SWIRLING FLOW OF VISCOELASTIC FLUIDS

A thesis submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

by

Jason R. Stokes
B.E. (Chem., Hons.)

October 1998

Department of Chemical Engineering
University of Melbourne
Parkville, Victoria, 3052

Printed on acid-free paper
PREFACE

I hereby declare that, to the best of my knowledge, this thesis is original in its entirety and contains no material which has been previously published by any other person, except where due reference is stated. In addition, no part of this work has been submitted for the award of any other degree or diploma in any university.

I certify that the work has been undertaken solely by the candidate and the text of this thesis, exclusive of tables, figures, bibliography and appendices, does not exceed 100,000 words.

Jason R. Stokes
October 1998
ACKNOWLEDGEMENTS

There are many people who have contributed to this work in a variety of ways. I am sincerely grateful to all of those who have assisted me throughout the completion of this thesis and offer my thanks.

I am grateful to Professor David Boger for his support and encouragement. His enthusiasm and positive attitude has been a source of great inspiration throughout the course of the project and it has been a privilege to work under his guidance. I would like to thank all the members of the rheology group at The University of Melbourne during the period of 1994-1998. They have been an excellent group to work with and intellectually stimulating. I also thank Christine Collis for all her administrative assistance within the group.

I am indebted to the Commonwealth Scientific and Industrial Research Organisation Building Construction and Engineering (CSIRO BCE) for providing equipment and support to undertake the swirling flow experiments. In particular, I’d like to thank my co-supervisor Dr. Lachlan Graham for his patience and guidance throughout the project. I am also indebted to Brook Dunstan who assisted me greatly in obtaining excellent flow visualisation images. I would also like to thank Marten Welsh for his enthusiasm about the project such that it was possible to collaborate with CSIRO.

I am also grateful to all those who performed various tests or measurements for me during the project. I offer my sincere thanks to Dr. K.C. Tam from Nangang Technical University, Singapore, for measuring the rheological properties of the low-viscosity Boger fluids. Thanks also goes to Dr. Duc At Nguyen and Prof. Tam Sridhar from Monash University, Australia, for measuring the extensional viscosity of my high-viscosity Boger fluids. I would like to thank Dr. Dave Dunstan and Dr. Greg Allen, from the Industrial Plant Biopolymer Co-operative Research Centre at The University of Melbourne, for their time measuring hydrodynamic properties and molecular weight of the polymers used in this thesis respectively, and for their useful
discussions on the properties of polymers. I am also grateful to Andrew Brydon, from Monash University, for providing the results from his numerical model of the Navier-Stokes equations in the torsionally driven cavity. I also thank Andrew for his useful discussions on the phenomena of vortex breakdown. I am also indebted to Dr. Nick Lawson, from the G.K. Williams Co-operative Research Centre for Extractive Metallurgy at The University of Melbourne, for his assistance in performing particle image velocimetry (PIV) experiments and for use of his autocorrelation software program to process the PIV images. I also thank Nick for his help writing the section on PIV in this thesis.

I extend my thanks to my colleagues and support staff in the Department of Chemical Engineering. In particular, Chico (Cheng Chang), who has had to share an office with me for four years but now speaks plenty of Australian slang and has various Aussie habits. He has taught me a lot about Chinese culture and history. I would also like to thank Dr. Leong Yeow, who I went to see every time I couldn’t work something out. I would also like to offer thanks to all those who have assisted me along the way: May-Yoong Lee, Rod Binnington, Dr. Mark Zirnsak, Dr. Eric Weissler, Dr. Rob Mun, Dr. Dave Power, Dr. Jeff Byars, Tim Berrigan, Roger Curtin, Dr. Viyada Tirtaattmadja, and the whole of the current rheology group.

I would also like to thank my partner, Karen, for proof reading this thesis and fixing my grammar problems. I also thank her for sharing my emotional hardships during the project and for being a constant source of support. I also thank Leanne O’Connor for proof reading this thesis. I offer thanks to Gerard, Paul and Sean with whom I shared a house with for most of the project. I am sincerely grateful for all they have done for me and I also owe them numerous meals. I am also indebted to my family who have supported me in many ways.

I also extend my thanks to the Federal Government for the financial support through the Australian Postgraduate Research Award and for the financial support provided by the Australia Research Council and the Advanced Minerals Product Centre.
SUMMARY

The ability to understand and predict the flow behaviour of non-Newtonian fluids in swirling flow is industrially important for the efficient design and performance of processes which utilise fluids with complex rheological properties. In particular, fluids with elastic properties are not well described by non-Newtonian constitutive models, such that predictions using such models must be carefully validated. A benchmark problem is proposed here which provides a well defined geometry to study the swirling flow of non-Newtonian fluids as a test case for the validation of constitutive models. The confined swirling flow utilised is a torsionally driven cavity where the test fluid is confined in a cylinder with a rotating bottom lid, and stationary side walls and top lid. The flow field is three-dimensional and consists of both a primary motion, which is directed azimuthally, and a secondary motion, which is located in the radial and axial plane of the cylinder and driven by inertial and/or elastic forces.

Constant viscosity elastic liquids, ie. Boger fluids, are used to examine the effect of elasticity, in the absence of shear thinning effects, in confined swirling flow. The Boger fluids range from low to high viscosity, and consist of either dilute concentrations of flexible polyacrylamide or semi-dilute concentrations of semi-rigid xanthan gum. Using flow visualisation and the optical technique of particle image velocimetry (PIV), the effect of elasticity is examined for situations ranging from where inertial forces dominate the secondary flow to where elasticity dominates the secondary flow in the torsionally driven cavity.

