DECLARATION

This is certify that

- the thesis comprises only my original work
- due acknowledgement has been made in the text to all other material used
- the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies, appendices and footnotes.
TEM and Structural Investigations of Synthesized and Modified Carbon Materials

POOI-FUN LAI

Thesis submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy

August 1999

School of Physics, University of Melbourne, Australia
ACKNOWLEDGEMENT

I would like to acknowledge and thank the following:

- my supervisors Associate Professors Steven Prawer, Les Bursill and Alan Spargo for their patience, guidance and for giving me the opportunity to undertake this PhD.

- Associate Professor David Jamieson and the staff of MARC for their support, in particular Roland Szymanski, Dr. Andrew “Flynn” Saint, Dr. Kerry Nugent for their immense help on running various equipment and their invaluable advice.

- Prof. Rafi Kalish (Technion-Israel), Julius Orwa, Dr. Val Gurarie and Alex Orlov for their preparation of samples for this study.

- Chris Noble (Monash) and Dr. Steve Johnson (RMIT) for their help on the ESR and the nanoprobe equipment.

- Dr. J.L. Peng and David Dryden for their advice and help on the 4000EX.

- Dr. Jeff McCallum, Andrew Bettiol and Arthur Sakellariau for their computer/software support.

- all the past and present MARC students for their help and moral support (plus the coffee breaks and volleyball games).

- Chris, YC, SW and my parents without whose support and patience this will never be.

- my God whom I believe in.
Abstract

Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmision electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. However, in this study careful TEM measurements showed that diamond remains essentially single crystalline even up to high dose of 1×10^{15} Xe/cm2. This result favours the gradual amorphization model for the ion beam transformation of diamond.

We attempted to fabricate carbon nitride (C_3N_4) films using high-energy plasma deposition of carbon and nitrogen species into quartz substrates. Deposition parameters were varied in order to characterize the films and conditions. Morphology, compositional and structural studies of the films were performed using scanning electron microscopy, Auger spectroscopy, photon induced xray emission spectroscopy, Rutherford backscattering spectroscopy, Raman spectroscopy, transmision electron microscopy and electron energy loss spectroscopy. The films were found to display a great deal of inhomogeneity in the local bonding, posing great difficulties in analysis and attempts to co-relate structure with the deposition conditions. The films were mainly amorphous or polycrystalline in nature, with vary small regions of single-crystalline materials. It is concluded that the main bulk of the film is $(CN)_x$ in nature, with tiny regions of C_3N_4 and also Si_3N_4.

Finally, we investigated high dose ion irradiation of carbon into quartz. Subsequent annealing of the samples caused the formation of a buried layer of nanocrystalline diamond. At the dose of 5×10^{16}C/cm2, the clusters were observed to be almost single-crystal in nature. Above this dose, the clusters were found to be more polycrystalline and contain more graphite components. The cluster sizes also were found to increase with increasing dose.
Contents

Abstract i

List of Tables vi

List of Figures x

1 INTRODUCTION 1
 1.1 Carbon ... 1
 1.1.1 Diamond ... 1
 1.1.2 Carbon Nitride ... 3
 1.1.3 Nanocrystalline Diamond 3
 1.2 Aim of Thesis ... 3

2 DIAMOND 6
 2.1 Background .. 6
 2.2 Analysis Methods .. 10
 2.3 Experiment .. 16
 2.3.1 Low Energy Implants ... 17
 2.3.2 High Energy Implants .. 18
 2.4 Results and Analysis ... 20
 2.4.1 Low Energy Implants ... 20
 2.4.1.1 ESR ... 20
 2.4.1.2 Raman Spectroscopy 24
 2.4.1.3 RHEED ... 30
 2.4.1.4 TEM and Diffraction 31
 2.4.1.5 EELS .. 33
 2.4.1.6 Discussion ... 39
 2.4.2 High Energy Implants ... 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Results and Analysis for Sample 1</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2 Results and Analysis for Sample 2</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2 Results and Analysis for Sample 3</td>
<td>52</td>
</tr>
<tr>
<td>2.4.2 Discussion</td>
<td>59</td>
</tr>
<tr>
<td>2.5 Conclusion</td>
<td>61</td>
</tr>
<tr>
<td>3 Carbon Nitride</td>
<td>64</td>
</tr>
<tr>
<td>3.1 Background</td>
<td>64</td>
</tr>
<tr>
<td>3.2 Analysis Methods</td>
<td>67</td>
</tr>
<tr>
<td>3.3 Experiment</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1 Sample Preparation</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2 Analysis</td>
<td>73</td>
</tr>
<tr>
<td>3.4 Results and Analysis</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1 Morphology Analysis</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1.1 SEM</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2 Compositional Analysis</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2.1 Auger Spectroscopy</td>
<td>76</td>
</tr>
<tr>
<td>3.4.2.2 RBS and PIXE</td>
<td>79</td>
</tr>
<tr>
<td>3.4.3 Structural Analysis</td>
<td>84</td>
</tr>
<tr>
<td>3.4.3.1 XPS</td>
<td>84</td>
</tr>
<tr>
<td>3.4.3.2 Raman Spectroscopy</td>
<td>87</td>
</tr>
<tr>
<td>3.4.3.3 EELS</td>
<td>90</td>
</tr>
<tr>
<td>3.4.3.4 TEM and Diffraction</td>
<td>92</td>
</tr>
<tr>
<td>3.5 Discussion</td>
<td>95</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>100</td>
</tr>
<tr>
<td>4 C Irradiated Quartz</td>
<td>102</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>102</td>
</tr>
<tr>
<td>4.2 Experiment</td>
<td>103</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>103</td>
</tr>
<tr>
<td>4.3.1 TEM</td>
<td>103</td>
</tr>
<tr>
<td>4.3.2 Diffraction</td>
<td>106</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>B.2.1</td>
<td>Images of the Lifted Off Films</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Diffraction Results</td>
</tr>
<tr>
<td>B.2.3</td>
<td>HRTEM of the Lifted Off Films</td>
</tr>
<tr>
<td>B.3</td>
<td>Miscellaneous CN Results</td>
</tr>
<tr>
<td>B.3.1</td>
<td>AES</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Diffraction Patterns</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Some properties of carbon, silicon and germanium observed at room temperature. 2

