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 Abstract  

 

Background: N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been 

used as a mucolytic agent and for the treatment of numerous disorders including paracetamol 

indotoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory 

distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and 

psychiatric disorders.  

Scope of Review: The mechanisms underlying the therapeutic and clinical applications of NAC are 

complex and still unclear. The present review is focused on the chemistry of NAC and its 

interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap 

between its recognized biological activities and chemistry.  

Major Conclusions: The antioxidative activity of NAC as of other thiols can be attributed to its 

fast reactions with 
·
OH, 

·
NO2, CO3

·–
 and thiyl radicals as well as to restitution of impaired targets in 

vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and 

peroxynitrite, which cast some doubt on the importance of these reactions under physiological 

conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in 

proteins thus altering their structures and disrupting their ligand bonding, competition with larger 

reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for 

GSH synthesis.  

General Significance: The outlined reactions only partially explain the diverse biological effects of 

NAC, and further studies are required for determining its ability to cross the cell membrane and the 

blood-brain barrier as well as elucidating its reactions with components of cells signaling pathways. 

 

 

Key Words: NAC, antioxidant, GSH precursor, redox potential, disulfide bond, cell-permeability 
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Abbreviations: BBB, blood-brain barrier; CD, cluster of differentiation; CO3
·–

, carbon trioxide ion 

radical; ERK, extracellular signal regulated kinase; GSH, glutathione; HNO, nitroxyl; HOCl, 

hypocholorous acid; HOSCN, hypothiocyanous acid; Ig, immunoglobulin; I-B, inhibitor of 

nuclear factor kappa B; IKK, Inhibitor of nuclear factor kappa B kinase; IL, interleukin; INF-, 

interferon; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; mTOR ,mammalian target of 

rapamycin; NAC, N-acetylcysteine;
·
N3, azide radical; NAPQI, N-acetyl-p-benzoquinone imine; NF-

B, nuclear factor kappa B; NO, nitric oxide; 
·
NO2, nitrogen dioxide radical; O2

·– 
, superoxide ion 

radical; 
·
OH, hydroxyl radical;  PMN, polymorphonuclear leukocytes; RNS, reactive nitrogen 

species; ROS, reactive oxygen species; , thiyl radical; 
–
, thiolate; RSH, thiol; RSOH, sulfenic 

acid; SOD, superoxide dismutase; TNF, tumor necrosis factor  
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1. INTRODUCTION 

N-acetylcysteine (also known as N-acetyl cysteine, N-acetyl-L-cysteine or NAC) has been 

in clinical practice for several decades. NAC has been used as a mucolytic agent and for the 

treatment of numerous disorders such as acetaminophen (paracetamol) intoxication, doxorubicin-

induced cardiotoxicity, stable angina pectoris, ischemia-reperfusion cardiac injury, acute respiratory 

distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, radio-contrast-induced 

nephropathy, heavy metal toxicity and psychiatric disorders including schizophrenia, bipolar 

disorder and addiction ([1-12] for reviews).  

NAC, the acetylated precursor of the amino acid L-cysteine, is pharmaceutically available 

either intravenously, orally, or by inhalation. NAC has relatively low toxicity and is associated with 

mild side effects such as nausea, vomiting, rhinorreah, pruritus and tachycardia [4]. The terminal 

half-life of NAC after a single intravenous administration is 5.6 hours where 30% of the drug is 

cleared by renal excretion [13]. The relatively low bioavailability of NAC (below 5% [13-15]) is 

thought to be associated with its N-deacetylation in the intestinal mucosa and first pass metabolism 

in the liver. The plasma is a rather pro-oxidizing milieu and, therefore, redox exchange reactions 

between NAC, cystine and cysteine proteins in the plasma produce NAC-cysteine, NAC-NAC and 

cysteine [16, 17]. The latter can cross the epithelial cell membrane and sustain the synthesis of 

glutathione (GSH), which is the ubiquitous source of the thiol pool in the body and an important 

antioxidant involved in numerous physiological processes [18-20]. These include detoxification of 

electrophilic xenobiotics, modulation of redox regulated signal transduction, regulation of immune 

response, prostaglandin and leukotriene metabolism, antioxidant defense, neurotransmitter signaling 

and modulation of cell proliferation ([19] for a review). The synthesis of GSH is tightly regulated at 

various levels and is kept at the mM concentration range [21]. Hence, the notion that the 

physiologic functions and therapeutic effects of NAC are largely associated with maintaining the 

levels of intracellular GSH is reasonable, and it is often difficult to discern the direct effect of NAC 

from those related to GSH.  
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The present review is focused on the chemistry of NAC and its interactions and functions at 

the organ, tissue and cellular levels in an attempt to bridge the gap between its chemical features 

and recognized biological activities. For simplicity and practicality the various proposed 

mechanisms underlying NAC effects, which are presented here in their respective context, are not 

necessarily mutually exclusive but might operate concurrently.  

 

2. The chemistry of NAC  

NAC is a derivative of cysteine with an acetyl group attached to its nitrogen atom and like most 

thiols (RSH) can be oxidized by a large variety of radicals and also serve as a nucleophile (electron 

pair donor). The reactivity of thiolate anions (RS
–
) towards nitrogen dioxide (

·
NO2), carbon trioxide 

ion (CO3
·–
),  azide (

·
N3) or superoxide exceeds that of RSH with the exception of hydroxyl radical 

(
·
OH), which efficiently abstracts H-atom from RSH [22]. RS

–
 reactivity towards non-radical 

oxidants, such as hydrogen peroxide (H2O2) [23], peroxynitrite [24-26] and hypochloric acid 

(HOCl) [27, 28] also exceeds that of RSH. RS
–
 reactions may proceed via one-electron oxidation or 

two-electron oxidation to generate as the initial products thiyl radical (RS ) (e.g., reaction 1) or 

sulfenic acid (RSOH) (e.g., reaction 2), respectively.  

 

RS
–
 + CO3

–
  RS  + CO3

2–
                                                               (1) 

                         H
+
 

RS
–
 + H2O2   RSOH + H2O                                                      (2) 

 

One-electron oxidation of thiols yields the respective thiyl radicals (E
o
(RS

·
/RS

–
) = 0.8 V [29]), 

which readily oxidize other biomolecules or participate in a chain reaction yielding superoxide 

(reactions 3 and 4) and/or forming the respective peroxyl radical (reaction 5), which can oxidize 

further RS
–
 (reaction 6). 

 

RS RS
–
  RSSR

–
                                                                  (3) 
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RSSR
–
 + O2  RSSR + O2

–
                                                        (4) 

RS O2  RSOO                                                                             (5) 

                          H
+
 

RSOO  + RS
– 
 RSOOH RS                                              (6) 

 

The two-electron oxidation of RS
– 

yields sulfenic acid, which produces the thiol-disulfide via 

reaction 7. 

