Atoh1 gene therapy in the cochlea for hair cell regeneration

1. Abstract

Introduction: The sensory epithelium of the cochlea is a complex structure containing hair cells, supporting cells and auditory nerve endings, all of which degenerate after hearing loss in mammals. Biological approaches are being considered to preserve and restore the sensory epithelium after hearing loss. Of particular note is the ectopic expression of the Atoh1 gene which has been shown to convert residual supporting cells into hair cells with restoration of function in some cases. Areas covered: In this review, hair cell development, spontaneous regeneration and hair cell regeneration mediated by Atoh1 gene therapy in the cochlea will be discussed. Expert opinion: Gene therapy can be safely delivered locally to the inner ear and can be targeted to the sensory epithelium of the cochlea. Expression of the Atoh1 gene in supporting cells results in their transformation into cells with the appearance and function of immature hair cells, but with the resulting loss the original supporting cell. While the feasibility of Atoh1 gene therapy in the cochlea is largely dependent on the severity of the hearing loss, hearing restoration can be achieved in some situations. With further advances in Atoh1 gene therapy, hearing loss may not be as permanent as once thought.

Key words

Adenovirus, Atoh1, Cochlea, Gene therapy, Hair cell, Hearing loss, Regeneration, Supporting cell.
Hearing loss

Hearing impairment represents a major public health problem worldwide with an estimated 360 million people suffering from this sensory disorder (World Health Organisation, 2013). Furthermore, as the population ages, the prevalence of hearing impairment is expected to rise. Hearing loss can arise from a number of causes: normal ageing, noise trauma, disease, genetic disorders, as well as a subset of antibiotics (ototoxic drugs) and chemotherapy drugs. The impact of hearing impairment on society is large but no more so than for children who often experience delays in the development of speech, cognitive and social skills\(^1\). At present there is

Article Highlights

- The Atoh1 gene directs hair cell and supporting cell development in the cochlea
- Multiple developmental roles of the Atoh1 gene have been uncovered, including hair cell differentiation, hair cell maturation and stereocilia formation
- There are critical stages during developing when Atoh1 expression is required for normal hair cell development
- In neonatal animals there is spontaneous regeneration of hair cells after damage to the sensory epithelium, but this becomes very limited as the cochlea matures
- Acquired sensorineural hearing loss results in permanent loss of hair cells and supporting cells and degeneration of spiral ganglion neurons
- Viral-based gene therapy in the cochlea, particularly via the scala media or the endolympathic sac, enables efficient transduction of residual supporting cells of the sensory epithelium of the cochlea, but must be performed before the supporting cells have fully degenerated after hearing loss
- Atoh1 gene therapy in the mature cochlea forces supporting cells to trans-differentiate into immature hair cells that express multiple hair cell markers with functional mechanotransducer channels
- Mixed reports on hearing recovery after Atoh1 gene therapy indicate a complex set of conditions are required for functional connections to be re-established
no cure for sensorineural hearing loss. The current clinical treatments—hearing aids and cochlear implants—do provide benefit; however, patient outcomes are varied2,3 and these devices fail to address the underlying pathology, the loss of sensory hair cells and the degeneration of auditory neurons. The regeneration of these cellular populations is therefore thought to be the panacea for hearing restoration.

3. The sensory epithelium of the cochlea

The sensory epithelium of the cochlea, or the organ or Corti, is a mosaic of mechanosensory hair cells (inner and outer hair cells) and non-sensory supporting cells (border cells, pillar cells, phalangeal cells, Deiters’ cells, Hensen’s cells and Claudius’ cells). Each hair cell is separated from the next hair cell by a supporting cell. Inner hair cells are responsible for the excitation of spiral ganglion neurons in response to sound. They receive innervation from type I spiral ganglion neurons and a single inner hair cell is innervated by numerous type I afferent nerve fibers. Outer hair cells are responsible for the mechanical amplification of sound, enhancing the responsiveness of the sensory epithelium to selected frequencies and the detection of low intensity sound4. They are innervated by unmyelinated type II spiral ganglion neuron fibers and a single efferent nerve fiber innervates many outer hair cells5 (Figure 1A&B).

