight barometric pressure fluctuations at Perth Airport, average of monthly mean maximum and minimum daily temperatures for Wongan Hills, dates of perihelions and aphelions, and dates of equinoxes and solstices</td>
<td>176</td>
</tr>
<tr>
<td>7-1</td>
<td>Locations of piezometers networks and rain sampling stations</td>
<td>186</td>
</tr>
<tr>
<td>7-2</td>
<td>Oxygen-18 and deuterium isotope ratios of monthly rainfall samples from Perth and Alice Springs, and meteoric water lines (MWL) for Perth, Alice Springs, Kalgoorlie, and Salmons/Ernies (the MWLs for Kalgoorlie and Salmons/Ernies are based on small data sets) - data supplied by J. Turner</td>
<td>187</td>
</tr>
</tbody>
</table>
Figure 7-3 Amount-weighted mean oxygen-18 and deuterium ratios of monthly rainfalls at Perth, grouped according to monthly rainfall amount

7-4 Amount-weighted mean oxygen-18 and deuterium ratios of monthly rainfalls at Perth, grouped according to month in which rain fell

7-5 Maximum and minimum rainfall isotope ratios (connected by dashed lines) for each month (Perth data)

7-6 Isotope ratios of groundwater and surface water samples (X - the anomalous result for this sample was assumed to be due to measurement error; there was insufficient sample for re-analysis)

7-7 Salinity (in terms of electrical conductivity) and deuterium ratios of groundwater samples

7-8 Trends in chloride, carbonate, sulphate and bicarbonate ions with increasing electrical conductivity in groundwater samples

7-9 Trends in sodium, magnesium, calcium and potassium ions with increasing electrical conductivity in groundwater samples

7-10 Deuterium ratios of monthly rain samples in Perth in relation to the amount of rain in the month

9-1 Example showing increases in episodicity with increasing rainfall thresholds

9-2 Example showing increases in episodicity with increasing rainfall variability

9-3 a: Water year and calendar year steps, piezometer 6115, Lake Buloke network (bg1 - below ground level); b: individual, water year, calendar year and longer 'realistic' steps, piezometer P9C, East Perenjori network

9-4 Types of annual rainfall and groundwater rise plots

9-5 Examples of inappropriate linear regression lines

9-6 Some of the hydrographs from the Burkes Flat network which form a series within a group

9-7 Some of the hydrographs from the Cuballing network which form a series within a group

9-8 Accumulated annual rainfalls showing the variations in patterns of rainfall between years at a site and between sites

9-9 Some hydrographs from the Avoca Valley network which are similar except during high-rise years

9-10 Some hydrographs from the Kamarooka network which are similar except during high-rise years

9-11 Accumulated rainfalls in years from 1920 (Western Australia) or 1930 (northern Victoria) with similar or greater totals then the highest during the periods of groundwater records for rainfall stations with long records close to the networks

9-12 Cusum plots of annual rainfall for three Western Australian networks and for a selection of rainfall stations in the Avoca and Loddon catchments in northern Victoria

9-13 Long-term rainfall cusum plots for a selection of a: Western Australian stations and b: northern Victorian stations

10-1 Number of hydrographs of each MG3 ratio class in each a: landscape element; b: site landuse type; c: surrounding landuse type

10-2 Schematic model for trends in recharge episodicity with increasing rainfall variability and increasing depth to fractured rock or increasing slope angle or increasing soil sand content

10-3 Examples of spatial variation in infiltration

10-4 Examples of preferred path flow

10-5 Hydrograph and annual rain-rise plots for Bridgewater 51640

10-6 Four hydrographs from the Avoca Valley network and one from the Burkes Flat network (6423), adjusted so that the groundwater rises in 1991 are the same value (1)

10-7 A selection of hydrographs from the Lake Buloke network adjusted so that the groundwater rises in 1991 are the same value (1)