  

RSOH + RS
– 
 RSSR OH

– 
                                                  (7) 

 

The nucleophilic addition of thiols (Michael addition) also proceeds through RS
–
 as demonstrated 

for the reaction of NAC with N-acyldopamine quinone  (reaction 8) [30].  

+  RS
-

(8)

  H
+O

O

H
N

O

HO

HO

H
N

O

SR  

Hence, the effective rate constants of thiols with various substrates at physiological pH increase 

with the decrease in their respective pKa(-SH) values. The pKa of NAC is relatively high (9.51 

(Ionic strength (I) = 1 M), 9.87 (I = 0.02 M) [31, 32] compared to other common thiols such as 

GSH (8.7 [33]), cysteine (8.18 (I = 0.1 M [33]) and cysteamine (8.3 (I = 0.2 M [34]), and therefore 

its reactivity towards most oxidants and electrophiles is lower than that of other thiols.  

The rate constants of the reactions of NAC with various substrates under different 

experimental conditions, which have been determined using various techniques, and are 

summarized in Table 1. NAC reacts rapidly with OH, NO2, CO3
–
 and thiyl radicals, which 

eventually lead to the formation of O2
–
. NAC reacts also with nitroxyl (HNO), the reduced and 

protonated form of nitric oxide (NO) (pKa(HNO) = 11.4 [46, 47]), which has been demonstrated as 

a unique species with potentially important pharmacological activities [48, 49]. The reactivity of 
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thiols towards HNO is relatively high [41], and the reaction proceeds via addition of RSH to HNO 

(reaction 9).  

 

RSH + HNO
 
 RSNHOH                                                        (9) 

 

The adduct can react with another RSH to generate the thiol-disulfide and hydroxylamine (reaction 

10) or it can form a sulfinamide via the formation of a sulfiminium intermediate (eq. 11) [50]. 

 

RSNHOH + RSH
 
 RSSR NH2OH                                             (10) 

RSNHOH 
 
    RS(O)NH2                                                (11) 

 

There is no direct reaction between thiols and NO [51-54], and nitrosation of thiols by NO takes 

place via the intermediates formed during autoxidation of NO (reactions 12 – 14).  

 

2 NO + O2
 
 2 NO2                                                                    (12) 

NO2 + NO N2O3
                                                                                

           (13) 

N2O3 + H2O
 
 2 NO2

– 
+ 2H

+
                                                   (14) 

 

The nitrosation is initiated by NO2 (reaction 15) followed by the fast reaction of RS with NO 

(reaction 16) [55].  

 

NO2 + RS
– 
 NO2

–
 + RS                                                       (15) 

RS  + NO
 
 RSNO                                                                  (16) 

 

If NO competes efficiently with RS
–
 for NO2, nitrosation may take place via reaction 17 since N2O3 

is capable of nitrosating directly the thiols [54]. 
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RS
–
 + N2O3

 
 RSNO + NO2

–
                                                      (17) 

 

The rate constant of  NAC reaction with peroxynitrite has been determined to be 415 M
-1

s
-1

 at pH 

7.4 and 37
o
C [26], and relatively high concentrations of NAC are required (> 1 mM) to successfully 

compete with the self-decomposition of peroxynitrite (1/2 = 1.9 s
 
at pH 7.4 and 37

o
C [56]), which 

produces OH and Furthermore, peroxynitrite readily reacts with CO2 (k = 5.8 x 

10
4
 M

-1
s

-1
 at pH 7.4 and 37

o
C [58]) to generate NO2 and CO3

–
 . Since the concentration of CO2 

under physiological conditions is relatively high (1 – 2 mM), NAC cannot compete with CO2 for 

peroxynitrite at concentrations below 0.1 M.  

The toxicity of most quinones is attributed to their reduction to the corresponding 

semiquinone radicals, which are readily oxidized by oxygen forming O2
–
 and/or to their reaction 

with GSH leading to GSH depletion [59]. Hence, the effect of NAC on the detoxification of 

paraquat (methyl viologen) [60-62], doxorubicin [63-65] and acetaminophen [66, 67] might be 

attributed to NAC addition to doxorubicin and N-acetyl-p-benzoquinone imine (NAPQI) thus 

replacing GSH, to the reduction of the various semiquinone radicals to their corresponding 

hydroquinones and/or to an enhancement of GSH synthesis. The experimental results with 

doxorubicin and acetaminophen are in agreement with the suggestion that NAC helps to maintain 

GSH intracellular levels [65-67], although NAC was also shown to reduce in vivo the semi-

iminoquinone back to acetaminophen [66], and to decrease paraquat-induced yield of O2
·–

 [62]. 

Recently, the rate constant of NAPQI reaction with NAC was estimated to be 9-folds higher than 

that with GSH (Table 1) where NAPQI is reduced back to acetaminophen and the thiol is oxidized 

to RSSR [44]. Thus, it has been concluded that NAPQI participates in a catalytic reaction with GSH 

and NAC, and that addition of these thiols to NAPQI does not take place [44]. 

Thiol/disulfide interchange takes place spontaneously and may also be catalyzed by thiol 

transferase (e.g., eqs 18 and 19) [68].  
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RSH + P

S

S

P

SH

S SH

P

SH

S SH

RSH + P

SH

SH

 + RSSR

(18)

 (19)

 

 

The distribution of intracellular thiols among their thiol, disulfide and mixed disulfide forms 

depends, among other factors, on the redox potential of the RSH/RSSR pair at the intracellular pH. 

The observation that there is a linear correlation between the thiolate basicities (logKa) and the 

redox potential of the RSH/RSSR pairs [69] implies that NAC is a stronger reducing agent than 

GSH, cysteine and cysteamine, e.g., the redox potential of NAC thiol/disulfide pair is higher by 63 

mV and 106 mV than those of GSH/GSSG and cysteine/cystine redox pairs, respectively [32]. The 

adjacent N-acetyl and carboxylate groups (instead of the respective −NH3
+
 and −CONH− moieties 

in GSH and peptides) both stabilize the high electron density and the concomitant high basicity and 

strong reducing power of the thiolate site in NAC.  Hence, NAC can reduce disulfide bonds in 

proteins thus disrupting their ligand bonding and altering their structures. The latter can rationalize 

the mucolytic activity of NAC, which can reduce the disulfide bonds in cross-linked mucous 

proteins. Other examples associated with protein modification induced by NAC include: decrease in 

the angiotensin II receptor binding in vascular smooth muscle cells [70]; blocking tumor necrosis 

factor (TNF)-induced signaling by lowering the cytokine affinity to the receptor [71]; reducing 

ligand binding capacity of betaglycan [72]; increasing c-Src cysteine reduced thiol content in cells, 

which primed the shift of the enzyme from the membrane into perinuclear endolysosomes [73]; 

modifying the redox state of functional membrane proteins with exofacial SH critical for their 

activity [74]. The thiolate basicity in GSH is approximately the same as that of typical thiolates in 

peptides and proteins. Consequently, a strong disulfide-reducing and concomitant mucolytic activity 
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of glutathione is not anticipated. Interestingly, some of the reducing processes take place also with 

GSH itself [74, 75].  