Degeneration of hair cells, supporting cells and spiral ganglion neurons occurs after a trauma to the cochlea, for example exposure to noise, ototoxicity, ageing, cochlear implantation or a hereditary pathology. Loss of hair cells occurs first, following which there is extensive tissue reorganization to close the lesion. Non-specialised cells migrate from lateral regions of the sensory epithelium and cover the Deiters’ cells which eventually degenerate as well. The pillar cells collapse with loss of the distinctive tunnel of Corti. They are also covered by expanding inner phalangeal cells and inner border cells. The sensory epithelium eventually flattens and is
replaced by a simple cuboidal epithelium6,7 (Figure 1C). In adult mammals, spontaneous regeneration of hair cells is extremely limited and hearing loss is permanent.

4. Hair cell development

Cochlear hair cells and supporting cells are derived from a common progenitor8. The mammalian homolog of the \textit{Drosophila melanogaster} gene \textit{atonal homolog 1} (\textit{Atoh1}) is a proneural basic helix-loop-helix transcription factor and is the earliest known gene expressed in differentiating hair cells9,10. \textit{Atoh1} is also referred to as \textit{Math1} (mouse \textit{atonal} homolog) and \textit{Hath1} (human \textit{atonal} homolog). \textit{Atoh1} is first detected in the base of the cochlea at E12.5. Cellular commitment and differentiation progresses in a wave from the base to the apex of the cochlea from about day E13.5 in mice and occurs over a period of several days10.

The expression of \textit{Atoh1}, and subsequent hair cell specification in progenitor cells during development, is mediated by canonical Wnt/beta-catenin signalling. Wnt/beta-catenin signalling pathways are involved in controlling proliferation, specification and differentiation in development via frizzled receptors. \textit{Atoh1} was found to be a downstream target of Wnt/beta-catenin signalling11,12. There were fewer hair cells after beta-catenin disruption and supernumerary hair cells after beta-catenin over expression in mice. Without beta-catenin, the gap between inner and outer hair cells did not form implicating its role in cell patterning in the developing sensory epithelium, particularly the pillar cells. The lack of pillar cells in beta-catenin knockout mice may have been due to a deficit in FGF8 that is normally released by inner hair cells13 or a direct effect on pillar cells which express leucine-rich-repeat-containing, G-protein-coupled receptor 5 (Lgr5), a Wnt target gene and potentiator of Wnt signalling. Once hair cell fate was established, beta-catenin was not required to maintain \textit{Atoh1} expression11.
At first, Atoh1 is expressed in the cytoplasm and the nucleus of hair cells. As the hair cells mature and begin to express other hair cells markers such as MyosinVI, Atoh1 expression translocates to the nucleus \(^{14}\). Atoh1 expression is sustained until after birth suggesting a role in maturation and function of the hair cells, in addition to differentiation \(^{14}\). In this elegant study, a conditional knockout system was developed in which Atoh1 could be deleted from hair cells at different stages of development. There was a critical time period during which Atoh1 was required for hair cell survival, about 2 days after initiation of Atoh1 expression (E15.5 to E17.5). Loss of supporting cells mirrored the loss of hair cells in the absence of Atoh1 within this time frame. The pattern of Atoh1 dependence followed a basal to apical gradient, whereby hair cells in the basal regions of the cochlea are no longer dependent on Atoh1 by E16.5, while apical hair cells continue to require Atoh1 expression up to at least E17.5. Deletion of Atoh1 at later time points did not affect hair cell number but resulted in defective and disorganised hair cell stereocilia formation, although mechanotransducer channels were still present and functional \(^{14}\). The hair cells are presumed to express additional survival factors by this stage. Possible identities of these factors are Pou4f3 and Gfi1 as mice that are null for these genes exhibit hair cell loss later in development \(^{15,16}\).