Low-viscosity Boger fluids are used to examine the effect of dilute polymer concentrations on the phenomena of vortex breakdown which is observed using Newtonian fluids. The introduction of elasticity results in a 20% and 40% increase of the minimum critical aspect ratio required for vortex breakdown to occur, using polyacrylamide and xanthan gum respectively at concentrations of 45 ppm. When the concentrations of either polyacrylamide or xanthan gum is raised to 75 ppm, vortex
breakdown is entirely suppressed for the aspect ratios examined. Radial and axial velocity measurements along the axial centre line show that the alteration in existence domain is linked to a decrease in the magnitude of the peak in axial velocity along the central axis. The minimum peak axial velocities along the central axis for the 75 ppm polyacrylamide and 75 ppm xanthan gum Boger fluids are 67% and 86% lower in magnitude respectively than for the Newtonian fluid at Reynolds number of $Re \approx 1500 - 1600$. This decrease in axial velocity is associated with the interaction of elasticity in the governing boundary on the rotating base lid and/or the interaction of extensional viscosity in areas with high velocity gradients.

A wealth of phenomena is observed as the degree of inertia, elasticity and viscous forces are varied by using a range of medium to high-viscosity flexible polyacrylamide Boger fluids and a semi-rigid xanthan gum Boger fluid. As the inertia is decreased and elasticity increased by using polyacrylamide Boger fluids, the circulation rates for the Newtonian-like secondary flow decrease until flow reversal occurs due to the increasing magnitude of the primary normal stress difference. For each polyacrylamide fluid, the flow became highly unstable at a critical combination of Reynolds number and Weissenberg number. Each fluid is characterised by a dimensionless elasticity number and a correlation with Reynolds number is found for the occurrence of the instability. In the elasticity dominated flow of the polyacrylamide Boger fluids, the instability disrupted the flow dramatically and causes an increase in the peak axial velocity along the central axis by as much as 400%. In this case, the core vortex spirals with the primary motion of fluid and is observed in some cases at Reynolds numbers much less than unity. The instability across the whole flow domain is therefore considered an elastic flow instability. Elastic 'reverse' flow is observed for the xanthan gum Boger fluid at high Weissenberg number. As the Weissenberg number is decreased, and Reynolds number increased, counter-rotating vortices flowing in the inertial direction form on the rotating lid. The peak axial velocity decreases for the xanthan gum Boger fluid with decreasing Weissenberg number.
The rheological properties of the test fluids are examined in detail and comparisons are made with predictions of these properties using several single mode and multi-mode constitutive models, such as the Oldroyd-B, Giesekus, FENE-P, and KBKZ for the flexible polyacrylamide Boger fluids, and the rigid dumbbell model for the semi-rigid xanthan gum Boger fluids. In particular, the primary normal stress difference of the medium and high-viscosity polyacrylamide Boger fluids varies quadratically with shear rate, at low shear rates, and this behaviour is predicted using the aforementioned models. Therefore, the polyacrylamide Boger fluid are characterised using a single relaxation time and a constant viscosity at moderate to low shear rates.

This experimental investigation of a complex three-dimensional flow, using a large range of well characterised fluids, provides the information necessary for the validation of non-Newtonian constitutive models through numerical analysis of the torsionally driven cavity flow.
PUBLICATIONS

SEMINARS AND PAPER PRESENTATIONS

“The confined swirling flow of viscoelastic fluids”. Thermo-Fluids Research Seminar Series, Department of Mechanical Engineering, Monash University. 2 April 1998.

“Observation of elastic effects in the swirling flow of viscoelastic fluids”. CSIRO Advanced Fluid Dynamics Laboratory Seminars, CSIRO Building, Construction and Engineering (CSIRO BCE), Graham Road, Hightet, Melbourne. 27 February 1998.

“Confined swirling flow of elastic liquids”. Rheology Seminar Series, Dept. of Chemical Engineering, University of California, Berkeley, USA, September 1996.

“Confined swirling flow of elastic liquids”. Rheology Seminar Series, Dept. of Chemical Engineering, Massachusetts Institute of Technology (MIT), Boston, USA, September 1996.

MULTIMEDIA

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS iii</td>
</tr>
<tr>
<td>SUMMARY v</td>
</tr>
<tr>
<td>PUBLICATIONS viii</td>
</tr>
<tr>
<td>LIST OF FIGURES xvi</td>
</tr>
<tr>
<td>LIST OF TABLES xxxii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
</tr>
<tr>
<td>INTRODUCTION 1</td>
</tr>
<tr>
<td>1.1 MOTIVATION 1</td>
</tr>
<tr>
<td>1.2 THESIS OUTLINE 6</td>
</tr>
<tr>
<td>CHAPTER 2</td>
</tr>
<tr>
<td>LITERATURE REVIEW OF SWIRLING FLOW 10</td>
</tr>
<tr>
<td>2.1 INTRODUCTION 10</td>
</tr>
<tr>
<td>2.2 VORTEX BREAKDOWN AND THE CONFINED SWIRLING FLOW OF NEWTONIAN FLUIDS 11</td>
</tr>
<tr>
<td>2.2.1 Introduction to Vortex Breakdown 11</td>
</tr>
<tr>
<td>2.2.2 Confined Swirling Flow of Newtonian Fluids - Experimental 19</td>
</tr>
<tr>
<td>2.2.3 Confined Swirling Flow of Newtonian Fluids - Theoretical 21</td>
</tr>
<tr>
<td>2.2.4 Related Rotating Flows of Newtonian Fluids 25</td>
</tr>
<tr>
<td>2.2.5 Summary 27</td>
</tr>
<tr>
<td>2.3 THE CONFINED SWIRLING FLOW OF NON-NEWTONIAN FLUIDS 27</td>
</tr>
<tr>
<td>2.3.1 Experimental Observations 29</td>
</tr>
<tr>
<td>2.3.2 Theoretical Analyses 36</td>
</tr>
<tr>
<td>2.3.3 Related Cylindrical Swirling Flows 40</td>
</tr>
</tbody>
</table>
CHAPTER 4