NAC is a metal binding compound, as is the case with other thiols, having two potential 

coordination sites at the thiol and carboxyl groups where the latter is deprotonated at neutral pH. 

NAC is capable of binding transition metal ions, such as Cu(II) and Fe(III) [76], and heavy metal 

ions such as Cd(II) [77], Hg(II) [78] and Pb(II) [79] primarily through its thiol side chain. Thus, by 

chelating toxic metal ions NAC forms complex structures, which are readily excreted from the body 

removing them from intracellular or extracellular spaces. For example, NAC enhances the renal 

excretion of Cr(IV) and Pb(IV) in rats exposed to potassium dichromate and lead tetraacetate [80]; 

attenuates copper overload-induced oxidative injury in brain of rat [81]; decreases the concentration 

of Hg(II), which induced renal damage [82]; protects against Cd(II)-induced damage in rat liver 

cells [83]. On the other hand, NAC/Cu(II) significantly alters growth and induces apoptosis in 

human cancer lines whereas NAC/Fe(III) and NAC/Zn(II) do not [76]. 

 

2.1. NAC as an antioxidant 

Reactive oxygen species (ROS), which oxidize lipids, proteins and DNA causing cellular 

damage and subsequent cell death, have been implicated in the pathophysiology of many disorders 

including neurodegenerative diseases. Endogenous antioxidant defense mechanisms include 

scavenging of ROS and reactive nitrogen species (RNS) or their precursors, binding of redox-active 

metal ions involved in the catalysis of ROS and RNS generation, and up-regulation of endogenous 

antioxidant defenses. Additionally, exogenous antioxidants could be very effective in diminishing 

the cumulative effects of oxidative stress.  

Does NAC operate as an efficient antioxidant? NAC reacts neither with O2 nor with NO. 

The rate constants of the reactions of NAC with O2
–
, H2O2 and peroxynitrite are relatively low 

(Table 1), which make the importance of these reactions under physiological conditions doubtful. In 

contrast, NAC readily reacts with highly oxidizing radicals such as OH, NO2 and CO3
–
 and can 
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also bind redox-active metal ions. Thiols can also afford radio-protection through the donation of 

reducing equivalents, i.e., the carbon-centered radicals formed on DNA backbone or proteins by 

OH attack can be restituted via hydrogen donation from RSH (sometimes called “repair reaction”). 

Such process is most likely effective under hypoxic conditions where thiols compete with oxygen 

for the carbon-centered radicals. While GSH is not a major intracellular radio-protector under 

normoxia [84], other thiols or reducing systems may be useful in the radiation response [85]. 

Interestingly, NAC does not protect against ionizing radiation-induced cell killing [85-88], possibly 

due to poor cell permeability (see Section 2.2.).  

 

2.2. Does NAC cross cell membrane and blood-brain barrier (BBB)? 

The therapeutic use of antioxidants depends also on their ability to cross the cell membrane 

and those designed as neuroprotective treatment in acute or chronic neurological disorders should 

readily cross the BBB. Figure 1 shows some of the characteristics of the BBB including the 

endothelial cell membrane. Cellular membranes are only permeable to lipid-soluble molecules, but 

allow selective intra-cellular passage of water and other substances via numerous channels and 

transporters. 

Having a -COOH group (pKa = 3.31 [32]) and a –SH group (pKa = 9.87 [32]), NAC at pH 

7.4 is negatively charged (Fig. 2). Its neutral, membrane permeating form, constitutes as little as 

0.001% of the total NAC. Indeed, the partition coefficient of NAC in heptane/0.1 M phosphate 

buffer (pH 7.4) is P = 4 x 10
-4

 (logP = -3.4) [89], and its distribution coefficient in octanol/0.1 M 

phosphate buffer (pH 7.4) is D = 4 x 10
-6

 (logD = -5.4) while logD = 0.85 for NAC ethyl ester, 

which is a neutral molecule at pH 7.4 [15]. The neutral form of NAC becomes predominant at pH < 

3.3, allowing membrane penetration from the gastric fluid (pH 1.5 – 3.3) by passive diffusion.  

Once NAC enters the systemic circulation by the gastric or by other intravenous routes, it can only 

leave the blood vessels after N-deacetylation or by a carrier-mediated active transport, which has 

not yet been reported for NAC. Similar to NAC, GSH (pKa1(-COOH) = 1.9, pKa2(-COOH) = 3.5, 
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pKa(-SH) = 8.7, pKa(-NH2) = 10.1  [33]) is in its ionic form at pH 7.4 and does not cross the cell 

membrane and BBB [90, 91], but its precursor cysteine (pKa(-COOH) = 1.9, pKa(-SH) = 8.18, pKa(-

NH2) = 10.36  [33]) is a neutral species at 1.9 < pH < 8.2 that does cross the cell membrane and 

BBB, and is also transported by a ubiquitous more effective alanine-serine-cysteine sodium-

dependent transport system [92] or by a less efficient hetero-exchange with glutamate as cystine in 

astroglial cells [93]. 

Some papers refer to NAC as a membrane-permeable cysteine precursor [18, 94-97], others 

assume that NAC operates inside the cells [2]. Cotgreave et al. [98] reported that isolated intestinal 

epithelial cells of rats rapidly metabolize 
14

C-NAC (cysteine moiety) to 
14

C-cysteine when a dose of 

NAC was inserted into the isolated intestinal segment, and neither free NAC nor disulfide-bound 

NAC could be detected intracellularly. In other experiments, NAC was not detected, free or bound 

in disulfides, in either of the bronchoalveolar lavage components of volunteers/patients receiving 

the drug orally [99, 100]. Giustarini et al. [15] have shown that when rats were intravenously 

injected with NAC, the concentrations of NAC and cysteine in RBC were very small, but increased 

dramatically when NAC was replaced with NAC ethyl ester. Mazor et al. [101] reported that NAC 

treatment of red blood cells (RBC) exposed to oxidizing agents, as well as of control cells, 

enhanced cellular thiol levels and concluded that NAC penetrates the cells easily although such an 

enhancement can be attributed to penetration of cysteine formed outside the cells via N-

deacetylation. 