10-8 Annual lake seepage and groundwater rise at 6112 as percentages of totals for record durations (lake seepage data from Ryan 1993b)

10-9 Different fluctuations in perched and deep groundwater systems, valley floor, Lake Bryde

10-10 Different forms (timing and magnitude) of groundwater rises in two piezometers at different depths below a watercourse

10-11 Hydrographs from 'deep' piezometers below valley floor sites in the Elashgin network showing that although their forms are similar, there are differences in the timing of the start of rises and the rates of rise
Figure 10-12 Different groundwater rises in years with similar rainfall patterns and totals, site EL1d on valley floor in Elashgin network

10-13 Possible trends in episodic recharge with water-table depth, based on implications from published research - Case A: decreasing likelihood of episodic recharge with depth; Case B: increasing likelihood of episodic recharge with depth (to a shallow depth)

10-14 MG3 ratios for all hydrographs in relation to groundwater level depths

10-15 MG3 ratios and groundwater level depths for a selection of networks in which there appeared to be a general increase in MG3 ratio with groundwater level depth for all or some groups of sites, and for Wallatin Creek, where there was a different trend (bgl: below ground level)

10-16 Model 1 - Schematic diagram showing increasing episodicity (but constant amount) of recharge with increasing water-table depth due to vertical spreading of a pulse of water

10-17 Model 5 - Schematic diagram showing increasing episodicity (but decreasing amount) of recharge with water-table depth due to decrease in macropores with depth

10-18 Two hydrographs from the Cuballing network which illustrate the decrease in the effect of large summer rain events on the total groundwater rise in a year with an increase in groundwater level depth (bgl: below ground level)

10-19 Schematic diagram showing changes in hydrograph form and episodicity of groundwater rises with water-table depth at a: sites with no long-term rises; and b: sites with rising water-table levels

10-20 An apparent increases in reaction speed (and possibly amount), drainage rate and regularity of groundwater rises in a rising hydrograph (C7C, Cuballing network)

10-21 Hydrographs showing increasing rate of rise of groundwater level with decreasing depth (until shallow depths are reached)

10-22 Event-based rain-rise plot for a: C7C and b: C2A, both in the Cuballing network

10-24 Modelled recharge, groundwater rises at C8C, and the modelled amount of time that the soilwater storage was full

10-25 Plot of daily modelled recharge vs. daily rainfall showing a range of daily rainfall thresholds, for maximum water storage of 60 mm

10-26 Pairs of years with similar rainfall patterns, and the corresponding groundwater level changes in piezometer C8C. Note also the relatively low rises in the high-rainfall years of 1992 and 1993

10-27 Relationship between modelled recharge and groundwater rise in C8C

10-28 Annual rain-rise plot for some Burkes Flat sites (the larger the symbol, the greater the groundwater level depth)

10-29 Annual rain-recharge plot for results of modelling Cuballing rainfall from 1982 to 1997 and using a maximum soilwater storage of 60 mm (evaporation data was from Narrogin)

10-30 Modelled available soilwater and recharge for Tandarra station (near Kamarooka) for two years with similar rainfall totals, illustrating that: i) concentrated rainfalls have the effect of lowering annual thresholds (1995), whereas rain events spread throughout the year result in high annual thresholds (1996); ii) concentrated rains after September caused no recharge; iii) similar rain periods (A and B) produced different recharge amounts due to different antecedent soil moisture

10-31 Annual stream discharge volume for the Cuballing catchment (Falls Farm), plotted from data on the Water and Rivers Commission web site <http://www.wrc.wa.gov.au/waterinf/WRDATA/FLOW/614008/mtl.htm> (*: data was missing from June, August and September in 1983)

11-1 Difference between the mean modelled annual recharge for the previous 10 y and the mean for the whole record as a percentage of the mean of the whole record for two rainfall stations in WA and one in NV

11-2 Selected hydrographs from the Morbinning catchment showing a: increasing episodicity with depth and b: similar hydrograph forms at different depths (bgl: below ground level)