CHARACTERISATION AND RHEOLOGY OF POLYMER SOLUTIONS..112

4.1 INTRODUCTION ...112
4.2 POLYMER CHARACTERISATION ...113
4.3 RHEOLOGICAL PROPERTIES OF LOW VISCOSITY BOGER FLUIDS ...115
 4.3.1 Density ..115
 4.3.2 Steady Shear Rheology ...116
 4.3.2 Small-Amplitude Oscillatory Shear Rheology122
 4.3.3 Extensional Rheology ..126
 4.3.4 Intrinsic Viscosity, Hydrodynamic Size and Solution Classification134
 4.3.5 Comments on Polyethyleneoxide Solutions137
 4.3.6 Summary and Constitutive Model Parameters138
4.4 RHEOLOGICAL PROPERTIES OF HIGH-VISCOSITY POLYMER SOLUTIONS ...146
 4.4.1 Solvents ..146
 4.4.2 Shear Thinning Polycrylamide Solution148
 4.4.3 Effect of Salt on the Rheology of Polycrylamide Solutions150
 4.4.4 Flexible Polycrylamide Boger fluids153
 4.4.5 Semi-Rigid Xanthan Gum Boger Fluid172
 4.4.6 Constitutive Model Parameters of Polycrylamide Boger Fluids179
4.5 SUMMARY ...202

CHAPTER 5

CONFINED SWIRLING FLOW - INTERACTION BETWEEN INERTIA AND ELASTICITY ...204

5.1 INTRODUCTION ...204
5.2 SWIRLING FLOW OF LOW-VISCOSITY BOGER FLUIDS206
5.2.1 Flow Visualisation ... 206
5.2.2 Existence Domain of Vortex Breakdown 211
5.2.3 Velocity Measurements ... 217
5.3 DISCUSSION .. 233

CHAPTER 6
CONFINED SWIRLING FLOW - ELASTIC EFFECTS 236

6.1 INTRODUCTION .. 236
6.2 SWIRLING FLOW OF SHEAR THINNING ELASTIC FLUIDS 237
6.3 SWIRLING FLOW OF FLEXIBLE POLYMER BOGER FLUIDS 243
 6.3.1 Elastic Effects in an Inertia Dominated Flow 244
 6.3.2 Elasticity Dominated Flow .. 258
 6.3.3 Combined Effects of Inertia and Elasticity 278
6.4 SWIRLING FLOW OF A SEMI-RIGID POLYMER BOGER FLUID 287
6.5 DISCUSSION ON THE SWIRLING FLOW OF ELASTIC LIQUIDS 293
 6.5.1 Elastic Flow Instability ... 294
 6.5.2 Comparison between flexible and rigid polymers 298
 6.5.3 Applications .. 299

CHAPTER 7
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 302

7.1 CONCLUSIONS .. 302
7.2 SUGGESTIONS FOR FURTHER WORK 304
REFERENCES .. 306

NOMENCLATURE .. 330

APPENDIX A - CONSTITUTIVE EQUATIONS 335

A.1 THE NEWTONIAN AND GENERALISED NEWTONIAN MODELS 335
A.2 THE CRIMINALE-ERICKSEN-FILBHEY AND SECOND ORDER MODELS..337
A.3 THE MAXWELL MODEL ...338
A.4 THE OLDROYD-B AND ELASTIC DUMBBELL MODEL ..340
A.5 THE ROUSE AND ZIMM MODELS ..343
A.6 THE RIGID DUMBBELL MODEL ..345
A.7 THE FENE DUMBBELL MODEL ..346
A.8 GIESEKUS MODEL ...349
A.9 KBKZ MODEL ..350
A.10 MULTI-MODE MODELS ...352

APPENDIX B - ADDITIONAL RESULTS...354
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Torsionally driven cavity flow cell.</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Two examples of flow phenomena caused as a result of fluid elasticity for non-Newtonian fluids with comparison to the flow observed for Newtonian fluids. The top example is the ‘rod-climbing’ or Weissenberg effect, and the bottom example is extrudent die swell.</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Secondary flow patterns for a Newtonian fluid at conditions showing (a) inertia driven vortex, (b) pre-incipient breakdown, and (c) vortex breakdown.</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Vortex breakdown over a delta wing (reprinted from Lambourne & Bryer 1961).</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Vortex breakdown in a diverging tube showing (a) spiral type, and (b) nearly axisymmetric ‘bubble’ type breakdown (reprinted from Sarpakaya 1971).</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Existence domain of vortex breakdown for Newtonian fluids (Escudier 1984). Circular symbols represent experimental points produced for a Newtonian fluid in the current thesis.</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Comparison between experimentally observed dye-lines (Escudier 1984) and numerically predicted streamline patterns of vortex breakdown for a Newtonian fluid at $Re = 2494$ and $H/R = 2.5$ (reprinted from Lopez 1990).</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Fluid element in a swirling flow. Indicated are the opposing</td>
<td>28</td>
</tr>
</tbody>
</table>
centrifugal and 'elastic' forces where the elastic component arises from a tension along the streamline due to the normal stress $\sigma_{\theta\theta}$.

2.7 Comparison of the existence domain of vortex breakdown by Böhme et al. (1992) between a Newtonian fluid and two shear thinning fluids.

2.8 Depiction of the secondary flow patterns observed by Hill (1972) for shear thinning viscoelastic fluids showing (a) Newtonian-like flow, (b) 'reverse' or elasticity driven flow, and (c) counter rotating vortices with an inertia driven ring vortex located on the edge of the rotating disk. (a) and (b) were also predicted by Kramer & Johnson's (1972) analysis using a second order fluid with $El=0$ and $El = 0.5$ respectively.