The published reports on the ability of NAC to cross the BBB are also contradictory. 

Sheffner et al. [102] have demonstrated that 2 h following oral administration of 
35

S-NAC to rats, 

an appreciable radioactivity was observed in all tissues tested. The highest concentration of 
35

S was 

in kidney and liver, followed in descending order by adrenal, lung, spleen, blood, muscle and brain.  

McLellan et al. [103] reported that the intraperitoneal or tail vein injection of 
14

C-NAC to mice 

resulted in its uptake into most tissues tested, except for the brain and spinal cord. Similarly, 

Arfsten et al. [104] reported that 
14

C-NAC and/or its metabolite cysteine rapidly distributed to most 
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tissues, excluding the brain, after intra-oral administration of the drug in rats. Erickson et al. [105] 

measured low level of 
14

C-NAC uptake by the brain following intraperitoneal administration to 

mice, and reported that the BBB permeability of NAC increased following intraperitoneal 

administration of lipopolysaccharide (LPS). Offen et al. [106] have shown that oral or 

intraperitoneal administration to mice of NAC or NAC amide, which is a neutral molecule at pH 

7.4, resulted in the appearance of NAC amide but not of NAC in brain extract. When NAC was 

administrated intravenously to rats, only low levels of cysteine were measured [15]. When NAC 

was replaced with NAC ethyl ester, there was a dramatic increase in the levels of NAC and cysteine 

due to rapid hydrolysis of NAC ethyl ester in the brain [15]. By contrast, Neuwelt et al. [107] 

reported that 
14

C-NAC crossed the BBB extremely well when given intra-arterial into the carotid 

artery of rats, and Farr et al. [108] have demonstrated that the majority of 
14

C-NAC crossed the 

BBB when mice were administered with the drug by injection into the jugular vein. A plausible 

explanation is that NAC can enter the cell when the membrane is impaired under oxidative stress, 

i.e., formation of aqueous pores (leaks), permeable to both non-electrolytes and ions [109-111]. 

Indeed, Erickson et al. [105] used 
14

C-NAC and showed that LPS increases the BBB permeability 

of NAC, but this observation does not explain in their LPS model the protective effect of NAC in 

the serum, but not in the brain. 

The assay of NAC in biological systems is complex because as a typical thiol, it might be 

oxidize to disulfide species or undergo transhydrogenation reactions with other thiol redox couples, 

resulting in the potential introduction of artifacts. An alternate experimental approach, which has 

not been previously tested, would be to label the carbon on the acetyl rather than on the cysteine 

moiety coupled with measurements of intracellular thiol levels.  

 

3. Biological activities of NAC 

NAC has been shown to interact with various metabolic pathways including, but not limited 

to, regulation of cell cycle and apoptosis; carcinogenesis and tumor progression; mutagenesis; gene 
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expression and signal transduction; immune-modulation; cytoskeleton and trafficking; and 

mitochondrial functions [2]. As presented herein, the GSH-independent mechanisms underlying 

NAC activity are only partially understood. Furthermore, since the reactions of NAC with various 

ROS as well as reactive nitrogen species (RNS) are kinetically unfavorable, the elucidation of such 

mechanism(s) is not straightforward. It is not attempted to cover the entire literature but rather to 

present different aspects of NAC biologic activities and cite various examples. 

 

3.1. NAC and regulation of cell cycle and apoptosis 

Various effects of NAC on regulation of cell cycle and apoptosis have been reported, 

including the inhibition of proliferation of mammalian, normal human cells [112-114], and also of 

transformed cells [115]. The authors of these studies found that NAC modulates the levels of 

various target genes and/or proteins. For example, the NAC-induced inhibition of proliferation of 

keratonocytes, and colon and ovary carcinoma cells was associated with up-regulation of p53, small 

heat shock protein 27, N-myc downstream-regulated gene-1, E-cadherin, and with suppression of 

microtubules aggregation and of c-Src tyrosine kinase [115]. More importantly, studies have clearly 

shown that NAC can affect cell cycle regulation and inhibit induction of cyclin D and DNA 

synthesis, which led to a G1 arrest of phorbol ester-induced NIH 3T3 cells in vitro [116]. NAC also 

induced cyclin-dependent kinase inhibitors such as p16 and p21, independent of p53, which resulted 

in G1 arrest [117]. An additional effect of NAC on regulation of cell cycle was seen upon studying 

pheochromocytoma PC12 cells, commonly used for the study of cellular signaling system. NAC 

also activated Ras-extracellular signal regulated kinase (ERK), inducing immediate early genes 

such as c-fos and c-jun, and inhibiting DNA synthesis and proliferation [118]. Similarly, treatment 

of hepatic stellate cells with NAC resulted in sustained activation of ERK, Sp1 phosphrylation, 

induction of p21 expression and G1-growth arrest [119]. Apparently, this effect on mitogen-

activated protein kinase signaling pathways was shown to depend on the redox-state of the cells 

[120]. Inhibition of angiotensin II-ERK mitogenic activation by NAC was also seen for cardiac 
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fibroblasts [121]. Interestingly, NAC inhibited phosphorylation of the angiotensin-II epidermal 

growth factor receptor, but not the receptor’s stimulated response. The inhibition of the trans-

activation of the receptor indicates that NAC affected the cross-talk between a G-protein linked 

receptor and a tyrosine kinase receptor [122]. Numerous studies conducted using both in vivo and in 

vitro experimental models  have also demonstrated that NAC can modulate apoptosis [123]. For 

example, NAC was shown to prevent apoptosis of serum-deprived neuronal cells [124], glutamate-

induced apoptosis of oligodendrocytes, and TNF--induced apoptosis of fibroblasts [125] and of 

human U937 neurons [126]. Similar protective effect of NAC was also shown against O2
–
-mediated 

apoptosis of selenite-treated HepG2 cells. The apoptotic pathway initiated by elevation of O2
– 

flux 

was characterized by the release of cytochrome c, alteration of mitochondrial membrane potential, 

caspase-3 activation and DNA fragmentation. Treatment with NAC significantly reduced the level 

of O2
– 

and inhibited the apoptotic pathway [127]. NAC was also shown to protect against 

peroxynitrite-induced apoptosis by modulating levels of O2
–  

and H2O2 [128], and to afford 

protection against cocaine-induced apoptosis by up-regulating anti-oxidative enzymes such as 

manganese superoxide dismutase (Mn-SOD), Cu/Zn-SOD, glutathione peroxidase [129] and 

catalase [130]. The anti-apoptotic effect of NAC is reportedly associated with changes in various 

genes/proteins such as an increase in c-jun and c-fos expression in TGF--treated human ovarian 

adenocarcinoma cell line [131]. In particular, the anti-apoptotic effect of NAC was associated with 

modulation of the levels of cell cycle proteins such as p53, retinoblastoma, and cyclin-dependent 

kinase inhibitor p21. However, evidence has shown that the modulation of apoptosis afforded by 