5. Supporting cell development

Specification of supporting cells is secondary to hair cell differentiation and occurs by lateral inhibition via Notch signalling \(^{17}\). Lateral inhibition ensures that the correct number and patterning of hair cells and supporting cells are formed during development. Notch signalling blocks differentiation of hair cells \(^{17-19}\), while inhibition of Notch signalling generates supernumerary hair cells in embryonic and neonatal mammals \(^{18,20-22}\).
Notch1 is expressed throughout the developing prosensory epithelium between E12 and E14.5. Expression of the Notch ligands, JAG2 and DLL1, appear in a subset of these cells\(^ {17,21}\). When JAG2 and DLL1 bind to the Notch receptor of a neighbouring cell, gamma secretase-mediated cleavage of the intracellular domain of Notch occurs, which then translocates to the nucleus to activate the expression of Hes1 and Hes5\(^ {17,23}\). Hes1 and Hes5 are transcription factors that down-regulate the expression of Atoh1 and commit cells to differentiate into supporting cells\(^ {24}\). By E18, Notch1 is down-regulated in cells that will become inner and outer hair cells and maintained in cells that will become supporting cells. The Notch-mediated lateral inhibition results in the mosaic patterning of the sensory epithelium in which hair cells do not contact other hair cells. It has been demonstrated that hair cell death is accompanied by loss of supporting cells suggesting a level of reciprocal signalling between the hair cell and the surrounding supporting cells. Further to this, it has been shown that supporting cells up-regulate Atoh1 expression after hair cell loss through a loss of lateral inhibition. This Atoh1 up-regulation is theorized to play a role in the subsequent death of supporting cells through an ill-fated attempt to differentiate into hair cells\(^ {14}\).

6. Atoh1 knockout studies

Deletion of Atoh1 has been shown to result in a complete loss of cochlear and vestibular hair cells and supporting cells\(^ {9,10,25}\). Although supporting cells are absent in Atoh1 knockout mice, Atoh1 was shown to not be directly required for supporting cell formation, instead supporting cell development was induced by the hair cells\(^ {10}\). In support of this, ectopic expression of Atoh1 resulted in ectopic hair cell formation with clusters of surrounding supporting cells in the greater epithelial ridge or Kolliker’s organ in neonatal rat or mouse cochlear cultures\(^ {10,26}\). Transient expression of Atoh1 during development was not sufficient to prevent most hair cell death and
could not support the proper function of remaining hair cells 27. A conditional knockout study to generate viable post-natal mice showed that hair cell precursors undergo apoptosis in the absence of Atoh1 and, as a result, the organ of Corti is transformed into a flattened epithelium in postnatal animals 28. Interestingly, a recent study has shown that up to 30% of cells in the organ of Corti that are initially Atoh1-positive, become supporting cells. Atoh1 expression, therefore does not irreversibly commit prosensory cells to a hair cell fate, but rather it represents a dynamic interaction with other signalling pathways. In these alternative pathways, levels of Atoh1 are initially low and either gradually increase or are inhibited, determining whether a hair cell will form 29. An example of the interaction with other signalling pathways is the antagonistic relationship of Atoh1 and SRY (sex determining region Y)-box 2 (Sox2). Following a period of co-expression, Sox2 becomes down-regulated in cells that will become hair cells. The down-regulation of Sox2 correlates, temporally, with an increase in Atoh1 expression in the same cells 30. Further supporting this antagonistic relationship is the observation that when Atoh1 is transfected into the cochlea, ectopic expression of the hair cell markers, myosinVI and myosinVIIa, was observed in approximately 90% of transduced cells. Conversely, when Sox2 and Atoh1 were co-transfected, the number of transduced cells that expressed myosinVI was reduced to just over 50%, showing that Sox2 acts to inhibit the ability of Atoh1 to induce hair cell formation 30.

7. Spontaneous hair cell regeneration

In non-mammalian vertebrates such as birds and zebrafish, auditory and vestibular hair cells are known to regenerate after insult. The regeneration of hair cells observed in non-mammalian vertebrates after hair cell loss has been shown to be through two distinct mechanisms; direct trans-differentiation of supporting cells into new hair cells and mitotic regeneration. Direct
trans-differentiation is when supporting cells directly convert to hair cells without entering the cell cycle. In mitotic regeneration, supporting cells re-enter the cell cycle and then one or both of the daughter cells become hair cells \(^{31,32}\).