2.9 Depiction of the three-dimensional spiral instability observed for a shear thinning elastic polyacrylamide solution by Day et al. (1996).

2.10 Secondary flow patterns predicted by Kramer & Johnson (1972) for a constant-viscosity second order fluid with (a) $El = 0.0125$, and (b) $El = 0.025$.

2.11 Depiction of three flow regimes observed by Hansford & Litt (1968) in the rotating disk flow of a viscoelastic fluid indicating (a) centrifugal flow, (b) toroidal flow (counter-rotating vortices), and (c) elastic 'reverse' flow.

2.12 Parallel plate flow with an upper rotating disk showing (a) geometry, and (b) depiction of an elastic instability in the form of a spiral vortex.

2.13 Taylor-Couette geometry consisting of coaxial cylinders.
Depiction of the secondary flow cells once a critical Reynolds number is exceeded for an inertial instability.

3.1 Viscosity of various Newtonian solvents in de-ionised water as a function of concentration for temperatures of about 20-22°C.

3.2 The chemical structure of polyacrylamide Separan AP30.

3.3 Determination of intrinsic viscosity for mono-dispersed polyethylene oxide in de-ionised water at 25°C with the addition of 1 ppm BHT. Shown is the reduced and inherent viscosity for two sets of measurements taken one week apart.

3.4 Geometries used for measuring rheological properties. Indicated are (a) steady shear flow between parallel plates, (b) cone-and-plate geometry, and (c) co-axial cylinder or 'cup-and-bob' geometry.

3.5 Viscosity measurements for silicon oils at 25°C using Carri-Med CSL100 rheometer.

3.6 Steady shear properties of 12,500 cSt silicon oil and comparison with those of Hur (1987).

3.7 Dynamic rheological properties for 12,500 cSt silicon oil and comparison with those of Hur (1987). Also shown is the primary normal stress difference as a function of shear rate.

3.8 Storage modulus for a range of fluids using the Carri-Med CSL100 rheometer (Lee & Sexton 1994).

3.9 Schematic of opposed jet apparatus (Rheometrics RFX) and a depiction of possible streamlines patterns in flow field.

3.10 Measured and corrected Trouton ratios for a 60% glycerol
Newtonian solvent ($\eta = 11.7$ mPa s) using the opposed jet apparatus. Also shown is the measured Trouton ratio for 76% glycerol ($\eta = 39.5$ mPa s) using the 1 mm diameter jet.

3.11 Depiction of the filament stretching device used for uniaxial extensional viscosity measurements.

3.12 Torsionally driven cavity apparatus.

3.13 Torsionally driven cavity experimental set-up showing the rotating mirror used for PIV studies.

3.14 Secondary flow field for 75 ppm polyacrylamide low-viscosity Boger fluid at $Re = 2100$, $We = 0.7$ and $H/R = 2$ showing (a) PIV image, (b) vector map, and (c) sectional streamline patterns.

3.15 Comparison of the axial velocity along the centre line ($r \approx 0$) measured using PIV with that predicted by Lught & Abboud (1987) for a Newtonian fluid at (a) $Re = 1000$, and (b) $Re = 1500$.

4.1 Steady shear viscosity measurements for low-viscosity polyacrylamide Boger fluids using the Carri-Med (distinguished by dotted symbols) and the Contraves rheometers.

4.2 Shear stress measurements for low-viscosity polyacrylamide Boger fluids using the Carri-Med (distinguished by dotted symbols) and the Contraves rheometers.

4.3 Steady shear viscosity measurements for low-viscosity xanthan gum Boger fluids using the Carri-Med (distinguished by dotted symbols) and the Contraves rheometers.
4.4 Shear stress measurements for low-viscosity xanthan gum Boger fluids using the Carri-Med (distinguished by dotted symbols) and the Contraves rheometers.

4.5 Storage modulus (G') for Newtonian fluid (76% glycerol) using the Contraves rheometer.

4.6 Storage modulus (G') for low-viscosity polyacrylamide Boger fluids using the Contraves rheometer.

4.7 Loss modulus (G'') and dynamic viscosity (η', dotted symbols) for low-viscosity polyacrylamide Boger fluids using the Contraves rheometer.

4.8 Storage modulus (G') for low-viscosity xanthan gum Boger fluids using the Contraves rheometer.

4.9 Loss modulus (G'') and dynamic viscosity (η', dotted symbols) for low-viscosity xanthan gum Boger fluids using the Contraves rheometer.

4.10 Apparent Trouton ratio for low-viscosity polyacrylamide Boger fluids using the RFX opposed jet rheometer.

4.11 Apparent Trouton ratio for low-viscosity xanthan gum Boger fluids using the RFX opposed jet rheometer.

4.12 Apparent Trouton ratio (corrected) for polyethyleneoxide low-viscosity Boger fluids using the RFX opposed jet rheometer.

4.13 Determination of the intrinsic viscosity for polyacrylamide and xanthan gum in 76% glycerol.

4.14 Comparison between the measured reduced storage modulus
(\(G_R\)) for low-viscosity polyacrylamide Boger fluids and those predicted using the Maxwell, Oldroyd-B, Rouse and Zimm models.

4.15 Comparison between the measured reduced storage modulus (\(G_R\)) for low-viscosity xanthan gum Boger fluids and those predicted using the rigid dumbbell, Rouse and Zimm models.

4.16 Storage modulus (as \(2G'\)) for the Newtonian solvents using the Carri-Med CSL100 and the Weissenberg R19. The ‘base line’ for the Carri-Med CSL100 is also indicated.

4.17 Comparison between the steady shear properties of 2.5% polyacrylamide MG500 for this work and that of Day et al. (1996). The Carreau model A was used to fit the viscosity curves.