NAC depends on both cell-type and stimuli-specific and is thus very complex [132]. Underscoring 

this complexity are several reports demonstrating pro-apoptotic effect of NAC as well [112]. NAC 

enhanced hypoxia-induced caspase-3 activation and apoptosis in murine embryonic fibroblasts, and 

human pancreatic, melanoma and lung carcinoma cells.  NAC inhibited hypoxia-induced nuclear 

factor kappa B (NF-B) binding to DNA and NF-B-dependent gene expression [133, 134]. Thus, 

the conclusion that NAC is solely an anti-apoptotic agent is probably an over-generalization. 
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3.2. NAC, signal transduction and gene expression 

The effects of NAC are most commonly attributed to its capability to scavenge ROS and 

elevate cellular GSH levels [35, 60, 135-142], although it has also been shown that thiols 

supplementation (oral or intra-peritoneal) can be associated with an increase of cysteine level 

without a concomitant rise in GSH synthesis [143]. This is especially true when GSH pools are 

normal [144]. Regardless of its origin, the redox state of thiol proteins is widely considered to be a 

principal mechanism by which ROS and RNS are integrated into cellular signal transduction 

pathways [19, 145], and it is not surprising that NAC affects redox-sensitive signal transduction and 

gene expression both in vitro and in vivo. For practical reasons, the following discussion is focused 

on the effects of NAC on NF-B, which is central to the regulation and expression of stress 

response genes under inflammatory and oxidative challenges [146]. Nevertheless, NAC affects also 

other signal transduction pathways and the expression of various genes [123],  and directly 

modulating the activity of common transcription factors both in vitro and in vivo. NF-B represents 

a family of proteins sharing the Rel homology domain, which bind to DNA as homo- or hetero-

dimers (p50/p65) and activate a multitude of cellular stress-related and early response genes such as 

genes for cytokines, growth factors, adhesion molecules, and acute-phase proteins. While oxidative 

stress is an effective inducer of NF-B, treatment of cultured cells in vitro or clinical sepsis with 

NAC suppressed NF-B activation and subsequent cytokine production [147, 148], possibly 

reflecting redox-regulation of transcription factor expression. NF-B is naturally bound to an 

inhibitor of NF-B (I-B) that prevents its nuclear translocation. Dissociation of I-B following its 

phosphorylation by specific kinase of NF-B (IKK) allows its poly-ubiquitination and degradation 

by the 26S proteasome, and the transport of NF-B to the nucleus. Administration of NAC 

suppressed the 19S regulatory, but not the 20S catalytic subunit of 26S proteasome activity, thereby 

inhibiting NF-B activation [149]. Furthermore, NAC also inhibited the IKK themselves [150]. In 

contrast, NAC was shown to activate NF-B and elevate at least one of its target genes, Mn-SOD in 
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human microvascular endothelial and lung adenocarcinoma (A549) cells. As other reducing agents 

activate NF-B, it has been suggested that an oxidized form of NF-B, which is not in complex 

with I-B, exists in the cytosolic fraction and must be reduced (reduction of a disulfide in the p50 or 

p65 subunits) to exert its DNA binding activity. Indeed, NF-B has been shown to be activated in 

the absence of I-B degradation through an iron-mediated mechanism [151, 152]. Modifications of 

p65, such as phosphorylation at serine 536, required for optimal function were also induced by 

NAC through activation of phosphatidylinositol 3-kinase [153]. It is possible that these seemingly 

contradicting results could actually converge in a single signaling event for a specific gene such as 

Mn-SOD [154]. Interestingly, N-acetyl-D-cysteine, which cannot be de-acetylated or participate in 

the biosynthesis of GSH, activates NF-B [155].  

 

3.3. NAC, cytoskeleton and trafficking 

NAC has been shown to modulate the levels of various adhesion molecules [156, 157] and 

to affect cytoskeleton structure and trafficking. In vitro studies have demonstrated that treatment of 

human epidermoid carcinoma cells with NAC protected against menadione (2-methyl-1,4-

naphtoquinone) induced oxidation stress. The effect of NAC was attributed to improved cell 

adhesion properties. It was suggested that NAC modulated the kinetics of focal points development 

rather than changing the expression of receptors for extracellular matrix molecules [158]. These 

findings that NAC can modulate cytoskeleton-dependent processes such as cell-cell interaction have 

been corroborated also using non-adherent cells [159, 160]. Intracellular transport of NF-B was 

also affected by NAC and the cellular redox state. Oxidative modification of tubulin by disulfide 

links between cysteine-containing subunits was shown to affect its assembly into microtubules. 

Addition of NAC to cultured neurons and developing fetal rat brain restored tubulin dynamics and 

improved the nuclear transport of NF-B [161]. NAC was also shown to modulate the levels of 

cluster of differentiation 11b (CD11b), a surface-integrin that bridges cytoskeleton and cell 

membranes. CD11b, which acts as a binding protein for intracellular adhesion molecule-1 
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undergoes ROS-mediated up-regulation in activated microglial cells in various neurodegenerative 

diseases. In contrast, addition of NAC was shown to down-regulate the levels of CD11b via an NO-

guanylate cyclase cGMP pathway [162]. NAC was reported to affect trafficking of intracellular 

proteins. 

Cytochrome P450 proteins, which are known for their metabolic role in detoxification of 

drugs, are also responsible for generation of deleterious ROS. Studies of transiently transduced 

HepG2 cells expressing endoplasmic reticular cytochrome P450 3A4 have shown that treatment 

with NAC not only reduced the levels of ROS, but also and more importantly suppressed the 

secretion of proteins such as intracellular adhesion molecule-1 (ICAM-1), metalloproteinase-2 

(MMP-2), platelet derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). 

Thus, NAC was shown to alter both the autocrine and paracrine signaling [163]. 

 

3.4. NAC and immuno-modulation 

Overwhelming data supports the immuno-modulatory activity of NAC. Clinically, NAC 

improved the ocular symptoms of subjects with Sjogren’s syndrome [164], enhanced natural killer 

and T-cell function, and delayed the reduction in CD4+ levels in HIV patients [165, 166]. 

