Cloning and Characterisation of *GRIPE*, a Novel Interacting Partner of *E12* During Brain Development

Julian Ik Tsen Heng (BSc Hons)

A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

October, 2002

Howard Florey Institute of Experimental Physiology and Medicine, and Department of Anatomy and Cell Biology

The University of Melbourne
Victoria 3010, Australia
Scientific Abstract

The mammalian cerebral cortex is a remarkable product of brain evolution, and is the structure that most distinctively delineates the human species from others (Northcutt and Kaas, 1995; Rakic, 1988). Neurons in the adult brain are organised into cytoarchitectonic areas, defined by distinct biochemical, morphological and physiological characteristics (Rakic 1988). Remarkably, this complex structure is generated from a simple neuroepithelium.

What are the signalling mechanisms that direct neuron formation and subsequent functional-parcellation of the cerebral cortex? Key to the study of this process is an understanding of neuronal fate determination. Available evidence demonstrates an intrinsic programming potential by neuronal progenitors within subdomains of the developing cerebral cortex that is instructive for proper corticogenesis. These regional domains are demarcated by expression of certain transcription factors, including members of the Helix-Loop-Helix (HLH) family of proteins.

The HLH family of transcription factors are key contributors to a wide array of developmental processes, including neurogenesis and haematopoiesis. These factors are thought to exert their regulatory influences by binding to cognate promoter-DNA sequences as dimers. While studies in mice have convincingly demonstrated that neurogenic HLH proteins such as NeuroD (Lee et al., 1995; Miyata et al., 1999; Liu et al., 2000) and Mash1 (Casarosa et al., 1999) are intimately involved in neuronal fate determination and terminal differentiation, the role of the ubiquitously expressed HLH protein, E12, in mammalian neurogenesis remains ambiguous. Originally discovered as an important regulator of lymphopoiesis, expression studies revealed its widespread expression in proliferative zones of multiple nascent organs of the embryo, including the developing cerebral cortex; implying a role for E12 in development.
of the nervous system. Since the function of $E12$ is, in part, coded by its capacity for protein dimerisation, a search was undertaken for binding partners in developing mouse brain, and using a yeast 2-hybrid assay.

Yeast 2-hybrid prey libraries were constructed using complementary DNA (cDNA) isolated from embryonic mouse forebrain tissue at early (embryonic day e11.5) and peak (e15.5) stages of neurogenesis. Screening of these libraries for binding partners to an E12 bait resulted in cloning of HLH factors, such as $Mash1$, $NSCL$ and $Id2$. Importantly, a novel binding partner, named $GRIPE$, was cloned as a novel GAP Related Interacting Protein to $E12$. $GRIPE$ binds to the HLH region of E12, and may require E12 for nuclear import. Furthermore, GRIPE may negatively regulate E12-dependent target gene transcription. High levels of $GRIPE$ and $E12$ mRNA were coincidently detected during embryogenesis, but only $GRIPE$ mRNA levels remained high in adult brain, particularly in neurons of the cortex and hippocampus. These observations were reconfirmed through an in vitro model of neurogenesis. Taken together, these results indicate that GRIPE is a novel protein whose dimerisation with E12 has important consequences for cells undergoing neuronal differentiation. A model is proposed to suggest how neurogenic HLH proteins that dimerise to E12 may promote signalling cascades driving early neuroblast differentiation.
Lay Abstract

The mammalian forebrain is a remarkable product of evolution, and is the structure that most distinctively delineates the human species from others. Comprising of two main cell types, neurons and glia, this organ is structurally and functionally subdivided into regions for coordinating the senses such as sight, smell, taste and hearing. Remarkably, this complex structure is generated from an outwardly simple sheet of embryonic brain cells, which exhibits no peculiar physical attributes early in development.

What then are the mechanisms that direct brain formation in the embryo? Over the last 100 years, scientists working with model organisms such as fruit flies, frogs and mice have discovered that development of the nervous system involves a precise co-ordination of signals received by embryonic cells, followed by interpretation of these signals through mechanisms within the cell that lead to acquisition of a brain-cell identity. Thus, one facet of the study of brain development is to understand “within-cell” signalling mechanisms, through identification of specific genes that program brain development.