4.18 Comparison between the steady shear properties of a polyacrylamide fluid without salt (fluid \(F_{ST}\)) and with salt (Boger fluid F).

4.19 Steady shear viscosity for the polyacrylamide Boger fluids.

4.20 Shear stress for the polyacrylamide Boger fluids.

4.21 Primary normal stress difference (\(N_1\)) for the polyacrylamide Boger fluids.

4.22 Primary normal stress coefficient (\(Y_1\)) for the polyacrylamide Boger fluids.

4.23 A dimensionless primary normal stress (\(N_1\lambda_1/\dot{\gamma}\eta_0\)) versus dimensionless shear rate (\(\dot{\gamma}\lambda_1\)) for the polyacrylamide Boger fluids.
4.24 Storage modulus (as $2G'$) for the polyacrylamide Boger fluids.

4.25 Loss modulus (G'') for the polyacrylamide Boger fluids. Also shown are predictions of G'' using the upper-convected Maxwell and Oldroyd-B constitutive models.

4.26 Comparison between the measured reduced storage modulus ($G'\tilde{r}$) and those predicted using the Rouse, Zimm and Oldroyd-B constitutive models. λ_t is the Oldroyd-B relaxation time calculated from $\Psi_{1,0}$.

4.27 Comparison between the measured reduced storage modulus ($G'\tilde{r}$) and those predicted using the Rouse, Zimm and Oldroyd-B constitutive models. λ_t^* is the Oldroyd-B relaxation time calculated from the [η].

4.28 Apparent Trouton ratio for the polyacrylamide Boger fluids measured using the opposed jet rheometer. Also shown is the predictions of the steady state Trouton ration using the Oldroyd-B constitutive model.

4.29 Transient Trouton ratio as a function of strain for polyacrylamide fluid C measured using the filament stretching device. Also shown is the prediction of the transient Trouton ratio using the Oldroyd-B constitutive model.

4.30 Transient Trouton ratio as a function of strain for polyacrylamide fluid E measured using the filament stretching device. Also shown is the prediction of the transient Trouton ratio using the Oldroyd-B constitutive model.

4.31 Steady shear and extensional properties for the 0.02% xanthan gum Boger fluid.
4.32 Dynamic properties for the 0.02% xanthan gum Boger fluid.

4.33 Transient Trouton ratio for the 0.02% xanthan gum Boger fluid as a function of strain using the filament stretching device.

4.34 Comparison between experimental primary normal stress difference (N_i) and those predicted using the rigid dumbbell model.

4.35 Comparison between experimental reduced storage modulus (G'_{∞}) and those predicted using the rigid dumbbell, Rouse and Zimm models.

4.36 Prediction of the primary normal stress difference and storage modulus using single mode constitutive models for polyacrylamide Boger fluid A.

4.37 Prediction of the primary normal stress difference and storage modulus using single mode constitutive models for polyacrylamide Boger fluid B.

4.38 Prediction of the primary normal stress difference and storage modulus using single mode and 4-mode constitutive models for polyacrylamide Boger fluid D.

4.39 Prediction of the primary normal stress difference and storage modulus using single mode constitutive models for polyacrylamide Boger fluid C.

4.40 Prediction of the Trouton ratio at steady state using single mode constitutive models for polyacrylamide Boger fluid C.

4.41 Prediction of the transient Trouton ratio using single mode constitutive models for polyacrylamide Boger fluid C.
4.42 Prediction of the primary normal stress difference and storage modulus using single mode constitutive models for polyacrylamide Boger fluid E.

4.43 Prediction of the Trouton ratio at steady state using single mode constitutive models for polyacrylamide Boger fluid E.

4.44 Prediction of the transient Trouton ratio using single mode constitutive models for polyacrylamide Boger fluid E.

4.45 Prediction of the primary normal stress difference and storage modulus using 3-mode constitutive models for polyacrylamide Boger fluid C.

4.46 Prediction of the Trouton ratio at steady state using 3-mode constitutive models for polyacrylamide Boger fluid C.

4.47 Prediction of the transient Trouton ratio using 3-mode constitutive models for polyacrylamide Boger fluid C.

4.48 Prediction of the primary normal stress difference and storage modulus using 4-mode constitutive models for polyacrylamide Boger fluid E.

4.49 Prediction of the Trouton ratio at steady state using 4-mode constitutive models for polyacrylamide Boger fluid E.

4.50 Prediction of the transient Trouton ratio using 4-mode constitutive models for polyacrylamide Boger fluid E.

5.1 Flow visualisation images for the 45 ppm polyacrylamide Boger fluid at $H/R = 2.5$ for (a) $Re = 2015$, $We = 0.41$, (b) $Re = 2297$, $We = 0.47$, (c) $Re = 2373$, $We = 0.48$, (d) $Re = 2443$, $We = 0.50$, (e) $Re = 2636$, $We = 0.54$, and (f) $Re = 2922$.

xxiv
\[We = 0.6. \]

5.2 Flow visualisation images for the 45 ppm polyacrylamide Boger fluid at \(H/R = 2 \) for (a) \(Re = 1059, We = 0.22 \), (b) \(Re = 1686, We = 0.34 \), (c) \(Re = 1760, We = 0.36 \), (d) \(Re = 1974, We = 0.40 \), (e) \(Re = 3245, We = 0.66 \), and (f) \(Re = 3442, We = 0.70 \), and (g) \(Re = 3625, We = 0.74 \).

5.3 Flow visualisation images for the 45 ppm polyacrylamide Boger fluid at \(H/R = 1.5 \) for (a) \(Re = 1403, We = 0.29 \), (b) \(Re = 1574, We = 0.32 \), (c) \(Re = 1808, We = 0.37 \), and (d) \(Re = 1959, We = 0.40 \).