Administration of NAC to post-menopausal women improved immune functions as exhibited by 

enhanced phagocytic capacity, leukocytes chemotaxis, natural killer function, and decreased TNF- 

and interleukin-8 (IL-8) levels [167]. NAC was also proven beneficial in patients with the 

autoimmune disorder systematic lupus erythematosus (SLE). In these patients, the mechanism 

underlying NAC activity was ascribed to a blockade of the mammalian target of rapamycin 

(mTOR) in T lymphocytes. Activation of mTOR occurs upon GSH depletion or after exposure to 

NO, which causes mitochondrial hyperpolarization and can lead to down-regulation of the 

transcription factor forkhead box P3 and subsequent decline in CD4+ CD25+ T cell population. 

NAC blocked the activation of mTOR and increased the number of T lymphocytes [168]. Similar in 

vitro enhancement of T-cell growth and function (production of IL-2) was demonstrated when 
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peripheral blood T-cell were treated with NAC [169]. NAC was reported to affect both cellular and 

humoral immunity by inhibiting the production polyclonal immunoglobulins (Ig) from B cells as it 

down-regulating the expression of B cell co-stimulatory surface molecules (CD40 and CD27), and 

IL-4 production [170]. NAC also enhanced the phagocytosis of IgG-opsonzied yeast particles by 

human polymorphonuclear leukocytes (PMN) [171], and the antibody-dependent cellular 

cytotoxicity of PMN from HIV+ patients [172]. In fact, NAC reversed the T1 helper cells/T2 helper 

cells cytokine balance in activated macrophages [173]. Similarly, NAC impaired chemotaxis of 

PMN and monocytes [174], and phorbol-stimulated aggregation of PMN [175], while 

concomitantly lowering H2O2 levels [176]. Additional changes in the levels of ROS/RNS were also 

reported for NAC-associated immuno-modulatory effects. NAC inhibited NF-B-mediated LPS, 

IL-1, or interferon (INF--induced NO production by macrophages, glial cells and astrocytes 

[177]. These findings are in agreement with the inhibition of inducible NO synthase by NAC in 

vivo. [178]. NAC also decreased lipid peroxidation and generation of O2
–
 by activated PMN in a 

calcium-independent manner [179].  

 

3.5. NAC and mitochondria 

Unsurprisingly, studies have demonstrated that NAC can affect mitochondrial processes, 

especially those associated with oxidative phosphorylation. Animal studies have shown that long 

term treatment with NAC can improve both heart- and brain-mitochondrial activity in rats [180], 

and to protect against age-related decline in specific activities of complex I, IV and V in hepatic 

mitochondria of mice [181]. Similar protective effect was also seen in rats subjected to traumatic 

brain injury. NAC not only restored the mitochondrial electron transfer but also improved calcium 

uptake activity [182]. In vitro studies corroborated these findings and showed that NAC can protect 

hepatic mitochondrial cytochrome c oxidase, complex I, IV and V activities, preserve ATP levels 

[183, 184], and mitochondrial potential [185]. The restoration of the electron chain transfer process 

by NAC was attributed at least in part to the redox-state of the thiols groups in the mitochondrial 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 

complex [186, 187]. In another animal study, NAC was shown to protect against INF- induced 

xanthine oxidase mediated suppression of hepatic cytochrome P450. The protective effect was 

attributed to the scavenging of superoxide by NAC rather than to its non-heme iron chelation 

properties, although the latter does occur [188]. Other studies have shown that NAC mildly 

stimulated detoxifying phase II enzymes but had little influence on phase I enzymes [142, 189] 

 

3.6. NAC, mutagenesis, carcinogenesis and tumor progression 

NAC demonstrated anti-mutagenic and anti-neoplastic activities, which include blocking of 

electrophilic metabolites and of direct-acting compounds, either of endogenous or exogenous 

source, attenuation of several xenobiotic-metabolizing pathways, and protection of DNA-dependent 

nuclear enzymes mutations [142, 190]. The modulation of genotoxic, oncogenic, and tumor 

progression processes by NAC was studied extensively in biochemical, cellular and whole animal 

models [123]. For example, NAC inhibited hydroxyl-generated adduct of isolated DNA [191], and 

NO-induced single-strand DNA breaks [192]. NAC was also shown to protect endothelial, 

lymphoid and epithelial cells against genotoxic insults in vitro [193, 194]. Similarly, NAC also 

attenuated cytogenetic alterations in animals exposed to cigarette smoke [195, 196]. The anti-

proliferative and anti-apoptotic effects of NAC and some of its interaction with various signal 

transduction pathways were described in previous paragraphs. NAC was reported to modulate 

tumor progression both in vitro and in vivo. It was shown to inhibit angiogenesis (e.g. inhibition of 

production of vascular endothelial growth factor) [113, 197, 198] and to decrease tumor 

invasiveness. This chemopreventive feature was attributed to inhibition of extracellular matrix 

degrading enzymes. For example, NAC was shown to suppress type IV collagenease and to prevent 

invasion and metastasis in murine models [199]. It was also shown to inhibit MMP-2 and MMP-9 

in human cancer cells, which could alter tumor progression and metastasis [200, 201]. At least in 

the case of MMP-9, the inhibition was attributed to S-nitrosylation of the pro-metaloproteinase. 
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Computational molecular modeling demonstrated the feasibility of NAC docking at the MMP-9’s 

nearest the active-site zinc [202].  

 

3.7. NAC and heart disease  

The possible therapeutic effects of NAC in heart disease were addressed in several studies. 

Equivocal effects of NAC on the levels of homocysteine and lipoprotein in plasma have been 

reported [203-205]. Still, NAC was shown to suppress the severity of experimental atherosclerosis 

in apoliproteinE-deficient mice by decreasing O2
– 

levels and macrophage aggregation [206]. Using 

the same animal model NAC was shown to inhibit NF-B, MMP-2 and MMP-9, and to suppress the 

deleterious atherosclerotic plaque destabilization process [157]. NAC was also suggested as a 

therapeutic in ischemia-reperfusion injury, where ROS play an important role, by affording 

protection against ischemia-reperfusion injury in the Langendorff isolated heart model [207]. In this 

model the effect of NAC was ascribed to a direct scavenging of hydroxyl radicals and to 

improvement of the coronary microvasculature. The latter could result from the formation of S-

nitrosothiols and inhibition of angiotensin converting enzyme [208]. Interestingly, NAC was shown 

to improve cardiac function without modulating the levels of GSH [209]. [209]. Clinically, 

administration of NAC with nitroglycerin and streptokinase resulted in reduction of oxidative 

damage and improved left ventricular function in patients suffering from myocardial infarction 

[210, 211]. The cardio-protective effects of NAC were also associated with changes in platelet 

aggregation [212] and with macro-vascular dilation [213]. Similarly, NAC was shown to improve 

vascular dilation and to restore cerebrovascular responsiveness in animals subjected to experimental 

brain injury [214]. NAC was also reported to affect microvasculature through inhibition of the 

mitogen-and stress-activated protein kinase endothelin-1 pathway in vitro. NAC suppressed 

expression of endothlin-1, a potent vasoconstrictor produced by endothelial cells, by inhibiting p65 

Ser276-MSK phosphorylation of NF-B. This is in contrast to previous reports, which described 

NAC-mediated inhibition of NF-B activation induced by TNF- as a general phenomenon, the 
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drug had no effect on I-B degradation, p65 translocation, or phosphorylation of Ser536, indicating 

that such activity is cell-type specific [215]. 