2.1 T_o values for the various doses used from the gradient of the fitted lines of the $\delta H_{pp}(T)$ vs $T^{-1/4}$ curves. 24

2.2 A summary of the EELS spectra obtained from the various Xe implanted diamond samples. ... 36

2.3 A summary of the implanting conditions for the samples implanted at high-energy. 44

2.4 d-spacings of the lifted off film and some reference data 51

2.5 A summary of the EELS spectra obtained from the lifted off films samples. 55

2.6 d-spacings of the polycrystalline diffraction patterns from Sample 3 and some reference data. .. 59

3.1 Some properties for the various phases of C$_3$N$_4$. 65

3.2 Deposition conditions for the (CN)$_x$ films studied. 72

3.3 Atomic concentration for the main elements found in some of the films, obtained from RBS spectra. .. 81

3.4 Fitted XPS parameters for the various C and N peaks observed in the (CN)$_x$ samples, together with some possible bonding states. 86

3.5 Lorentzian and BWF fits for the D and G peaks found in the (CN)$_x$ films. 90

3.6 d-spacings of the diffraction patterns and some reference data for the (CN)$_x$ films. 94

3.7 More d-spacings of the diffraction patterns and some reference data for the (CN)$_x$ films. .. 95

3.8 Identification of some single-crystal diffraction patterns obtained from the (CN)$_x$ films. .. 96

4.1 Implantation and annealing conditions of the C implanted quartz samples and their subsequent approximate cluster sizes, as measured from the TEM images. 103

4.2 d-spacings of the diffraction patterns obtained from the carbon implanted quartz samples and some reference data. 107
A.1 Contents of the various vials and a summary of the general results. Di indicates single crystal diamond and Ti indicates the presence of polycrystalline titanium. 118

B.1 More d-spacings of the diffraction patterns and some reference data for the lifted off films. 138
List of Figures

2.1 Resistance vs dose for irradiation carried out at various temperature, for natural type IIa single-crystal diamond. ... 7
2.2 (a)EELS and (b) Raman spectra for various forms of carbon. 11
2.3 TRIM simulation for the ion beam damage depth profile. 16
2.4 Sample holder and laser “tracks” along the edge of the implanted region. 18
2.5 Schematic representation of the electrolysis procedure. 20
2.6 Dependence of integrated intensity (area under the curve) on dose and temperature. 21
2.7 Dependence of the linewidth, $\Delta H_{pp}(T)$, on dose and temperature. 22
2.8 Dependence of $\delta H_{pp}(T)$ on $T^{-1/4}$. .. 23
2.9 Raman spectra for 320keV Xe implants. .. 24
2.10 Schematic diagram of samples showing regions from which the Raman spectra. 25
2.11 TRIM simulation for 320keV Xe implants. ... 25
2.12 Peak positions for one of the curves after deconvolution of the Raman spectra as a function of dose. ... 27
2.13 Raman spectra for the various doses after TEM observation. 29
2.14 RHEED patterns for (a) unimplanted (b) 3×10^{13} Xe/cm2 and (c) 1×10^{14} Xe/cm2. ... 30
2.15 Electron micrographs showing HRTEM and SAD for the unimplanted and implanted type IIa diamond samples. 31
2.16 Electron micrographs showing damage and SAD of the unimplanted and implanted type IIa diamond samples. .. 32
2.17 Typical EELS spectra for the diamond samples. 35
2.18 First derivative of the EELS spectra for the various doses of irradiation. 39
2.19 Schematic diagram showing locations where Raman spectra were taken. 44
2.20 Optical images and Raman results from lift-off film. 45
2.21 Raman analysis of the sample irradiated with various doses of He$^{++}$, pre-annealing. 47
2.22 Raman peak position and FWHM as a function of dose, prior annealing. 48
2.23 Raman spectra for the annealed sample and the lifted off film for the 5×10^{17} sample. 49
2.24 EELS spectra of the lifted off film from Sample 2. 50
2.25 Comparison between SAD of (a-b) the lifted off film (c-d) graphite, (e) dlc samples
and (f) glassy-carbon. ... 52
2.26 Raman analysis of the lifted off film for Sample 3. 53
2.27 EELS results of the lifted off film. ... 55
2.28 Electron micrographs of HR TEM and diffraction analysis of the lifted off film. ... 57
2.29 TRIM simulation showing density of vacancies for the sample irradiated with var-
ious doses of He$^{++}$. ... 60