11-3 Manual ("plopper") and data logger readings from two sites of similar depth and form (from near Esperance) which reacted strongly to large rainfall events (plot adapted from one provided by D. Hall, unpublished data, 2000)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Estimated annual recharge and observed annual rise of groundwater levels in agricultural areas of Western Australia, compiled from information in Anon. (1996), page 7 and Table 4.1</td>
<td>2</td>
</tr>
<tr>
<td>2-1</td>
<td>Classes of hydrograph in publications on south-western Western Australia (publications are listed in Appendix 2)</td>
<td>19</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary of conclusions drawn by Grayson et al. (1996, pp. 69 and 70) from different trend detection tests carried out on annual flow data for 1940 to 1989 from the Campaspe River (in Victoria)</td>
<td>65</td>
</tr>
<tr>
<td>3-2</td>
<td>Results of classifications and statistical analyses</td>
<td>75</td>
</tr>
<tr>
<td>4-1</td>
<td>The stages of root growth used for the three soil types modelled</td>
<td>85</td>
</tr>
<tr>
<td>4-2</td>
<td>General characteristics of recharge events for Corrigin Soil Root Model 2</td>
<td>87</td>
</tr>
<tr>
<td>4-3</td>
<td>Details of the largest recharge steps for Soil-Root Model 2 at Corrigin</td>
<td>92</td>
</tr>
<tr>
<td>4-4</td>
<td>a: The number of times SE recharge of all SE grades occurred (no. E) and the percentage of the total recharge (%) it contributed at each station modelled using Soil-Root Model 2 b: The number of times SE recharge of all SE grades occurred (no. E) and the percentage of the total recharge (%) it contributed for each Soil-Root Model at Corrigin</td>
<td>94</td>
</tr>
<tr>
<td>4-5</td>
<td>Mean, maximum and minimum annual rainfalls and December to March (DJFM) rainfall from 1960 to 1992 for the four stations modelled</td>
<td>97</td>
</tr>
<tr>
<td>4-6</td>
<td>Rain, recharge and SE recharge for 150 cm deep roots and SRM2 at each of the four stations modelled</td>
<td>97</td>
</tr>
<tr>
<td>4-7</td>
<td>Years when SE recharge occurred (X) and when summer recharge was graded as episodic (XS) (results from all modelled root depths were included)</td>
<td>102</td>
</tr>
<tr>
<td>4-8</td>
<td>Relative effects of rainfall and evaporation on recharge for SRM2 with 50 cm deep roots</td>
<td>103</td>
</tr>
<tr>
<td>4-9</td>
<td>Values of maximum soilwater storage available in the active root zone (MAXST) used in the simple water-balance model</td>
<td>112</td>
</tr>
<tr>
<td>4-10</td>
<td>Mean, maximum and minimum annual rainfalls and December to March (DJFM) rainfall from 1960 to 1992 for the four stations modelled</td>
<td>97</td>
</tr>
<tr>
<td>4-11</td>
<td>Rain, recharge and SE recharge for 150 cm deep roots and SRM2 at each of the four stations modelled</td>
<td>97</td>
</tr>
<tr>
<td>4-12</td>
<td>Years when SE recharge occurred (X) and when summer recharge was graded as episodic (XS) (results from all modelled root depths were included)</td>
<td>102</td>
</tr>
<tr>
<td>4-13</td>
<td>Relative effects of rainfall and evaporation on recharge for SRM2 with 50 cm deep roots</td>
<td>103</td>
</tr>
<tr>
<td>4-14</td>
<td>Values of maximum soilwater storage available in the active root zone (MAXST) used in the simple water-balance model</td>
<td>112</td>
</tr>
<tr>
<td>5-1</td>
<td>Monthly and annual climate data for Corrigin, Western Australia (rainfall and temperature data were taken from Bureau of Meteorology (1995); evaporation data were taken from Luke et al. (1987))</td>
<td>128</td>
</tr>
<tr>
<td>5-2</td>
<td>Monthly and annual climate data for St. Arnaud (Natural Resources and Environment station), Victoria (rainfall and temperature data were taken from Bureau of Meteorology site ...; evaporation data were generated using ESOCLIM (Centre for Resource and Environment Studies, Australian National University)</td>
<td>138</td>
</tr>
<tr>
<td>6-1</td>
<td>Summary of results of analyses of episodicity of groundwater hydrographs from Western Australia and northern Victoria</td>
<td>159</td>
</tr>
<tr>
<td>6-2</td>
<td>Details of seven piezometers with regular annual water level fluctuations (aquifer types taken from Salama et al. (1993 and 1994a)</td>
<td>176</td>
</tr>
<tr>
<td>7-1</td>
<td>Landscape positions of most and least saline groundwater samples from each piezometer network</td>
<td>194</td>
</tr>
</tbody>
</table>
Table Page