 

3.8. NAC and psychiatric disorders 

The field of neuropsychiatry provides an excellent opportunity to illustrate the mechanistic 

complexity of NAC. This is mainly because many neuropsychiatric disorders have a multi-factorial 

etiology that involves inflammatory pathways, glutamatergic transmission, oxidative stress, GSH 

metabolism, mitochondrial function, neurotrophins and apoptosis [12]. Since NAC is known to 

interact with most of these pathways it has been studied for its possible use for treatment of various 

neuropsychiatric disorders. Indeed, in recent years more than twenty clinical trials (randomized or 

otherwise) have employed NAC as an adjunctive treatment in various disorders. These include 

methamphetamine [216] and cannabis dependence [217, 218], nicotine [219, 220] and cocaine 

addiction [221-223], pathological gambling [224], obsessive-compulsive disorder [225], 

trichotillomania, nail biting and skin picking [226], schizophrenia [227, 228], bipolar disorder [228, 

229], autism [230], and Alzheimer’s disease [231, 232]. Interestingly, in most of these studies NAC 

was proven beneficial as it improved clinical outcome. Most of the plausible mechanisms presented 

herein are not exclusive to neuropsychiatric disorders but rather pertain to a broader scope of patho-

physiological processes. This is also evidenced by similar efficacy in neurological conditions such 

as Alzheimer’s disease. 

As stated above, NAC was proven an effective immuno-modulator. Similarly, it was used to 

modulate peripheral and central nervous system inflammatory pathways and cytokine levels in 

neuropsychiatric disorders. NAC reduced the levels of pro-inflammatory cytokines TNF-, IL-1 

and of NF-B in rodents subjected to traumatic brain injury or focal cerebral ischemia [233, 234], 

and decreased the levels of pro-inflammatory cytokines IL-6 and IL-10 in LPS-treated rat fetal brain 

[235]. In particular, NAC suppressed microglia activation [236], which are known to promote 
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neurotoxicity [237], and to inhibit NF-B-mediated LPS, IL-1, or INF--induced NO production 

by macrophages, glial cells and astrocytes [177]. 

NAC also affects neurotransmission. It can modulate the levels of excessive extracellular 

glutamate, which cause excitotoxic damage in models of schizophrenia and addiction. For example, 

NAC normalized the levels of glutamate in the nucleus accumbens of cocaine-treated rats [238]. 

NAC appears to modulate intracellular calcium, which is germane to the dysregulation of receptor 

mediated calcium release, documented in a number of psychiatric disorders [239-241]. NAC can 

also drive the cystine/glutamate antiporter to decrease the levels of glutamate and suppress the 

activation of metabotropic glutamate receptors (mGluR2/3), which ultimately reduce the synaptic 

release of glutamate [12]. It has been suggested that NAC-induced changes in GSH levels could 

modulate the N-methyl-D-aspartate activity.  Dysregulation of the neurotransmitter dopamine is 

also considered a contributing factor in neuro-toxicity. Additionally, dopamine can undergo auto-

oxidation with molecular oxygen to produce superoxide and semiubiquinone, which can participate 

in deleterious processes. It has been demonstrated that NAC blocked amphetamine-triggered 

dopaminergic response in vivo [242] and prevented the down-regulation of dopamine transporter 

[243]. Expectedly, it has also been suggested that NAC can modulate dopamine release via 

modulation of the cellular GSH levels and redox status. Alterations in GSH and ROS levels and 

dysregulation of mitochondrial function are highly associated with neuropsychiatric disorders [12]. 

Treatment with NAC inhibited lipid peroxidation and increased the activity of glutathione reductase 

in brain tissue of animals [244], restored the mitochondrial membrane potential in astroglial cells 

[245], and replenished GSH levels in brain tissue of animals and improved their function [246, 

247]. Similarly, treatment with NAC was associated with protection of mitochondrial Complex I 

and IV activities both in vivo and in vitro [248]. Loss of neuronal cells has been implicated in 

neuro-degenerative disorders such as Alzheimer’s and Parkinson’s diseases. NAC enhanced the 

survival of cultured neurons [249], and inhibited the 6-hydroxydopamine-induced dopaminergic 

neuron loss both in vitro and in vivo [250, 251]. NAC inhibited apoptosis associated with trophic 
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factor deprivation [125] via regulation of cell cycle [124, 252] . Its anti-apoptotic effect was 

associated with an increase in the levels of phosphorylated ERK and MAPK [253]. Treatment of 

EAAC1-deficient (excitatory amino acid transporter) mice with NAC reduced ROS levels, 

increased GSH levels, protected against dopaminergic neurons cell loss, and enhanced motor 

function [254]. Using similar animal model, NAC reversed cognitive impairment [255], although 

this finding was not replicated clinically [256]. 

 

 4. Clinical caveats implied by the effects of NAC  

Although NAC is traditionally considered as an antioxidant with proven benefits in various 

clinical conditions and experimental models, it is also implicated in some deleterious processes both 

in vitro and in vivo. Autoxidation of thiols in the presence of redox-active transition metals can lead 

to biological damage via the thiol oxidation by the metal ion (reaction 20) followed by the 

generation of superoxide (reactions 3 – 4, 21), H2O2 (reaction 22) and OH (reaction 23) [257].  