Genes are functional products encoded by our deoxyribonucleic acid (DNA) complement, otherwise known as our genome. These products of the genome orchestrate the necessary activities in every cell of the body, such as energy production, water and electrolyte balance, and cell division. In immature cells of the developing embryonic brain, certain genes function as regulatory switches that trigger or silence the activities of other genes, a function crucial to endowing a brain-cell identity. These genes are known as transcription factors, and can influence the developmental outcome of embryonic cells. Examples of transcription factors include members of the Helix-Loop-Helix (HLH) gene family.
The HLH family of transcription factors comprise members that can behave as “master regulatory switches”, directing embryonic cells to become the functional units of adult organs such as blood, brain, muscle or pancreas. While the function of brain-specific HLH factors, such as *NeuroD*, is readily examined through existing molecular biological approaches, the role of the HLH transcription factor *E12* in brain development is not clear. Although this gene is “switched on” in the immature brain cell and “switched off” in the adult neuron, its function in the early steps of neuron formation remains ambiguous. Since part of the function of *E12* is dependent upon its interaction with other genes, a search was conducted for key partners to this transcription factor in developing brain, and using the mouse as a model organism to study mammalian development.

This thesis details a search for genes that interact with *E12* in developing mouse forebrain. This has led to identification of several HLH genes known to orchestrate brain development, such as *Mash1* and *Id2*. Most importantly, a novel gene named “GRIPE” that interacts with *E12*, has been cloned. By virtue of its presumed function, the acronym was conceived for this GAP-Related Interacting Partner to *E12*.

The evidence presented in this thesis demonstrates that GRIPE is found in the same embryonic brain cells that express *E12*, and their combined function may be important for triggering or silencing the activities of other genes during brain development. Further, while *E12* is “switched off” in mature neurons of the adult brain, GRIPE is still found in these, suggesting a role for this novel gene in mature brain cells that is independent of *E12*. Finally, an evaluation of the genomes of the fly, mouse and human has revealed that the functions of GRIPE and *E12* may constitute an ancient genetic circuit that is conserved during evolution of the nervous systems of these complex organisms. Taken together, this thesis presents vital new data that clarifies the contribution of *E12* to brain development, and furthers the understanding of the functions of HLH transcription factors in mammalian brain.
Declaration

I declare that the work presented in this thesis is my own work except where due acknowledgment has been made in the appropriate body of text. This work has not been submitted, either in whole or in part, for the award of a degree at this university or any other institution of higher education. This thesis is less than 100,000 words in length exclusive of tables, bibliographies and appendices, and complies with the stipulations set out for the degree of Doctor of Philosophy by the University of Melbourne.

Julian Ik Tsen Heng (BSc. Hons)
Brain Development Group
Howard Florey Institute, and
Department of Anatomy and Cell Biology,
The University of Melbourne.
Acknowledgements

“And science is difficult. Any commonsensical view of the world does not fit with science. Science is peculiar and it is not natural.” (Lewis Wolpert, University College, London)

First and foremost, I want to acknowledge the Heng family, as well as the “extended” Chan family for undying love and recreation, be it gastronomical, social, musical or “mahjong-ical”.

To my partner, Cheryl, whose unconditional love and support has been the most vital reagent in all my experiments.

To my parents, Kevin and Ping, whose collective foresight has given rise to opportunities otherwise unavailable to us children.

To my brothers, Siong and Elvin - two beacons of inspiration and boundless courage.

This work would not have been possible without continual generosity of time and resources from my supervisor, Associate Professor Seong-Seng Tan. I sincerely thank you for your tutelage.

To my colleagues in the Brain Development Group at the Howard Florey Institute: Jenny Gunnersen, Vicki Hammond, Tony Hannan, Qian Sang, Violeta Spirkoska, Christopher Job, Helen Valcanis, Leanne Godinho, Elisa Hill, Frank Weissenborn, Cheryl Augustine, Mary Kim, Bronwym Kenoshole, Wee Ming Boon, Irene Koukoulas. Thank you, Chris, for your friendship and impeccable clown skills.