7-2 Meteorological conditions associated with most of the rain that fell during months which were considered as outliers on the monthly rainfall vs. δD‰ plot (Figure 7-10), plus November 1992 (in italics) for comparison (Bureau of Meteorology (BoM) Monthly Weather Review reports were the sources of the meteorological information) 200

7-3 Comparison of importance of rainfall in January 1990 relative to the total annual rainfall at Perth Airport and three Wheatbelt locations 201

9-1 Hydrograph groups (based on the years in which high groundwater level rises occurred and on hydrograph form; only those hydrographs which were included in the set of annual rain-rise plots and synchronicity table are included) 237

9-2 Groups of rain-generating systems which were influential in years of SE and high groundwater rises, and in years of high rainfall but low rises, in some piezometer networks in Western Australia and northern Victoria 248

9-3 Summary of answers to questions posed on the rainfall conditions associated with significant episodic (SE) groundwater rises 256

10-1 Factors for classifying recharge zones - adapted from Table 11.4, p. 144, Lerner et al. (1990) 259

10-2 Piezometers monitoring sites with shallow fractured bedrock, the episodicities of their hydrographs and the source of the identification 266

10-3 Piezometers monitoring sites with deep sands or gravels, the episodicities of their hydrographs and the source of the identification 267

10-4 Piezometers monitoring sites with silcretes and ferricretes, the episodicities of their hydrographs and the source of the identification 267

10-5 Coincidences between site factors and network groups to which hydrographs belong 268

10-6 Types of hardpans at typical sites in the land units in which the piezometers are sited in the East Perenjori network 269

10-7 Episodicity of hydrographs and groundwater depths for sites considered prone to indirect recharge with Reliability Levels of 1 291

10-8 Subjective assessments of relationships between Reaction ranks and MG3 ratios and Reaction ranks and groundwater level depths in piezometer networks, made by inspection of plots of MG3 ratio and groundwater level depth against Reaction rank (G is good; W is weak; N is none) 325

10-9 Cuballing network piezometer sites - changes in available water storage and vegetation type with Reaction rank (L: low; M: moderate) 326

10-10 East Perenjori network piezometer sites - changes in available water storage and vegetation type with Reaction rank (L: low; M: moderate) 326

10-11 Burkes Flat network piezometer sites - changes in available water storage and vegetation type with Reaction rank (L: low; M: moderate) 327

10-12 Is it possible for a particular rainfall pattern to lead to an increase in the proportion of the annual rainfall available for processes which could add to groundwater rise at a site, and to a decrease in the proportion available for processes which reduce the groundwater rise? (Y indicates yes; N indicates no; NE indicates that the rainfall pattern would be unlikely to have any 'unusual' effect on the process.) (The question was considered for land under annual crops and pastures.) 341
Is it possible for a particular rainfall pattern to lead to a decrease in the proportion of the annual rainfall available for processes which could add to groundwater rise at a site, and to an increase in the proportion available for processes which reduce the groundwater rise? (Y indicates yes; N indicates no; NE indicates that the rainfall pattern would be unlikely to have any 'unusual' effect on the process.) (The question was considered for land under annual crops and pastures.)
1. INTRODUCTION