 

RS
– 
+ M

n+
  RS  + M

(n-1)+ 
                                                                         (20) 

M
(n-1)+

 + O2  M
n+

 + O2
– 

                                                                               (21) 

2O2
–
 + 2H

+
  O2 + H2O2

 
                                                                                    (22) 

M
(n-1)+

 + H2O2  M
n+

 + OH + OH
– 

                                                            (23) 

 

Indeed, it has been demonstrated that NAC increased OH generation in a system with Fe(III)-citrate 

and H2O2 by reducing ferric iron to its catalytic, active Fe
2 +

 [258]. NAC also  induced DNA 

damage in the presence of Cu(II), and bathocuproine, a specific Cu(I) chelator, and catalase 

inhibited the DNA damage [259]. The role of metal ions has been demonstrated in vivo when NAC 

plus deferoxamine (an efficient iron chelator) protected rats against oxidative stress and improved 

[260] and improved the oxidative parameters in ill patients with prolonged hypotension [261]. 
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Since NAC has the potential to act as a pro-oxidant, it has been suggested to avoid 

administering it in the absence of a significant oxidative stress. NAC showed no benefit and in fact 

was noted to be harmful if given 24 h after admission to the intensive care unit in patients with 

multi-system organ failure [262]. Interestingly, administration of NAC to healthy individuals 

decreased their GSH/GSSG ratio [263]. The construct of hormesis refers to a biphasic dose 

response to an agent where a low dose stimulation or beneficial effect is contrasted by a high dose 

inhibitory or toxic effect. It is an adaptive signaling response of cells and organisms to a moderate 

stimulus [264]. As an exemplar, low grade oxidative stress upregulates superoxide generation to 

trigger changes of gene expression that attenuate aging effects, a pathways that is blocked by 

antioxidants such as NAC and vitamin C [265]. The clinical implications of this theoretical effect 

remain to be confirmed. 

 

5. Concluding remarks 

The molecular mechanisms by which NAC exerts its diverse effects are complex and still 

unclear. NAC has been shown to interact with numerous biochemical pathways. Its main 

mechanism involves serving as a precursor of cysteine and replenishing cellular GSH levels. 

Additional mechanisms include scavenging of 
·
OH, 

·
NO2, CO3

·–
 and thiyl radicals as well as 

detoxification of semiquinones, HOCl, HNO and heavy metals. Importantly, under physiological 

conditions NAC does not react with NO, superoxide, H2O2 and peroxynitrite. Possible chemical and 

biochemical routes involving NAC are summarized in Fig. 3. 

What differentiates NAC from other thiols? NAC is a small molecule and its pKa(-SH) is 

higher than most natural thiols and their derivatives, which can participate in all the reactions 

outlined in Table 1 more efficiently than NAC at physiological pH. However, the relatively high 

pKa of NAC implies that the redox potential of the NAC thiol/disulfide pair is higher than that of 

other thiols, and that NAC can efficiently reduce disulfide bonds in proteins thus disrupting their 

ligand bonding and altering their structures as in the case of mucous proteins. In addition, NAC is a 
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small molecule and might compete with larger reducing molecules in sterically less accessible 

spaces. It is very likely that the pathways described in Fig. 3 only partially explain the divergent 

biological effects of NAC, and further studies are required for determining its ability to cross the 

cell membrane and the blood-brain barrier as well as elucidating its reactions with components of 

cells signaling pathways. 
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Figures Legends 

 

Figure 1. Characteristics of the BBB are: (1) tight junctions that seal the pathway between the 

endothelial cells; (2) lipid nature of the cell membranes of the capillary wall, which makes it a 

barrier to water-soluble molecules; (3), (4), and (5) represent some of the carriers and ion channels. 

The figure is a modification of the one in http://www.answers.com/topic/blood-brain-barrier. 

 

 

Figure 2. Distribution of the various protonated forms of NAC as a function of pH using pKa(-

COOH) = 3.31 and pKa(-SH) = 9.87 at I = 0.02 M [32]. 

 

Figure 3. Plausible routes for the biological activities of NAC (red color - major routes, blue color - 

plausible routes, black color - insignificant routes under physiological conditions). 
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Table 1. Rate constants of NAC reactions with various compounds 

 

Compound Rate constant (M
-1

s
-1

) Exp. conditions Ref. 

OH 1.36 x 10
10

 pH 7, RT [35] 

CO3
–

 1.0 x 10
7 

1.8 x 10
8
 

pH 7, RT 

pH 12, RT 

[36] 

[36] 

O2
–
 68 ± 6 

< 10
3
 

pH 7, RT 

pH 7.4, 25
o
C 

[37] 

[35] 

H2O2 0.16 ± 0.01 

0.85 ± 0.09 

pH 7.4, 37
o
C 

pH 7.4, 25
o
C 

[23] 

[35] 

NO2  2.4 x 10
8 (a)

 

 1.0 x 10
7 (b)

 

pH > pKa, RT 

pH 7.4, RT 

[38] 

[39] 

NACysS
·
 1.1 x 10

9
 

            7 x 10
8
 

pH = 11.2, RT 

pH = 8.5, RT  

[40] 

[40] 

HNO 5 x 10
5
 pH 7.4, 37

o
C [41] 

HOSCN 7.7 x 10
3
 pH 7.4, 22

o
C [42] 

HOCl > 10
7
 M

-1
s

-1 (c)
 pH  7, 21- 24

o
C [27, 43] 

N-chlorotaurine 46 ± 7 pH 7.4, 24
o
C [43] 

415 ± 10
 

pH 7.4, 37
o
C [26] 

       NAPQI
 

(1.36 ± 0.2) x 10
4 

pH 7, 25
o
C [44] 

– 5 x 10
9
 pH 7.1, RT [40] 

 
·

 10
7
 – 10

8
 
(d) 

pH 5, RT [45] 

5,5-dithiobis-

(2-nitrobenzoic) 

(1.77 ± 0.21) x 10
5
 pH 7, RT [15] 

RT – room temperature 

a – Estimated using the rate constant determined for cysteine at pH 9.2 [38]. 

b – Estimated using the rate constants 2 x 10
7
 and 5 x 10

7
 M

-1
s

-1
 determined at pH 7.4 for cysteine 

and GSH, respectively [39]. 
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c – Estimated using the lower limit of the rate constant for HOCl reaction with GSH at pH 7 and 

21
o
C (> 10

7
 M

-1
s

-1
)
 
[27] and the ratio 0.5 between the rate constants of HOCl reactions with 

cysteine and GSH at pH 7.4 [43]. 

d – The rate constant of the "repair reaction" has been determined using GSH and penicillamine 

with radicals derived from methanol, ethanol, propan-1-ol, propan-2-ol, ethylene glycol, 

tetrahydrofuran and 1,4-dioxane with the abstracted hydrogen being located α to the hydroxy or 

alkoxy function (  
·

  . H-abstraction from RH by thiyl radicals (reverse process) occurred 

with rate constants of the order of 10
3
-10

4
 M

-1
s

-1
. 
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Highlights  

 The chemistry of N-acetylcyteine (NAC) is reviewed. 

 NAC can detoxify oxidizing radicals and bind redox-active metal ions.  

 NAC is a precursor of cysteine thus maintaining GSH intracellular levels. 

 NAC can efficiently reduce disulfide bonds in proteins thus altering their structures. 

 Not all mechanisms underlying the biological activities of NAC are already clear. 
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