Finally, I would like to extend a general “thank you” to all colleagues, past and present, who have assisted with experimental protocols, reagents and equipment.
Publications

Papers published in International Scientific Journals

Heng, J. I. and Tan, S-S. (2003). The role of Class I HLH genes in neural development – have they been overlooked? *Bioessays. (In press)*

Publications

Papers published in Conference Proceedings of International and National Scientific Societies

Poster presentations:

Oral presentations:

Heng J. I. T. and Tan, S-S. Identification and expression of *GRIPE*, a novel interacting partner to the transcription factor *E12*. *Liana Colvill and Ayse Berke Travel Award for the top oral presentation of 2001*, Howard Florey Institute, Melbourne, Australia, June 2002.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S rRNA</td>
<td>18S ribosomal RNA</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>AMV</td>
<td>avian myeloblastosis virus</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ara-c</td>
<td>cytosine arabinoside</td>
</tr>
<tr>
<td>β-gal</td>
<td>β-galactosidase</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>C. elegans</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin dependent kinase</td>
</tr>
<tr>
<td>CDKI</td>
<td>Cyclin dependent kinase inhibitor</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CE/Da</td>
<td>homologue of daughterless in C. elegans</td>
</tr>
<tr>
<td>ChIP</td>
<td>chromatin immunoprecipitation assay</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CO-IP</td>
<td>coimmunoprecipitation</td>
</tr>
<tr>
<td>cRNA</td>
<td>complementary RNA</td>
</tr>
<tr>
<td>Cx</td>
<td>cortex</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>dATP</td>
<td>deoxyadenosine triphosphate</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxycytosine triphosphate</td>
</tr>
<tr>
<td>DDW</td>
<td>distilled deionised water</td>
</tr>
<tr>
<td>dGTP</td>
<td>deoxyguanosine triphosphate</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxigenin</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified essential medium</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double stranded DNA</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxythymidine triphosphate</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>E2-2</td>
<td>also known as ME2</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetate</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed Sequence Tags</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>GAD67</td>
<td>glutamic acid decarboxylase, 67 kDa isoform</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase activating protein</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glycerdehyde 6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GDP</td>
<td>guanine diphosphate</td>
</tr>
<tr>
<td>GE</td>
<td>ganglioside eminence</td>
</tr>
<tr>
<td>GEF</td>
<td>guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GR-1</td>
<td>GRIPE-related 1</td>
</tr>
<tr>
<td>GRIPE</td>
<td>GAP related interacting partner to E12</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione S-transferase</td>
</tr>
<tr>
<td>GTPase</td>
<td>guanine triphosphate phosphatase</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HAT</td>
<td>histone acetyl transferase</td>
</tr>
<tr>
<td>HEB</td>
<td>also known as ME1</td>
</tr>
<tr>
<td>HEK293T</td>
<td>human embryonic kidney 293T cell line</td>
</tr>
<tr>
<td>HLH</td>
<td>Helix-loop-helix</td>
</tr>
<tr>
<td>ID</td>
<td>inhibitor of dimerisation</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDaltons</td>
</tr>
<tr>
<td>M. musculus</td>
<td>Mus musculus</td>
</tr>
<tr>
<td>Mash1</td>
<td>Mammalian achaete-scute homologue-1</td>
</tr>
<tr>
<td>Math1</td>
<td>Mammalian atonal homologue-1</td>
</tr>
<tr>
<td>MCK</td>
<td>muscle creatine kinase</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>micro molar</td>
</tr>
<tr>
<td>mM</td>
<td>milli molar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>Ngn1</td>
<td>neurogenin 1</td>
</tr>
<tr>
<td>Ngn2</td>
<td>neurogenin 2</td>
</tr>
<tr>
<td>NSCL</td>
<td>Neuronal Stem Cell Ligand</td>
</tr>
<tr>
<td>ONPG</td>
<td>o-Nitrophenyl β-D-galactopyranoside</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nervous system</td>
</tr>
<tr>
<td>pRB</td>
<td>Retinoblastoma protein</td>
</tr>
<tr>
<td>RA</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>Rap</td>
<td>Ras-associated protein</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase-polymerase chain reaction</td>
</tr>
<tr>
<td>SAGE</td>
<td>serial analysis of gene expression</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SSC</td>
<td>sodium citrate, sodium chloride buffer</td>
</tr>
<tr>
<td>TAD</td>
<td>transcriptional activation domain</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate buffer containing EDTA</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus DNA polymerase</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-buffered saline containing Tween 20</td>
</tr>
<tr>
<td>TH</td>
<td>tyrosine hydroxylase</td>
</tr>
<tr>
<td>Ubc9/UBCE2A</td>
<td>ubiquitin conjugating enzyme to E2A</td>
</tr>
<tr>
<td>UTP</td>
<td>uridine triphosphate</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl β-D-galactopyranoside</td>
</tr>
</tbody>
</table>
Table of Contents

