Vibrations of a columnar vortex in a trapped Bose-Einstein condensate

Lyndon Koons,1,2 Tapio P. Simula,3 and Andrew M. Martin1

1School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
3School of Physics, Monash University, Clayton, Victoria 3800, Australia

(Received 8 August 2012; published 14 June 2013)

We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap, where it is assumed that the shape of the vortex line is dominated by the properties of the condensate at the center of the trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case is in qualitative agreement with numerical calculations of the Bogoliubov spectrum.

DOI: 10.1103/PhysRevA.87.063614

PACS number(s): 67.85.De, 03.65.−w, 03.75.Lm, 05.30.Jp

I. INTRODUCTION

The behaviors of turbulent flows, tornadoes, mixing processes, synoptic-scale weather phenomena, and sunspots all critically depend on our understanding of vortex dynamics. Quantitative investigation of vortices started in the mid-1800s with the development of the Navier-Stokes equation, with the properties of a vortex being described by streamlines of vorticity. In 1880, Thomson (Lord Kelvin) determined the dispersion relation [1] for a specific excitation on a vortex line. This excitation takes the form of a chiral normal mode in which the perturbation propagates along a vortex line and rotates about its unperturbed position, distorting the vortex line into a helical shape.

In superfluids these vortices differ from their classical counterparts by having quantized circulation and a single line of vorticity (a vortex line) associated with them [2]. A quantized vortex line, in analogy with a classical vortex, supports Kelvin waves [2–11]. The first experimental investigations of Kelvin waves, in a superfluid, were carried out in cryogenically cooled helium [2–4,6]. More recently Bose-Einstein condensates (BECs) have provided a new platform to investigate the properties of quantized vortices [12–19]. The highly controllable nature of BEC systems has enabled the experimental investigation of Kelvin waves on a single vortex line [9]. The behavior of such waves has been investigated [20–22] and plays a crucial role in understanding the details of superfluid turbulence [23–25]. In trapped systems the Kelvin wave dispersion for a single vortex line has been obtained numerically, via solving the Bogoliubov spectrum for a single vortex line [21,22,26]. The Kelvin wave dispersion relation in the limit of long wavelengths and in the absence of trapping is [5]

\[\omega = \frac{\hbar k^2}{2M} \ln \left(\frac{1}{|k|r_c} \right). \]

(1)

where \(\omega \) is the excitation frequency of the mode, \(k \) is the wave number, \(M \) is the particle mass, and \(r_c \), typically of the order of the healing length, is the vortex-core parameter.

A general formulation for a quantized vortex line in a trapped rotating BEC has proven difficult. Most methods have relied on matched asymptotic expansions [27–31]. Koons and Martin used such a procedure to obtain a set of equations that describe the behavior of a perturbed vortex line [29]. In this analysis the general equations [Eqs. (68) and (69) in Ref. [29]] contained an undetermined functional. Here we eliminate the functional to obtain a single equation that describes the radial position of a vortex line, supporting a Kelvin wave. We then determine the general solutions of this equation, enabling us to make favorable comparisons with previous results in limiting regimes [29,31–34]. From the general solution the Kelvin wave dispersion relation, for a single vortex line in a BEC in a cylindrically symmetric parabolic trap, is determined. This dispersion quantitatively agrees with numerically calculated Bogoliubov spectra [22], in contrast to previous analytic results [30].

II. THEORY

As shown in Ref. [29] the equations governing the positional dependence of the vortex line can be obtained. In cylindrical coordinates, defined by the radial \(\hat{r} \), angular \(\phi \), and axial \(\hat{z} \) unit vectors, these equations are

\[\frac{\partial \rho}{\partial t} = -\frac{\hbar}{2Mg|\Psi_T|^2} \frac{\partial^2 \phi}{\partial r^2} - \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial^2 \phi}{\partial \hat{z}^2} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{z}} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial r} + \hat{E} \left(-\frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{z}} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{r}} - \hbar \frac{\partial^2 \phi}{\partial \hat{r}^2} \right). \]

(2)

\[\frac{\partial \phi}{\partial t} = -\frac{\hbar}{2Mg|\Psi_T|^2} \frac{\partial^2 \phi}{\partial r^2} - \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial^2 \phi}{\partial \hat{z}^2} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{z}} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial r} + \hat{E} \left(-\frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{z}} + \frac{\hbar}{Mg|\Psi_T|^2} \frac{\partial \phi}{\partial \hat{r}} - \hbar \frac{\partial^2 \phi}{\partial \hat{r}^2} \right). \]