5.4 Existence domain for vortex breakdown of low-viscosity polyacrylamide Boger fluids and the Newtonian solvent.

5.5 Existence domain for vortex breakdown of low-viscosity xanthan gum Boger fluids and the Newtonian solvent.

5.6 Existence domain for vortex breakdown of low-viscosity polyethyleneoxide Boger fluids.

5.7 Secondary flow field for the 75 ppm polyacrylamide Boger fluid at \(Re = 2100, We = 0.7 \), and \(H/R = 2.0 \) showing the (a) vector field, and (b) sectional streamline patterns.

5.8 Velocity contour diagrams for the secondary flow field of the 75 ppm polyacrylamide Boger fluid at \(Re = 2100, We = 0.7 \), and \(H/R = 2.0 \) showing the (a) axial velocity, and (b) radial velocity.

5.9 Azimuthal component of vorticity for the 75 ppm polyacrylamide Boger fluid at \(Re = 2100, We = 0.7 \), and \(H/R = 2 \).
5.10 Components of the rate-of-strain tensor for the secondary flow field for the 75 ppm polyacrylamide Boger fluid at $Re = 2100$, $We = 0.7$, and $H/R = 2.0$ showing the (a) $\dot{\gamma}_x$, (b) $\dot{\gamma}_y$, (c) $\dot{\gamma}_{oo}$, and (d) $\dot{\gamma}_w$.

5.11 Dimensionless axial velocity measurements along the centreline for the Newtonian solvent at $H/R = 2.0$.

5.12 Dimensionless axial velocity measurements along the centreline for the 45 ppm polyacrylamide Boger fluid at $H/R = 2.0$ where $El = 49 \times 10^6$.

5.13 Dimensionless axial velocity measurements along the centreline for the 45 ppm xanthan gum Boger fluid at $H/R = 2.0$ where $El = 3.33 \times 10^3$.

5.14 Dimensionless axial velocity measurements along the centreline for 75 ppm polyacrylamide Boger fluid at $H/R = 2.0$ where $El = 332 \times 10^6$.

5.15 Dimensionless axial velocity measurements along the centreline for 75 ppm xanthan gum Boger fluid at $H/R = 2.0$ where $El = 9.4 \times 10^3$.

6.1 Streak line photographs and pictorial representations of a shear thinning elastic liquid comprised of 2.5% polyacrylamide in water for an aspect ratio of $H/R = 1.8$ at (a) $Re_0 = 1.33$, $We_0 = 0.25$, (b) $Re_0 = 2.73$, $We_0 = 0.19$, (c) $Re_0 = 4.88$, $We_0 = 0.15$, (d) $Re_0 = 8.75$, $We_0 = 0.12$, (e) $Re_0 = 21.2$, $We_0 = 0.83$, (f) $Re_0 = 23.3$, $We_0 = 0.08$, (g) $Re_0 = 25.2$, $We_0 = 0.077$, and (h) $Re_0 = 28.3$, $We_0 = 0.074$.

6.2 Dye flow visualisation images for a shear thinning elastic fluid
comprised of 2.5% polyacrylamide in water at an aspect ratio of \(H/R = 1.8 \) for (a) \(Re_0 = 4.88, We_0 = 0.15 \), (b) \(Re_0 = 8.75, We_0 = 0.12 \), and (c) \(Re_0 = 28.3, We_0 = 0.074 \).

6.3 Pictorial representation of the unstable secondary flow field for polyacrylamide fluid A at \(Re > 378, We > 0.089 \) and \(H/R = 2 \) showing the cyclic transformation with time between (a) ‘Newtonian-like’ flow, (b) stagnation region near \(r = 0 \), and (c) region of ‘reverse’ flow.

6.4 PIV results in the secondary flow plane for polyacrylamide Boger fluid A showing steady ‘Newtonian-like’ flow at \(Re = 216, We = 0.05 \) and \(H/R = 2 \) indicating: (a) vector field, (b) sectional streamline patterns, (c) axial velocity contours, (d) radial velocity contours, and (e) the azimuthal component of vorticity diagram.

6.5 PIV results in the secondary flow plane for polyacrylamide Boger fluid A showing steady ‘Newtonian-like’ flow at \(Re = 378, We = 0.089 \) and \(H/R = 2 \) indicating: (a) vector field, (b) sectional streamline patterns, (c) axial velocity contours, (d) radial velocity contours, and (e) the azimuthal component of vorticity diagram.

6.6 Dimensionless axial velocity profiles along the central axis \((r = 0) \) for polyacrylamide Boger fluid A at \(H/R = 2 \). Also shown is the predicted axial velocity profiles for a Newtonian fluid (Brydon 1998).

6.7 Pictorial representation of secondary flow field for polyacrylamide Boger fluid B indicating: (a) ‘Newtonian-like’ flow at \(Re = 77, We = 0.15 \), (b) unsteady flow at \(Re = 83, We = 0.17 \), and (c) flow visualisation image of the instability for \(H/R \).
= 1 at \(Re = 83, We = 0.17 \).

6.8 Dimensionless axial velocity profiles along the central axis \((r \approx 0)\) for polyacrylamide Boger fluid B at \(H/R = 2 \). Also shown is the predicted axial velocity profiles for a Newtonian fluid (Brydon 1998).

6.9 Streak line photos and corresponding pictorial representation of the secondary flow field for the elasticity dominated flow of polyacrylamide Boger fluid C at \(H/R = 2 \) indicating: (a) ‘reverse’ flow at \(Re = 1.88, We = 0.038 \), (b) central ring vortex at \(Re = 6.15, We = 0.131 \), (c) instability and central ring vortex at \(Re = 6.9, We = 0.16 \), and (d) spiral flow instability at \(Re = 11, We = 0.21 \).