Scientific Abstract … I
Lay Abstract … III
Declaration … V
Acknowledgments … VI
Publications (Papers published in International Scientific Journals) … VII
Publications (Papers published in Conference Abstracts of International and National Societies) … VIII
Abbreviations … IX
Table of Contents … X
List of Figures … XVI
List of Tables … XIX

1.0. Introduction … 1
 1.1.1. The Development of the Mammalian Central Nervous System … 2
 1.1.2. Histogenesis of the mammalian cerebral cortex … 3
 1.1.3. There exists two modes of neuronal migration in the developing telencephalon … 4
 1.1.4. Defined genetic subdivisions within the developing cerebral cortex … 5
 1.2.1. Helix-loop-helix proteins … 6
 1.2.2. Classification of HLH proteins into functional groups … 7
 1.2.3. The role of HLH genes in neurodevelopment … 9
 1.2.3.1. Identification of Class II HLH genes involved in Drosophila neurogenesis … 9
 1.2.3.2. Vertebrate homologues of Drosophila proneural genes behave as determination and differentiation factors … 10
 1.2.3.3. Identification of a subset of neurogenic Class II HLH factors in the developing mouse telencephalon … 12
 1.3.1. The role of inhibitory Class V HLH factors in neuroprogenitor formation and timing of differentiation … 14
 1.3.2. All four Id genes are expressed in the developing mouse brain … 15
 1.3.3. The role of IDs in neurogenesis … 15
1.3.4. The role of IDs as negative regulators of signalling by HLH and Pax transcription factors ...16
1.3.5. IDs regulate cell cycling through interactions with HLH factors and the Retinoblastoma protein ...17

1.4.1. The role of Class I HLH proteins in neurogenesis is not well understood ...19
1.4.2. The role of Class I HLH factors in neurogenesis: lessons from flies and worms ...20
1.4.3. A neurological phenotype is not reported in mice which lack functional Class I HLH genes ...21
1.4.4. The Class I HLH factor E12 contains functionally separable domains ...23
1.4.5. Biochemical characterisation of E12 reveals a role for cell proliferation and differentiation ...25
1.4.5.1. E12 heterodimerises with HLH and non-HLH factors ...25
1.4.5.2. A direct role for E12 in cell cycle regulation ...26
1.4.5.3. E12 may behave as a molecular chaperone for ID proteins ...27
1.4.5.4. The role of E2A proteins in direct regulation of cadherin-mediated cell adhesion ...28
1.4.5.5. Expression studies suggest a role for E2A early in neurogenesis ...29
1.4.5.6. Overlapping expression patterns of Class I HLH genes in the developing brain imply a redundant role in signalling neurogenesis ...30

1.5. Defining a “co-neurogenic” role for E12 in the developing cortex ...32
1.6. A functional screen for interacting partners to E12 through a yeast 2-hybrid interaction assay ...33

2.0. Materials and Methods ...36
2.1. Animals ...36
2.2. RNA isolation ...36
2.3. Construction of a yeast 2-hybrid cDNA prey library ...37
2.4. Yeast cell lines ...38
2.5. Yeast cell transformations ...38
2.6. Recovery of plasmid DNA from yeast ...39
2.7. Plasmid DNA constructions ...39
2.8. Animal cell culture ...40
2.9. Mammalian cell transfection ...40
2.10. Coimmunoprecipitation of epitope-tagged fusion proteins ...40
2.11. Western blot analysis …42
2.12. Immunocytochemistry …42
2.13. Luciferase assay …43
2.14. Northern analysis …43
2.15. Reverse Transcriptase - Polymerase Chain Reaction …44
2.16. In situ hybridisation …45
2.17. Differentiation of P19 embryocarcinoma cells with all-trans retinoic acid …46

3.0. Performing a yeast 2-hybrid interaction assay …47
 3.1. Construction of yeast 2-hybrid cDNA libraries from e11.5 and e15.5 cortex tissue …47
 3.2. Performing the yeast 2-hybrid interaction screen …48
 3.2.1. Yeast 2-hybrid interaction screen for binding partners to human E12 …48
 3.2.2. Assessing interaction of mouse E12 bait to mouse cDNAs isolated using human E12 bait …51
 3.2.3. Yeast 2-hybrid interaction screen for binding partners to mouse E12 …52
 3.2.4. Deletion analysis of mouse baits with cloned binding partners …54
 3.4. Summary …55
 3.4.1. The bHLH domain of mouse and human E12 interact with different proteins …55
 3.4.2. An important role for protein domains adjacent to the bHLH domain of E12 …57