(3)
where ρ and ϕ describe the radial and angular coordinates of the vortex line at a given z (the dependence on z is implicit), V_r is the trapping potential, $|\Psi_{TF}|^2$ is the Thomas-Fermi condensate density, g is the interparticle interaction strength, R_\perp is the radial Thomas-Fermi radius, Ω is the rotation frequency of the trap, and E is an unknown function that depends on the structure of the vortex line. Previous work has determined E by considering the case where the trapping and curving dependence in E can be treated separately; see Sec. VII of Ref. [29]. Specifically, two different scenarios were considered: one indicating a straight vortex’s reaction to the trap confinement and one describing the behavior of wave perturbations on the line in the absence of confinement. Equations (2) and (3) were derived by noting that BECs with vortices within them have two natural length scales: the condensate length scale and the vortex-core radius. The full behavior of the system was then determined from the behavior of the condensate near to and far from the vortex core, via asymptotic expansion, separately, and ensuring that these two solutions matched in the overlapping region. In performing such an analysis to determine Eqs. (2) and (3) several approximations have been made. First, the wavelength performing such an analysis to determine Eqs.(2) and (3) reduces to

$$\gamma\phi'' = -\zeta'\rho + \xi\rho\frac{\partial \rho}{\partial z} - \varepsilon \left(\frac{\partial \rho'}{\partial z} \right)^2,$$

where $\zeta = -\ln(k^2 - \beta)/4$, with $k = r, k, \beta = r^2\beta$, and $\varepsilon = 1 + 2\xi$. In Eq. (5) $\zeta' = \rho'/R_z$, with R_z being the axial Thomas-Fermi radius, $\rho' = \rho/r_z$,

$$\gamma = \Lambda^{2/5}(\Omega - \omega) + k_0^2 \Lambda^{2/5} - \frac{3}{10\Lambda^2} \ln \Lambda,$$

where $\Lambda = \frac{15\alpha N^2}{M^2 \omega^2}$ parametrizes the interactions, with a being the s-wave scattering length and N the number of particles in the condensate, and $\lambda = \omega / \omega_\perp, \Omega = M_T^2 \omega / h$ and $\omega = M_T^2 \omega / h$ are the dimensionless trap rotation and Kelvin wave frequency, respectively. The two assumptions made imply that (i) the curvature in the z direction of the radial displacement of the vortex line is much smaller than the wave number and (ii) the condensate density is considered to be locally homogeneous. For the second assumption, although the condensate density is taken to be a constant where it was explicitly written in Eq. (4), this does not discard its influence. In the derivation of Eqs. (2) and (3) the influence of the changing condensate density is included. Specifically, it was assumed to have a Thomas-Fermi profile which can be written as the central chemical potential minus the trapping potential. Similarly, in Eq. (4) it is possible to express $|\Psi_{TF}|^2$ in terms of the changing chemical potential minus the trapping potential. Hence where gradients of the profile are involved $|\Psi_{TF}|^2$ is replaced with gradients of the changing potential. Since Eqs. (2) and (3) are most accurate away from the edges of the condensate it is thereby reasonable to assume that the reciprocal of $|\Psi_{TF}|^2$ is close to constant.

Making a change of variables such that $\rho'(z')$ has the form $f(z')^{1/(\varepsilon - 1)}$ Eq. (5) reduces to

$$\gamma(\xi - \varepsilon) f(z') + \xi \left(\frac{d f(z')}{dz'} - \frac{d^2 f(z')}{dz'^2} \right) = 0,$$

with the continuum-limit solution

$$\rho'(z') = \left[C_1 H_A \left(\frac{z'}{\sqrt{2\xi}} \right) + C_2 \frac{1}{f_1} \left(-A \frac{1}{z', 2k' \xi} \right) \right]^{-1/(1 - \varepsilon)},$$

where $A = \gamma(\xi - \varepsilon)/\xi$, $H_p(z)$ is the Hermite polynomial of order p, $f_1(l; m; x)$ is the Kummer confluent hypergeometric function, and C_1 and C_2 are integration constants.