6.10 Dye flow visualisation images for the secondary flow of polyacrylamide Boger fluid D at \(H/R = 1.8 \) indicating: (a) ‘reverse’ flow at \(Re = 2.0, We = 0.19 \), (b) development of spiral instability for the indicated times after start-up at \(Re = 3.6, We = 0.34 \), and (c) spiral instability at \(Re = 5.74, We = 0.42 \).

6.11 Dye flow visualisation images of the secondary flow field of polyacrylamide Boger fluid D at \(H/R = 1.0 \). (a) ‘Reverse’ flow at \(Re = 2.0, We = 0.19 \). The spiral flow instability for the indicated times from start-up for (b) \(Re = 3.0, We = 0.4 \), and (c) \(Re = 4.0, We = 0.53 \).

6.12 PIV results in the secondary flow plane for polyacrylamide Boger fluid C in the presence of a flow instability at \(Re = 11.5, We = 0.26 \), and \(H/R = 2.0 \) indicating: (a) vector field, (b) sectional streamline patterns, (c) axial velocity contour plot, (d) radial velocity contour plot, and (e) azimuthal vorticity contour plot.
6.13 PIV results in the secondary flow plane for polyacrylamide Boger fluid C in the presence of an instability at $Re = 11.5$, $We = 0.26$, and $H/R = 2.0$ indicating (a) vector field, (b) sectional streamline patterns, (c) azimuthal vorticity contour plot.

6.14 PIV results in the secondary flow plane for polyacrylamide Boger fluid E in the presence of an instability at $Re = 0.088$, $We = 0.88$, and $H/R = 1.0$ indicating (a) vector field, (b) axial velocity contour plot, (c) radial velocity contour plot, and (d) azimuthal vorticity contour plot.

6.15 Dimensionless axial velocity along central axis ($r \approx 0$) for polyacrylamide Boger fluid C for (a) $H/R = 1.0$, and (b) $H/R = 2.0$.

6.16 Dimensionless axial velocity along central axis ($r \approx 0$) for polyacrylamide Boger fluid E for $H/R = 1.0$.

6.17 Dye flow visualisation images for the secondary flow field of polyacrylamide Boger fluid F at $H/R = 1$ with $El = 0.015$. The flow instability is shown for a sequence in time from start-up for (a) $Re = 88$, $We = 0.13$, and (b) $Re = 138$, $We = 0.21$.

6.18 Dye flow visualisation images for the secondary flow field of polyacrylamide fluid F_{ST} at $H/R = 1$ with $We0 = 6.77$. The instability is shown for when elasticity forces dominate at (a) $Re0 = 7.5$, $El0 = 0.9$, (b) $Re0 = 11.3$, $El0 = 0.6$, (c) $Re0 = 15$, $El0 = 0.45$, (d) $Re0 = 20.3$, $El0 = 0.33$. The flow instability is shown for when inertia dominates at (e) $Re0 = 454$, $El0 = 0.015$.

6.19 Streak line photos and pictorial representation of a xanthan gum Boger fluid for $H/R = 1.0$ showing (a) ‘reverse’ flow at $Re = 0.25$, $We = 4.2$, (b) small outside ring vortex at $Re = 0.59$,
\[We = 2.8, \text{(c) ring vortex at } Re = 0.94, We = 2.2, \text{ and (d) ring vortex at } Re = 1.3, We = 2.0. \]

6.20 Streak line photos and pictorial representation of a xanthan gum Boger fluid for \(H/R = 1.5 \) showing (a) 'reverse' flow at \(Re = 0.06, We = 8.17 \), (b) central ring vortex at \(Re = 0.12, We = 5.7 \), (c) outside and central ring vortex at \(Re = 0.36, We = 3.5 \), and (d) combined ring vortex at \(Re = 0.48, We = 3.0 \).

6.21 Dimensionless axial velocity along central axis (\(r \approx 0 \)) for a xanthan gum Boger fluid at (a) \(H/R = 1 \), and (b) \(H/R = 1.5 \).

6.22 Secondary flow regime and stability boundary diagram for polyacrylamide solutions. Letters on chart correspond to the reference label for a particular fluid.

B.1 Dimensionless axial velocity measurements along the centreline for the Newtonian solvent at (a) \(H/R = 1.5 \), and (b) \(H/R = 2.5 \) (refer to figure 5.11).

B.2 Dimensionless axial velocity along centreline for the 45 ppm polyacrylamide low-viscosity Boger fluid at (a) \(H/R = 1.5 \), and (b) \(H/R = 2.5 \) (refer to figure 5.12).

B.3 Dimensionless axial velocity measurements along the centreline for the 75 ppm polyacrylamide low-viscosity Boger fluid at (a) \(H/R = 1.5 \), and (b) \(H/R = 2.5 \) (refer to figure 5.14).

B.4 Dimensionless axial velocity along centreline for the 45 ppm xanthan gum low-viscosity Boger fluid at (a) \(H/R = 1.5 \), and (b) \(H/R = 2.5 \) (refer to figure 5.13).

B.5 Dimensionless axial velocity along centreline for the 75 ppm xanthan gum low-viscosity Boger fluid at (a) \(H/R = 1.5 \), and
(b) $H/R = 2.5$ (refer to figure 5.15).

B.6 PIV results in the secondary flow plane for polyacrylamide Boger fluid C in the presence of an instability at $Re = 11.5$, $We = 0.26$, and $H/R = 2.0$ showing the following components of the rate-of-strain tensor: (a) $\dot{\gamma}_r$, (b) $\dot{\gamma}_z$, (c) $\dot{\gamma}_r$, and (d) $\dot{\gamma}_{oo}$ (refer to figure 6.12).

B.7 PIV results in the secondary flow plane for polyacrylamide Boger fluid C in the presence of an instability at $Re = 11.5$, $We = 0.26$, and $H/R = 1.0$ showing the following components of the rate-of-strain tensor: (a) $\dot{\gamma}_r$, (b) $\dot{\gamma}_z$, (c) $\dot{\gamma}_r$, and (d) $\dot{\gamma}_{oo}$ (refer to figure 6.13).