Mitotic regeneration has also been demonstrated in the mammalian vestibular epithelium, with significant hair cell regeneration shown after gentamicin-induced damage \(^{33}\). In contrast, the hair cells of the mammalian cochlea have very limited regenerative capacity after insult. The mechanism behind this difference in regenerative capacity between the mammalian cochlea and vestibular system is not clear; whether mammalian cochlear supporting cells are intrinsically unable to divide and differentiate or whether this is due to an absence or the inhibition of regenerative signals \(^{34}\). A seminal study exploring these factors has shown that mammalian supporting cells are indeed capable of dividing and differentiating into hair cells when isolated and placed in culture, suggesting that the lack of regeneration observed after trauma is due to the inhibition of regenerative signalling \textit{in vivo} \(^{34}\). A recent study by Wang and colleagues examining the signalling which may underlay the regeneration observed in the utricle has shown that after damage there is an both an up-regulation of Atoh1 combined with a down-regulation in the Notch target gene, Hes5 \(^{35}\), suggesting that a similar interplay between pro hair cell factors and inhibitory factors is necessary for spontaneous hair cell regeneration in the vestibular system.

Recent studies have shown spontaneous regeneration in the neonatal mouse cochlea after damage or hair cell loss \(^{36,37}\). In the Bramhall study, supporting cells spontaneously differentiated into new hair cells (predominantly outer hair cells) in the neonatal mouse after ototoxic deafening by aminoglycosides, mostly by trans-differentiation with a limited percentage arising from mitotic regeneration. Inhibition of Notch signalling increased the level
of hair cell regeneration. Spontaneous hair cell regeneration was also reported in the neonatal mouse with an inducible hair cell ablation model. The level of spontaneous regeneration followed a basal to apical gradient, with a greater number of regenerated hair cells observed in the more apical regions of the cochlea. This gradient of spontaneous regeneration follows the gradient of hair cell maturation in the cochlea, with basal regions maturing before the apical regions. Thus the apical regions are more permissive to hair cell regeneration in their less mature state. Supporting cells that neighboured the ablated hair cells spontaneously acquired a hair cell fate through direct trans-differentiation and, to a lesser extent, mitotic differentiation, but the newly regenerated hair cells were short lived. Postnatal hair cells and supporting cells are normally mitotically quiescent, but after hair cell loss mitotic cells were detected between P2 and P5, some of which acquired a hair cell fate. However, spontaneous hair cell regeneration was not observed after P7. Thus, spontaneous hair cell differentiation occurs in neonatal mammalian cochleae by direct trans-differentiation and mitotic regeneration, with the capacity to differentiate being very limited by adulthood when the cochlea has matured.

8. Which cells become new hair cells?

Supporting cells express markers similar to neural stem cells and neonatal supporting cells divide and differentiate into hair cells when placed in culture. It was noticed that specific subsets of supporting cell populations generated the new hair cells after damage to the sensory epithelium. When Lgr5, a Wnt responsive gene, was used to isolate cells from the sensory epithelium, it was found that these Lgr5 positive cells had a 10-fold higher rate of spontaneous conversion to hair cells after damage and an enhanced capacity for self-renewal in vitro. Lineage tracing of Lgr5 and Sox2 positive cells within the sensory epithelium was performed using Lgr5 and Sox2-Cre mouse lines. Lineage models showed that the new hair cells arose from
Lgr5-expressing inner pillar and the third row Deiters’ cells. Lgr5 expressing subsets of supporting cells were therefore determined to be progenitors for hair cells after damage. Some new hair cells in the inner pillar cell and outer hair cell regions stained for prestin (a mature outer hair cell protein), while others co-expressed the supporting cell marker Sox2 with immature hair cell markers and immature stereociliary bundles. Inhibition of notch signalling with a gamma secretase inhibitor increased the production of new hair cells in the damaged cochlea in newborn mice. Lgr5 is part of the Wnt signalling positive feedback loop. Beta-catenin and Wnt signalling were necessary for the trans-differentiation of the supporting cells into new hair cells following damage and notch inhibition. While the majority of the regenerated hair cells arose from direct trans-differentiation, BrdU staining indicated that mitotic regeneration of hair cells also occurred to a limited extent.