Equation (8) is the central result of this paper. As such it is prudent to reconsider its regimes of validity. Specifically, this solution is for the radial position of the vortex as a function of z', in a cylindrically symmetric parabolic trap. In obtaining this solution several approximations have been made, specifically as follows:

(a) The original governing equations (2) and (3) are derived from the behavior of the condensate near to and far from the vortex core, via asymptotic expansion, separately, and ensuring that these two solutions matched in the overlapping
region. This imposes the conditions that the wavelength of the excitation of the vortex line must be large, as it has to be a small perturbation from the central straight-line vortex. Additionally, for the “top” and “bottom” of the condensate the governing equations are poor, as the radial size of the condensate becomes similar to the perturbation size.

(b) In determining Eq. (4) a specific form for the trapping potential was assumed: a cylindrically symmetric parabolic potential. Additionally, a specific structure for the vortex-line excitation was assumed: \(\phi = k z - \omega t \). This imposes the constraint on the solution that \(k \) is uniform throughout the condensate. Numerical simulations show this not to be true [22]; however, this assumption implies that the properties of the vortex line are primarily governed by the properties of the center of the condensate, where the density profile is approximately constant.

(c) To obtain Eq. (5) it was assumed that the curvature in the \(z \) direction of the radial displacement of the vortex line is much smaller than the wave number and the condensate size is considered to be locally, with respect to the vortex line, homogeneous.

In summary these assumptions imply that Eq. (8) provides a description for the vortex-line shape where it is assumed that the shape is dominated by the properties of the condensate at the center of the trap.

Because of the axisymmetry of the trapping potential, the vortex-line structure described is physical when \(\rho' / k^2 \ll 1 \). At \(z' = 0 \) this ratio is typically of order \(10^{-7} \). Nevertheless \(\tilde{\beta} \) does depend on the ratio of the trapping frequencies, \(\lambda \), with \(\tilde{\beta} \rightarrow 0 \) as \(\lambda \rightarrow \infty \) and \(\tilde{\beta} \rightarrow -\infty \) as \(\lambda \rightarrow 0 \). The divergence in \(\tilde{\beta} \) as \(\lambda \rightarrow 0 \) is slow, indicating that \(\tilde{\beta} \) plays a relatively insignificant role in Eq. (4) unless the trap is extremely prolate. In general, we calculate \(\tilde{\beta} \) self-consistently, through the definition \(\tilde{\beta} = r^2 \partial^2 \rho / \rho \).

A. Oblate limit

Equation (8) simplifies in the limits of extremely oblate (\(\lambda \rightarrow \infty \)) and prolate (\(\lambda \rightarrow 0 \)) trapping potentials. In the oblate limit, \(\gamma \rightarrow 0 \), \(\zeta \rightarrow -\ln(\tilde{k}) \), and \(\epsilon \rightarrow 1 - \ln(\tilde{k}) \), Eq. (5) has the solution

\[
\rho'(\zeta') = \left[D_1(1 + \zeta')\sqrt{2\pi} \frac{\text{erf}(\sqrt{\frac{\zeta'}{2}})}{i} + 2\sqrt{\zeta} D_2 \right]^{-\zeta/(1+\zeta)} ,
\]

where \(D_1 \) and \(D_2 \) are again integration constants and \(\text{erf}(x) \) is the error function. Applying the symmetry and divergence conditions \(\rho'(2) = (2\sqrt{\zeta} D_2)^{-\zeta/(1+\zeta)} \), if \(\rho' \) is finite, from Eq. (5)

\[
\rho'(\zeta') = F_1 \cos \left[(\zeta' - \zeta) F_2 \sqrt{A/\zeta} \right]^{-\zeta/(1+\zeta)} .
\]