3.1 β-C$_3$N$_4$ crystal structures. .. 64
3.2 The KLL AES spectra of carbon in different chemical situations. 68
3.3 Schematic representation of the experimental arrangement for CN film deposition. 72
3.4 Schematic diagram of the MARC microprobe target chamber. 73
3.5 SEM analysis of the various (CN)$_x$ film surfaces. 75
3.6 Typical Auger spectra and their corresponding areas on the F1 sample. 77
3.7 Atomic concentration as a function of distance and depth for various samples. .. 78
3.8 Differentiated AES spectra for the various films. 79
3.9 RBS spectra obtained from the sample which was placed at a distance of 3mm
(F5) from the discharging electrodes. ... 80
3.10 RBS spectra obtained from the sample which was placed at a distance of 2mm
(F1) from the discharging electrodes. ... 80
3.11 RBS elemental mapping for sample F1 (d=2mm). 82
3.12 PIXE spectra obtained from various areas of the (CN)$_x$ films in samples (a) F1 and
(b) F4 using 3MeV protons. The spectra appear to be independent of the sampling
area. ... 83
3.13 RBS and PIXE region mapping for the (CN)$_x$ films. 83
3.14 XPS survey spectra, with the deposited films parameters and location of the survey
as listed. ... 84
3.15 Some examples of fitted XPS peaks for the various elements detected. 85
3.16 Raman spectra for the (CN)$_x$ films. ... 88
3.17 Raman spectra as a function of distance from center of distribution. 89
3.18 EELS spectra for the (CN)$_x$ films. ... 91
3.19 Some of the diffraction patterns obtained from the (CN)$_x$ films. 93
4.1 Electron micrographs showing images of the nanoclusters formed from annealing of carbon implanted quartz. ... 104
4.2 Electron micrographs showing HRTEM images of the nanoclusters formed from annealing of carbon implanted quartz. 105
4.3 Some of the diffraction patterns commonly observed in the carbon implanted quartz samples. ... 108
4.4 EELS spectra collected from the various doses of carbon implanted quartz. 109
4.5 Fitted Lorentzian curves for some of the low-loss EELS spectra. 109

A.1 (a) Low electron energy loss spectroscopy and (b) Core electron energy loss spectroscopy ... 120
A.2 (a) Optical Image of Sample #9 and (b) Raman Spectroscopy of the same sample. 122
A.3 TEM images of (a) a Ti particle and (b) a diamond particle. In some regions, the lattice structure in (a) appear to be different from the expected Ti structure (in the boxed region). ... 123
A.4 Resistivity of single-crystal and CVD diamond as a function of dose when implanted with Xe and C ions at room temperature. 125
A.5 RHEED patterns for the unimplanted samples, showing (a) the arcing effect and (b) sharp diffraction rings. ... 126
A.6 Density against position plots of the diffraction patterns, as measured from the densitometer plots. ... 127
A.7 Ratios of $I_{\text{implanted}}/I_{\text{unimplanted}}$ vs. dose for the strongest diamond and graphite peaks. ... 128
A.8 Ratios of $I_{\text{graphite}}/I_{\text{diamond}}$ vs. dose overlaid with R vs T graph obtained from Figure A.4. ... 128
A.9 Typical low and core energy loss spectra for both the unimplanted and implanted samples, showing (a) sp^3 and (b) sp^2 features. 129

B.1 Deconvolution of the low-loss spectra for some of the reference samples. 133
B.2 Deconvolution of the low loss spectra for some of the Xe irradiated diamond samples using Levenberg-Marquardt χ^2-fitting algorithm. The corresponding diffraction patterns are shown too. 134
B.3 Diffraction from regions where the EELS spectra in Figure 2.17 were obtained. 135
B.4 Optical images of the lift-off sample, before and after lifting off. 137
B.5 More diffraction patterns obtained from the lifted off films of the $7 \times 10^{16} \text{He}^{++}/\text{cm}^2$ sample. 138

B.6 Deconvolution of the low-loss spectra for some of the lifted off films and the corresponding diffraction patterns. ... 139

B.7 HRTEM images and their corresponding FFT results. 140

B.8 More HRTEM images and their corresponding diffraction patterns obtained from the lifted off films. ... 141

B.9 Auger spectra as a function of depth .. 142

B.10 More diffraction patterns from the (CN)$_e$ films. 143
Author/s:
Lai, Pooi-Fun

Title:
TEM and structural investigations of synthesized and modified carbon materials

Date:
1999-08

Citation:

Publication Status:
Unpublished

Persistent Link:
http://hdl.handle.net/11343/39473

File Description:
Front

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.