1.1 EPISODIC RECHARGE

The term 'episodic recharge' will be used to describe infrequent and irregular pulses of groundwater recharge. In arid regions, both rainfall and recharge tend to be episodic. In semi-arid regions the importance of episodic recharge compared to regular recharge is less clear. This thesis evaluates the significance of episodic recharge in semi-arid agricultural areas of Western Australia. In these areas, reducing groundwater recharge is an important step in reducing land degradation caused by salinity.

1.2 BACKGROUND

1.2.1 Agriculture and groundwater recharge in Western Australia

Since 1830, 18 million hectares of natural vegetation have been cleared and replaced with agricultural species in south-western Western Australia (Figure 1-1). The natural vegetation was predominantly perennial and deep-rooted. Most of the agricultural species are winter annuals - shallow-rooted, legume pastures and grain and legume crops.

The change in vegetation has dramatically affected the hydrological cycle. The most marked effects are decreases in evapotranspiration and increases in groundwater recharge. Groundwater levels have risen throughout the region and groundwater discharge has increased. This has caused land and stream salinisation, which is spreading rapidly. In 1996, a situation statement on salinity was produced (Anon. 1996) which reported the range of groundwater level rises observed in different parts of the agricultural region, and estimated the amount of recharge responsible (Table 1-1). Ferdowsian et al. (1996) estimated that in 1994 salinity caused by elevated groundwater levels affected about 9% of the land cleared for agriculture, and that between about 2010 and 2020 (depending on rainfall conditions), 17% could be affected. They predicted that an area equivalent to more than 30% of the cleared land could eventually be salt-affected.
1.2.2 Reducing groundwater recharge

Reducing the volume of groundwater recharge is one approach to dealing with salinisation. Since it is assumed that groundwater levels were not rising before the land was cleared, one would expect that returning the land to the original native vegetation mix, or to a mixture of other plants with a similar range of water-use characteristics, would reduce recharge rates to levels which the 'natural' discharge systems could accommodate. However, there are presently few or no plants available which have economic potential as well as the appropriate water-use characteristics. Therefore, most land managers who wish to reduce the salinity hazard are aiming to increase the water-use of the plants that they have traditionally grown. The impact of this approach is likely to be greatest in the drier agricultural areas, such as the eastern Wheatbelt (Figure 1-1, Figure 1-2), where the amount of recharge is thought to be relatively small - estimates are of the order of 10 to 40 mm/y (Table 1-1). However, it is an approach people would like to be able to rely on in areas with higher rainfall too.

Table 1-1: Estimated annual recharge and observed annual rise of groundwater levels in agricultural areas of Western Australia, compiled from information in Anon. (1996), page 7 and Table 4.1

<table>
<thead>
<tr>
<th>Rainfall zone (mm/y)</th>
<th>Estimated range of annual recharge under current agriculture (mm)</th>
<th>Observed range of annual rise of groundwater levels1 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><350</td>
<td>10 to 40</td>
<td>20 to 300</td>
</tr>
<tr>
<td>350 to 500</td>
<td>20 to 150</td>
<td>50 to 500</td>
</tr>
<tr>
<td>>500</td>
<td>50 to 300</td>
<td>150 to 1500</td>
</tr>
</tbody>
</table>

Note: 1. at sites away from groundwater discharge areas
Figure 1-1: South-western Western Australia. This vegetation index image from March 1996 (produced by Department of Land Administration from NOAA imagery) indicates relative 'greenness' (and by implication, relative evapotranspiration rates). The areas which were greenest are coloured purple and blue, intermediate areas are in green and yellow, and the areas which were least green are coloured red. The image clearly delineates the agricultural areas because they had no green plants at that time of year. The Wheatbelt had the deepest shades of red. In contrast, areas with natural vegetation to the west and east still had green vegetation in late summer. A/P: agricultural/pastoral (or 'rangeland') boundary. The faint white lines are boundaries of shires, some of which are named in faint white type.
1.2.3 Regular or episodic recharge?