4.0. GRIPE is a novel binding partner to E12, and may regulate its dimersation state in the nucleus …58
 4.1. Clone 26, hereby named GRIPE, is a novel interacting partner to E12 with a putative GAP domain …58
 4.2. GRIPE binds to the HLH domain of E12 …58
 4.3. Deletion analysis of GRIPE701-1485 suggests that the entire 785 amino acid polypeptide, including the GAP domain, is essential for binding to the bHLH domain of E12 …59
 4.4. Coimmunoprecipitation experiments show that GRIPE is a bona fide interacting partner to E12 …60
 4.5. Colocalisation of GRIPE with E12 in HEK293T cells suggests a nuclear function for GRIPE …61
4.6. GRIPE negatively regulates E12-dependent transcription of a reporter gene …62
4.7. Summary …63
 4.7.1. GRIPE is a novel interacting partner to E12 …63
 4.7.2. Lack of activation by deletion mutants of GRIPE prey may be explained by limitations of the yeast 2-hybrid assay …63

5.0. GRIPE is a novel gene that may assume different roles during development and in adulthood …65
 5.1. Characterisation of GRIPE and E12 mRNA expression during development …65
 5.2. GRIPE is an approximately 8kb polyadenylated mRNA …65
 5.3. The interaction of GRIPE and E12 may be important for early neurogenetic events, but not in adult brain …66
 5.4. GRIPE mRNA is upregulated in differentiating neurons …67
 5.5. There are two novel GRIPE transcripts in P19 cells …68
 5.6. Summary …70
 5.6.1. An intact GRIPE/E12 signalling cascade may be important during early neurogenesis …70
 5.6.2. GRIPE may function independently of E12 in mature neurons …70
 5.6.3. E12 function may be more important in the early stages of neurogenesis …71

6.0. The GRIPE gene encodes a 1485 amino acid protein, and its function may be conserved during evolution …72
 6.1. Conservation of the GRIPE gene during evolution …72
 6.2. The GRIPE gene is encoded by at least 32 exons, and is located on mouse chromosome 12 …72
 6.3. GRIPE is a 1485 amino acid protein with distinct domains …74
 6.4. There is only one unique GRIPE mRNA in the mouse …75
 6.5. There may be two orthologues and one parologue of GRIPE in the human …76
 6.6. The human homologue of GRIPE, named hGRIPE, is located on chromosome 14q13.2 …77
 6.7. Human GRIPE, or hGRIPE, may have been duplicated to human chromosome 9q31.2 during evolution …77
 6.8. A human parologue of GRIPE, named GRIPE Related-1 (hGR-1), is located on human chromosome 20p11.23 …78
6.9. A role for GRIPE in controlling motor axon guidance and synaptogenesis in
Drosophila ...79
6.10. The SAGE Tag for GRIPE is not a unique identifier ...80
6.11. Summary ...81
 6.11.1. GRIPE is a 1485 amino acid protein with conserved domains that provide clues to its function in vivo ...81
 6.11.12. GRIPE is present in many genomes, suggesting conversation of gene function during evolution ...82

7.0. General Discussion ...83
 7.1. A neurogenic role for E12 through heterodimerisation with HLH and non-HLH factors during brain development ...83
 7.2. Class I HLH factors were not isolated from yeast 2-hybrid screens for E12 binding partners ...86
 7.3. A small subset of HLH genes identified as binding partners to E12 ...87
 7.4. GRIPE is a novel interacting partner to E12, and may regulate its dimerisation state in the nucleus ...88
 7.5. GRIPE may be a novel GAP protein ...90
 7.6. GRIPE may assume different functions during development and in adulthood ...91
 7.6.1. A role for GRIPE in negatively regulating cell adhesion in neuroblasts? ...91
 7.6.2. A role for GRIPE in axonal pathfinding in mature neurons? ...93
 7.6.3. Multiple isoforms of GRIPE may code for overlapping function during development and in adult brains of mammals ...94