B. Prolate limit

In the prolate limit (\(\lambda \rightarrow 0 \)), \(\gamma \), \(\zeta \), and \(\epsilon \) all tend to \(\infty \). Hence Eq. (5) becomes

\[
\rho'^2 = \frac{\zeta}{\gamma} \rho' \frac{\partial^2 \rho'}{\partial \zeta^2} + \frac{\epsilon}{\gamma} \left(\frac{\partial \rho'}{\partial \zeta} \right)^2 ,
\]

with the solution

\[
\rho'(\zeta') = F_1 \left[\cos \left[(\zeta' - \zeta) F_2 \sqrt{A/\zeta} \right] \right]^{-\zeta/(1+\zeta)} .
\]
Again \(\rho' \) has only a symmetric solution \((F_2 = 0) \). This causes \(\rho' \) to have a \(1/\cos(z) \)-like structure similar to that predicted in simulations [33,34]. Typical solutions of Eq. (12) are plotted in Fig. 1(a), demonstrating the \(U \) shape of the radial coordinate. Furthermore, as \(-\frac{\xi}{k} \) depends on \(k \), this \(U \) shape will widen as the momentum of the wave increases, as seen in Fig. 1(a). At low \(k \), the line takes an almost inverted cosine shape and becomes straight as \(\tilde{k} \to 1 \).

To obtain the dispersion relation for the prolate case Eq. (12) needs to be single valued within the condensate. This gives the condition \(\sqrt{\Lambda/\xi} = \pi/2 \) or
\[
\omega = \omega_{2D} - \frac{\hbar \omega_z^2 \pi \xi^2}{8 \mu (1 + \xi)},
\]
(13)
which is an approximation to the dispersion relation of helical waves in a prolate trap, and is distinct from the solution for \(\omega \equiv 0 \). This occurs because any trapping in \(z \) provides a scale over which the vortex line can curve. Hence, when there is no trapping in \(z \), \(\varepsilon/\gamma = \xi/\gamma = 0 \), turning Eq. (5) into \(\gamma \rho^2 = 0 \). Therefore, for the case of \(\omega \equiv 0 \) the dispersion relation is the same as in the oblate limit, given by Eq. (10), i.e., the vortex line is straight [29,31,32].

C. General solution

To determine the general dispersion relation from Eq. (8) a similar treatment to that for the extremely prolate trap is employed. As the \(\rho' \) solution is a hypergeometric function to a negative power, the zeros of the hypergeometric function are the zeros of the confluent hypergeometric function. The zeros of the confluent hypergeometric function \(_1F_1(l; m; x) \) can be approximated by [35]
\[
X_0 \approx \frac{\pi^2 (r + \frac{m}{2} - \frac{3}{2})^2}{2m - 4l},
\]
(14)
where \(X_0 \) is the approximate \(x \) value of the \(r \)th zero. Combining Eq. (14) with the form of the hypergeometric function in Eq. (8) and stipulating that the first zero is at \(z' = 1 \) the dispersion relation becomes
\[
\omega = \omega_{2D} + \frac{\hbar \omega_z^2 \xi (2 - \pi^2 \xi)}{8 \mu (1 + \xi)},
\]
(15)
or equivalently, for \(\beta/k^2 \to 0 \),
\[
\omega = \omega_0 + \omega_1 + \frac{\hbar k^2 \ln \left(\frac{2 \pi r}{\hbar} \right)}{2M} + \Omega,
\]
(16)
where
\[
\omega_0 = -\frac{3 \hbar \omega_z^2 \ln \left(\frac{2 \pi r}{\hbar} \right)}{4 \mu},
\]
\[
\omega_1 = -\frac{\hbar \omega_z^2 \ln(r_c |k|) [4 + \pi^2 \ln(r_c |k|)]}{16 \mu [2 - \ln(r_c |k|)]}.\]

Equations (15) and (16) indicate that helical waves, in a parabolic trap, obey the usual dispersion relation [Eq. (1)], with two constants \(\omega_0 \), from confinement in \(\rho \), and \(\omega_1 \), from confinement in \(z \). The form of \(\omega_0 \) matches that for extremely oblate traps [Eq. (10)], while \(\omega_1 \) contains new behavior. Essentially, \(\omega_1 \) is constant, with weak logarithmic dependence on \(k \), and becomes larger as \(\omega_0 \) increases. As \(\lambda \to \infty \) Eq. (15) does not replicate the dispersion in the oblate trapping limit. This is because in the very oblate limit Eq. (14) fails to predict the location of the zeros accurately.

IV. COMPARISON WITH BOGOLIUBOV SPECTRA

To test the validity of the above analysis we now compare the solutions of Eq. (15) with numerical calculations [22]. The dispersion relations of Kelvin waves in a prolate condensate for different particle numbers corresponding to numerical calculations [22] are shown in Figs. 1(b) and 1(c) (dots). Previous analytic predictions in this limit [see Eq. (70) in Ref. [30]] poorly replicated these results [dashed curves in Fig. 1(c)].