B.8 PIV results in the secondary flow plane for polyacrylamide Boger fluid E in the presence of an instability at $Re = 0.088$, $We = 0.88$, and $H/R = 1.0$ showing the following components of the rate-of-strain tensor: (a) $\dot{\gamma}_r$, (b) $\dot{\gamma}_z$, (c) $\dot{\gamma}_r$, and (d) $\dot{\gamma}_{oo}$ (refer to figure 6.14).
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A list of industries where non-Newtonian fluids are found.</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Commercial uses of polyacrylamide.</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Commercial uses of xanthan gum (Zirnsak 1995).</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of previous experimental observation made using non-Newtonian fluids in the torsionally driven cavity.</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Compositions of all the ‘high viscosity’ Boger fluids used in the confined swirling flow apparatus. AP30 and MG500 are two types of Separan polyacrylamide while XG Keltrol is a xanthan gum.</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of two shear thinning elastic solutions used in the confined swirling flow apparatus.</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Mark-Houwink parameters of several polymers.</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>List of rheometers used in this study for measuring material functions of Newtonian and non-Newtonian fluids. Properties included are η - viscosity; μ - Newtonian viscosity; N_1 - primary normal stress difference; G' and G'' - storage and loss modulus; $[\eta]$ - intrinsic viscosity; η_e - extensional viscosity.</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Polymer molecular weights determined using SEC.</td>
<td>114</td>
</tr>
<tr>
<td>4.2</td>
<td>Polymer polydisperisty determined using SEC</td>
<td>114</td>
</tr>
<tr>
<td>4.3</td>
<td>Intrinsic viscosity and viscosity molecular weight for several</td>
<td>114</td>
</tr>
</tbody>
</table>
polyethylene oxide samples.

4.4 Density measurements for low-viscosity Boger fluids. 115

4.5 Steady shear measurements for low-viscosity polyacrylamide Boger fluids and corresponding power law parameters. 117

4.6 Steady shear measurements for low-viscosity xanthan gum Boger fluids and corresponding power law parameters. 117

4.7 Extensional viscosity measurements for low-viscosity polyacrylamide and xanthan gum Boger fluids for $10 < \dot{\varepsilon} < 1000 \text{ s}^{-1}$ with the power law parameters indicated such that: $\eta_e = K_c \dot{\varepsilon}^{n - 1}$. 132

4.8 PCS measurements of hydrodynamic size and macromolecule length of polyacrylamide and xanthan gum in 76% glycerol. 135

4.9 Material properties for dilute concentrations of polyacrylamide in 76% glycerol and water (ie. low-viscosity polyacrylamide Boger fluids). 141

4.10 Material functions for dilute concentrations of xanthan gum in 76% glycerol and water (ie. low-viscosity xanthan gum Boger fluids). 144

4.11 Comparison of the apparent extensional viscosity measured using the RFX opposed jet rheometer and those predicted using the rigid dumbbell model (RD) and Batchelor's (1971) theory for semi-dilute perfectly aligned rigid rods (RR). 144

4.12 Estimated material functions for polyethylene oxide in 60% glycerol and water (ie. low-viscosity polyethylene oxide Boger fluids). Also shown are the dimensionless concentrations 145
where the concentration \(c\) has the units \((g/mL)\).

4.13 Flow parameters for 2.5% polyacrylamide MG500 solution used in this work and the investigation of Day et al. (1996). \(\lambda_c\) and \(S\) were obtained by predicting the viscosity curve using the Carreau A model. \(K_N\) and \(a\) were determined by fitting \(N_l\) data to a power law model (ie. \(N_l = K_N\dot{\gamma}^n\)) for \(\dot{\gamma} > 1\ s^{-1}\).

4.14 Flow parameters for polyacrylamide fluids \(F_{ST}\) (no salt) and \(F\) (salt) at a temperature of 22.5\(^{\circ}\)C. Indicated are the power law parameters, \(K\) and \(n\), as well as the \(N_l\) power law parameters for describing \(N_l = K_N\dot{\gamma}^n\).

4.15 Viscosity, power law parameters, density, and solvent viscosity for the polyacrylamide Boger fluids.

4.16 Maxwell and Oldroyd-B constitutive model parameters and elasticity number for the polyacrylamide Boger fluids.

4.17 Material properties of 0.02% xanthan gum Boger fluid with elastic properties given as a function of shear rate.

4.18 Material properties for the polyacrylamide Boger fluids using the Oldroyd-B, FENE-P, Giesekus and KBKZ constitutive models for a single relaxation mode. * indicates that the parameter was determined from steady state extensional viscosity. \(\eta_l\) and \(\lambda_l\) have the units \((Pa\ s)\) and \((s)\) respectively.

4.19 Multi-mode Maxwell model material parameters for the polyacrylamide Boger fluids. \(\eta_l\) and \(\lambda_l\) have the units \((Pa\ s)\) and \((s)\) respectively.

4.20 Adjustable parameters in the multi-mode FENE-P, Giesekus and KBKZ constitutive models for the polyacrylamide Boger
fluids. * indicates that the parameter was determined from the steady state extensional viscosity.

4.21 Material properties for the major low-viscosity Boger fluids 203

4.22 Material properties for the major high-viscosity Boger fluids. 203

6.1 Summary of the various flow phenomena observed using polyacrylamide Boger fluids in the torsionally driven cavity 294
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s: Stokes, Jason R.

Title: Swirling flow of viscoelastic fluids

Date: 1998-10

Publication Status: Unpublished

Persistent Link: http://hdl.handle.net/11343/39441

File Description: Title page & preliminary pages

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.