8.0. Future directions ...95
 8.1. A re-examination of mice lacking Class I HLH factors for neurological defects ...95
 8.2. Gain-of-function approaches to elucidating E12 function in neuroprogenitors ...96
 8.3. Evaluation of protein-protein dimerisation between mammalian HLH factors important for neurogenesis ...97
 8.4. Further biochemical analysis of GRIPE ...99
 8.4.1. Colocalisation experiments with full-length GRIPE polypeptide ...99
 8.4.2. Does GRIPE encode a functional GAP domain? ...100
 8.4.3. Is GRIPE a direct or indirect transcriptional repressor? ...101
8.5. Biochemical analysis of homologues of GRIPE and GR-1 in model organisms …103
8.6. Functional analyses of GRIPE using Drosophila and mouse models …103
8.7. The role of GRIPE in mature neurons evidenced through in vitro models …104
8.8. The role of GRIPE/E12 signalling in the development of multiple cell lineages …106
8.9. Concluding remarks …106

9.0. Bibliography …108

10.0. Appendices …131
10.1. Enzymes used …131
10.2. Plasmid constructs used for generating cDNA probes for Northern analysis …131
10.3. PCR amplification of prey cDNAs …131
10.4. Description of prey cDNAs cloned through yeast 2-hybrid library screens …132
10.5. Cloning of mouse E12 bait plasmids …133
10.6. Cloning of deletion prey constructs of GRIPE …133
10.7. Cloning of mammalian expression plasmids pEGFP-GRIPE\(^{701-1485}\), pcDNAF-E12\(^{505-651}\) and pcDNAF-E12\(^{1-651}\) …133
10.8. Reverse transcriptiase-polymerase chain reaction (RT-PCR) …134
10.9. Preparation of cRNA probes …134
10.10. Cloning of 5' cDNA sequences for GRIPE by RT-PCR …135
10.11. Cloning and evaluation of yeast 2-hybrid bait constructs encoding GRIPE polypeptide …135
10.12. Preparation of pGEX-GRIPE constructs for expression of GST-GRIPE fusion proteins …135
10.13. Northern analysis …136
10.14. Data for luciferase assay …137
List of Figures

Figure 1.1. Schematic representation of functional subdivisions of the adult rodent cortex, viewed from the lateral aspect ...1i
Figure 1.2. Transverse sections of the embryo during early development ...1i
Figure 1.3. Development of the neural tube ...2i
Figure 1.4. Diagrammatic representation of histogenesis of the developing cerebral cortex ...3i
Figure 1.5. Coronal section of telencephalon illustrating two modes of migration in to the cerebral cortex ...3i
Figure 1.6. Diagrammatic representation of the crystal structure of a HLH protein dimer contacting DNA in the major groove ...6i
Figure 1.7. A functional classification scheme for HLH proteins ...6i
Figure 1.8. Summary of mutant mice harbouring null alleles for various HLH genes ...11i
Figure 1.9. Specification of dorsoventral identity through modulation of neurogenic Class II HLH factor expression ...11i
Figure 1.10. Class V HLH proteins promote cell cycle progression whilst suppressing cell differentiation ...19i
Figure 1.11. Functional domains within the E12 polypeptide ...23i
Figure 1.12. Summary of known binding partners to E12 ...23i
Figure 1.13. Distinct waves of HLH gene expression during cortical development ...32i
Figure 1.14. A proposed “co-neurogenic” role for E12 in the developing cortex ...33i
Figure 1.15. Schematic of the yeast 2-hybrid interaction assay ...34i

Figure 2.1. Source of embryonic brain tissue for RNA isolation ...36i
Figure 2.2. Outline of coimmunoprecipitation experiment ...41

Figure 3.1. Preparation of cDNAs for prey library construction ...47i
Figure 3.2. Evaluation of insert cDNAs by PCR. ...47i
Figure 3.3. Estimation of the number of β-actin clones (indicated by arrow) in the cDNA library ...48i
Figure 3.4. Sequence alignment of protein fragments of human (huE12, 147 aa) and mouse E12 (muE12, 146 aa) used to construct yeast 2-hybrid baits ...48i
Figure 3.5. E12 requires an intact HLH domain as well as the C terminus for binding Mash1, Id2 and Ubc9 ...54i
Figure 3.6. The human and mouse E12 baits demonstrate similar but non-identical binding specificities

Figure 4.1. GRIPE may be a novel GAP protein

Figure 4.2. Alignment of amino acids 816 to 1000 of GRIPE with the bHLH gene ESR-5 (Genbank Acc. No. AAD42782)