To compare these numerical results with Eq. (15), \(r_c \) needs to first be considered. The core parameter \(r_c \), implicit in Eq. (15), characterizes the vortex-core size. In a trapped BEC the healing length \(\xi \) is of the order of the vortex-core radius, which is a function of position. As such we define the core parameter \(r_c = \alpha \xi \) to be some fraction \(\alpha \) of the healing length averaged over the Thomas-Fermi volume: \(\bar{\xi} = \left(R^2_{T} R_{c}/6a N \right)^{1/2} \). To compare with numerical results we allow \(\alpha \) to be a free parameter, of order 1.

In Figs. 1(b) and 1(c) (solid curves) we plot the Kelvin wave dispersion, Eq. (15), where we have rescaled \(k \to sk = k_\parallel \). Due to the inhomogeneity of the condensate we expect \(k_\parallel \) to vary spatially. As such this rescaling is motivated by the observation [22] that in numerical calculations \(k \) varies along the vortex line. Interestingly, we find that the matching between analytical results and numerical calculations is optimized for \(s = (2 R_{c}/2 R_{c})^{1/2} \), where \(R_{c} = \sqrt{\gamma/\mu} \) is the harmonic oscillator length in \(z \).

Figure 1(c) shows that Eq. (15) (solid curves) is much closer to the numerical results than the previous analytic predictions (dashed curves) [30]. Previous calculations assumed that the confinement in \(z \) strongly affected the precession frequency while our analysis creates only a small correction. This relates to the fact that Ref. [30] assumed that the influence on the vortex precession of the trap was the same perpendicular and parallel to the line’s direction. Our work shows that it is still possible to solve the problem without making this simplification. As a result we find that the influence on the vortex precession from the trap is not the same perpendicular and parallel to the line’s direction. Additionally, Fig. 1(b) shows excellent quantitative agreement between the numerical and analytical results, with the agreement improving as the number of particles increases and the BEC becomes more Thomas-Fermi-like. The general features of the dispersion relation are dominated by (i) a frequency shift and (ii) a functional form proportional to \(-k^2 \ln r_k \). The shift is dominated by the confinement in \(\rho \), given by \(\omega_0 \), with a small contribution from the confinement in \(z \), given by the second term in Eq. (15). The functional dependence of \(\omega \) is essentially dominated by the solution for a vortex line in an untrapped condensate, Eq. (1), also with a small correction arising from the confinement in \(z \), given by the second term in Eq. (15). We note that, in contrast to Fig. 1, the self-consistent determination of \(\beta \) influences the dispersion only for \(k < 10^{-4} \mu m^{-1} \) and hence, in Figs. 1(b) and 1(c), plays no role over the wave vectors considered.
V. CONCLUSIONS

In summary, we have analytically determined the Kelvin wave dispersion relation for a vortex line in a BEC trapped in a cylindrically symmetric parabolic trap, Eq. (15), where it is assumed that the shape of the vortex line is dominated by the properties of the condensate at the center of the trap. This result quantitatively agrees with the numerical calculations, in contrast to previous descriptions. We also find that the dispersion relation in the oblate trapping limit, Eq. (10), coincides with previous analytical work. In general these results are derived from the governing equation of motion for Kelvin waves on a quantized vortex line, Eq. (5). Equation (5) successfully predicts the behavior in very oblate and prolate condensates, and mathematically shows the link between the vortex-line shape with no trapping in z and strong trapping in z. Within the context of experimental activity in the study of excitations of quantized vortex lines in trapped BECs [9,15,36,37], this work provides a simple analytic tool for the analysis of Kelvin waves. Additionally, given the close agreement between numerical calculations and Eq. (15), we expect future experimental measurements of the Kelvin wave spectra to be in close agreement with our analytical description.

Author/s: Koens, L; Simula, TP; Martin, AM

Title: Vibrations of a columnar vortex in a trapped Bose-Einstein condensate

Date: 2013-06-14

Citation: Koens, L; Simula, TP; Martin, AM. Vibrations of a columnar vortex in a trapped Bose-Einstein condensate. PHYSICAL REVIEW A, 2013, 87 (6)

Persistent Link: http://hdl.handle.net/11343/43022