The approach of increasing annual pasture and crop water-use would work best where the relatively small amount of average annual recharge is spread evenly over the years, that is, it is regular. The distribution of recharge from year to year is likely to depend to a large degree on the rainfall regime. Most of the Western Australian agricultural region has a semi-arid climate, and rainfall in semi-arid areas may be characterised by "sporadic rainfall of high temporal and spatial variability" (Lerner et al. 1990, p. 4). Therefore, recharge could also be highly variable temporally. It is possible that a site with a mean annual recharge of 10 mm/y receives 100 mm in one year and nothing in the next nine years (i.e. episodic recharge). It is unlikely that this type of recharge would be controlled by the improvements which could be achieved in increasing the water-usage of annual crops and pastures.

The possible role of episodic recharge in Western Australia was considered following its recognition in aquifers below the plains of northern Victoria. Macumber (1991) showed that
groundwater pressures below southern section of the plains have regular seasonal patterns of fluctuations (of about 0.6 m amplitude) unless flooding occurs. A series of floods between 1973 and 1975 resulted in groundwater pressure rises more than six times higher than the 'regular' fluctuation amplitude at some sites. Groundwater hydrographs he presented (two are reproduced in Figure 1-3) spanned various periods between 1969 and 1986 and the recharge events in the three years from 1973 to 1975 clearly dominated the 17-year period. He suggested that similar large events may have occurred in 1954 and 1964 (Macumber 1991, p. 108). Western Australian Wheatbelt valleys are prone to occasional flooding, which raised the question of whether similar pulses of flood-related recharge were an important source of groundwater in lower parts of the landscape.

Figure 1-3: Two figures from Macumber (1991) showing hydrographs with large episodic pulses of recharge following floods

1.2.3.1 Episodic recharge in agricultural Western Australia?

Good-quality, long-term groundwater level records from the Western Australian Wheatbelt are rare, but from the mid 1980s onwards a large number of piezometers were installed. A few of these were monitored regularly and by the early 1990s there appeared to be some evidence of episodic behaviour (Figure 1-4). Surprisingly, some of the sites were on slopes, and not likely to be affected by recharge from flood events. This suggested that direct recharge processes (see Section 1.4.2) could also lead to episodic recharge.
The few apparently episodic hydrographs had short records - was the behaviour really episodic over the long term, and how significant was the episodic recharge compared to the more regular seasonal recharge? And was the behaviour widespread?

Although it became accepted that episodic recharge might be a factor in the agricultural areas of Western Australia (e.g. Nulsen 1993), no systematic analyses of where and when it occurred, and how important it was in the overall picture of groundwater recharge and salinity were carried out. This meant that no steps were taken to address any deleterious impacts. Policy continued to encourage resources to be committed to reducing recharge assuming it was regular and occurred in relatively small amounts in winter (Anon. 1996). If this assumption is wrong, it could lead to two problems:

- the resources committed to reducing small quantities of regular winter recharge would be wasted as they would be ineffective against occasional large pulses;
- a site which had stable groundwater levels for a few years could be interpreted as having no significant long-term recharge, when in fact a few more years of monitoring could show that recharge was substantial.

Figure 1-4: Example of a hydrograph from a mid-slope site in the Western Australian Wheatbelt (Lewis, M.F. 1998, unpublished data) which appears to have episodic rises (bgl: below ground level)
1.3 RESEARCH AIMS AND OUTLINE

This thesis reports research carried out to determine:

1. the significance of episodic recharge compared to regular recharge in the Wheatbelt of Western Australia;

2. the conditions under which episodic recharge occurs.