Figure 4.3. E12 associates with GRIPE in vivo

Figure 4.4. GRIPE associates with E12 in high ionic strength buffers

Figure 4.5. Localisation of EGFP-GRIPE$^{701-1485}$ or E12 in transfected cells

Figure 4.6. GRIPE may negatively regulate E12-dependent target gene transcription

Figure 5.1. Characterisation of GRIPE and E12 mRNA expression

Figure 5.2. GRIPE is expressed as an approximately 8 kb polyadenylated mRNA

Figure 5.3. Localisation of GRIPE and E12 RNA

Figure 5.4. Localisation of GRIPE RNA in adult mouse brain

Figure 5.5. In situ hybridisation of coronal sections of adult brain

Figure 5.6. Neuronal differentiation of P19 embryocarcinoma cells with retinoic acid

Figure 5.7. Expression of GRIPE and E12 mRNA during neurogenesis of P19 cells

Figure 5.8. Northern analysis showing alternative GRIPE RNA signals detected in total RNA isolates

Figure 6.1. A gene prediction approach to clone the 5’ sequences of GRIPE cDNA

Figure 6.2. Cloning of the 5’ cDNA sequence of GRIPE

Figure 6.3. Cloning the 5’ sequence of GRIPE by RT-PCR

Figure 6.4. Verification of the sequence composition of cloned 5’ fragments of GRIPE through nested PCR

Figure 6.5. Nucleotide sequence of GRIPE

Figure 6.6. Amino acid sequence of GRIPE

Figure 6.7. GRIPE is homologous to Tulip-1 and Tulip-2

Figure 6.8. There is only one isoform of GRIPE in the mouse

Figure 6.9. Amino acid sequence alignment of GRIPE and KIAA0884 polypeptide sequences

Figure 6.10. Sequence alignment of GRIPE and DKFZp566D133.1 polypeptide sequences
Figure 6.11. Alignment of mouse GRIPE with human chromosome sequence (nt 99090028 to 99090338 of human chromosome 9q31.2) in block format (panel A), and as an overlay with human chromosome sequence (panel B) …78i

Figure 6.12. KIAA1272, also known as hGR-1, may be a novel GAP protein …78i

Figure 6.13. KIAA0884 (hGRIPE) and KIAA1272 (hGR-1) are expressed in non-complementary domains …79i

Figure 6.14. XM_141404, also known as mGR-1, is the mouse homologue of hGR-1, and may lack a functional GAP domain …80i

Figure 6.15. The SAGE tag for GRIPE is not a unique identifier …80i

Figure 7.1. A proposed “co-neurogenic” role for the Class I HLH factor, E12, in developing neurons …84i

Figure 8.1. Assessment of functional inter-relationships between members of Class I, II, V and VI factors relevant to neurodevelopment …98
List of Tables

Table 3.1. Construction of the yeast 2-hybrid prey libraries …47
Table 3.2. Performing yeast 2-hybrid interaction screen for binding partners to human E12 …49
Table 3.3. Description of prey cDNAs isolated from e11.5 forebrain and e15.5 cerebral cortical libraries as binding partners to human E12 …50
Table 3.4. Assessing interaction of mouse E12 bait to interacting partners cloned with human E12 …52
Table 3.5. Performing yeast 2-hybrid interaction screens for binding partners to mouse E12 bait …53
Table 3.6. Summary of prey cDNAs isolated as interacting partners to mouse E12 …53

Table 4.1. GRIPe is a novel binding partner to E12 …58i
Table 4.2. GRIPe binds to the helix-loop-helix domain of E12, as demonstrated using a yeast 2-hybrid interaction assay …60i

Table 6.1. A summary of cDNAs which show nucleotide and/or amino acid homology to mouse GRIPE …72
Table 6.2. Comparison of three putative human orthologues of mouse GRIPE …76

Table 10.1. Evaluation of GRIPe bait constructs …135
Table 10.2. Quantitation of GRIPE and E12 mRNA signals relative to 18S rRNA …136
Table 10.3. One-way analysis of variance performed on data set of normalised measurements of GRIPE mRNA signals …137
Table 10.4. One-way analysis of variance performed on data set of normalised measurements of E12 mRNA signals …137
Table 10.5. Measurement of luciferase activity …137
Author/s:
Heng, Julian Ik Tsen

Title:
Cloning and characterisation of gripe: a novel interacting partner of e12 during brain development

Date:
2002-10

Citation:

Publication Status:
Unpublished

Persistent Link:
http://hdl.handle.net/11343/39471

File Description:
Front

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.