There were three main purposes behind the second aim. One was to provide a means of extrapolating the groundwater level records at sites with only short records; the second was to have a way of assessing the likelihood of episodic groundwater rises occurring at sites for which no groundwater information was available; and the third purpose was to provide a sound basis for designing management options to decrease those episodic rises which threaten to worsen land degradation.

The aims were addressed in three stages. As a preliminary, the first stage (Part I of the thesis) assessed the likelihood of episodic recharge being significant in the Western Australian Wheatbelt by reviewing published information on recharge in Western Australia and elsewhere in the world (Ch. 2), and by calculating the potential for the rainfall regimes in Western Australia to cause episodic recharge, using a simple water-balance model (Ch. 4). Methods of distinguishing significant episodic from regular recharge were also investigated (Ch. 3). These investigations indicated that episodic recharge is likely to occur in Western Australia, so further research was warranted. However, the review of publications found only one (Jolly and Chin 1991) which focussed on episodic events and the conditions associated with them (it was based on four sites in the Northern Territory of Australia), although there were many publications which mentioned, or showed hydrographs of, large unusual pulses of recharge. Since there was no foundation of prior studies into episodic recharge, and no established approaches for investigating the conditions associated with it, the research described in this thesis is the first step in understanding its role in the agricultural areas of Western Australia.

The aim of the second stage of this thesis (Part II) was to identify sites where episodic recharge had occurred. Firstly, the sites considered are described (Ch. 5) and then the three approaches which were used are presented (Ch. 6: analysis of long-term hydrographs; Ch. 7:
analysis of groundwater chemistry (principally deuterium and oxygen-18 ratios); Ch. 8: monitoring groundwater levels at sites considered to be prone to episodic recharge). It was necessary to identify episodic recharge sites so that they could be compared to sites with regular recharge. This was done in Part III, the third stage of the thesis. Firstly, the rainfall conditions associated with episodic recharge were investigated (Ch. 9) and then differences between site factors and recharge processes at episodic and non-episodic recharge sites were examined (Ch. 10).

The thesis is summarised and implications are discussed in Chapter 11.

1.4 USAGE OF THE TERMS 'RECHARGE REGIME', AND 'DIRECT' AND 'INDIRECT' RECHARGE

1.4.1 Recharge regimes

For rivers, the term 'regime' is used to describe "the expected pattern of river flow during a year" (Shaw 1994, p. 289). Adapting this, 'recharge regime' is used in this thesis to describe the pattern of recharge at a site. However, because of the nature of episodic events, the term is used to describe the long-term pattern of recharge, rather than the expected annual one. Examples of qualitative descriptions of recharge regimes are:

- all recharge occurs in winter and the amount is uniform from year to year over a long period (Figure 1-5a);
- all recharge occurs in winter, but the amount is variable from year to year (Figure 1-5b);
- there is always recharge during winter and the amount is uniform from year to year, but in some years there is a significant amount of summer recharge too (Figure 1-5c);
- recharge occasionally occurs during winter, and even more occasionally during summer and the amount of recharge in any year is highly variable (Figure 1-5d).

1.4.2 Direct and indirect recharge

The term 'direct recharge' is used to refer to recharge that results from rainfall at, or close to, the site. 'Indirect recharge' describes recharge resulting from water that moves laterally before reaching the groundwater system. Stream and river flow, flood water and lake water can be sources of indirect recharge. One aquifer can contribute water to another. In Western Australia, water in perched groundwater systems (shallow 'waterlogging' systems and deeper
systems in sand lenses) may flow laterally before draining vertically to a deeper aquifer. These types of aquifer recharge are included in the ‘indirect’ definition.

Figure 1-5: Examples of recharge regimes: a. uniform winter recharge regime; b. variable winter recharge regime; c. uniform winter with variable summer recharge regime; d. occasional recharge regime