9. Characterisation of Atoh1-induced hair cells

In early studies, Atoh1-transduced cells were initially characterised by the expression of the structural hair cell marker myosinVIIa, however, with the advent of more sophisticated labeling techniques and a greater understanding of the molecular makeup of hair cells, regenerated hair cells have been characterised using a much broader cohort of markers. The maturity of regenerated hair cells can be assessed by markers, with early markers of hair cells being myosinVI, myosinVIIa and calbindin, followed by parvalbumin and oncomodulin or prestin being used to label late and terminally differentiated outer hair cells. The stereocilia can also be used to assess the maturity of the hair cell, whereby immature stereocilia are shorter and more disorganised than mature stereocilia. Stereocilia can further be used to differentiate inner and outer hair cells in that inner hair cells have a straight row of stereocilia while outer hair cells have a classical “V” shaped pattern of stereocilia. Functionality
of hair cells is assessed in a number of ways, including the presence of mechanotransduction channels visualised through the uptake of styryl dyes, age appropriate mechanotransduction currents and the presence of ribbon synapses.

To date, regenerated hair cells have been identified predominantly as outer hair cells by their pattern of stereocilia and expression of prestin. However, using a slightly different approach, hair cell regeneration was targeted to the inner hair cell region of the sensory epithelium, in particular the inner border cells and inner phalangeal cells, using Cre-mouse transgenic lines. When Atoh1 expression was introduced into inner border and inner phalangeal cells at birth, hair cells were formed with an immature inner hair cell phenotype, as determined by the shape of the stereociliary bundle, FGF8 expression, calretinin expression (normally stronger in inner hair cells compared to outer hair cells) and lack of outer hair cell-specific prestin expression. The hair cells had functional mechanotransduction channels but their outward current amplitudes remained immature. Furthermore, they did not express the terminal differentiation marker vGlut3. The new hair cells did express the synaptic vesicle protein Otoferlin, but had lower expression of the pre-synaptic ribbon protein Ctbp2. Neuronal fibres were also observed near the new inner hair cells, however, synapses did not form as there was an absence of the post synaptic marker glutamate receptor type 2 (GluR2) surrounding the Ctbp2 puncta of the new inner hair cells. Interestingly, the trans-differentiation process was faster in the inner border and inner phalangeal cells (as little as 6 days) compared to pillar cells and Deiters’ cells (about 3 weeks).

The stage of maturity reached by regenerated hair cells has been variable depending on the age of the animal at the time of induction of Atoh1 expression and the method by which Atoh1 is induced or expressed. In general, newly formed outer hair cells in mature animals did not
express terminal markers of differentiation \cite{48,49}. A recent study examining the ability to convert supporting cells into hair cells using an inducible Atoh1 model demonstrated that in the neonatal and juvenile mouse approximately 10\% of pillar and Deiters’ cells underwent trans-differentiation \cite{48}. The trans-differentiated cells expressed 11 hair cell and synaptic proteins, a process that took around 3 weeks. New hair cells, which were found within the outer hair cell region, also formed stereocilia, contained mechanoelectrical transduction channels and survived for more than 2 months \textit{in vivo}. The transduced cells, however, lacked expression of mature outer hair cell proteins, prestin and onococmodulin, as well as mature hair cell morphology such as the cylindrical cell body shape and the characteristic “V” shaped stereocilia \cite{48}.

10. Gene Therapy

Gene therapy has the unique potential to regenerate the sensory components of the cochlea after hearing loss. This is achieved through the targeted introduction and regulated expression of a transgene in a desired cell or tissue to produce a biological or therapeutic effect. The use of gene therapy has generated a large amount of interest in the last two decades, with over 1800 clinical trials completed, currently underway or approved worldwide at the end of 2012 \cite{50}. Gene therapy has been utilised in numerous conditions ranging from cancer to cardiovascular disease. Neurological diseases have also been targeted with 36 registered phase I, I/II and II trials aimed to treat a variety diseases including multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis \cite{50}. Many of the clinical and preclinical trials have shown potential. A noteworthy example is in the treatment of haemophilia B, whereby four of the six patients that underwent gene therapy were able to discontinue their prophylactic treatment \cite{51}. Unfortunately, this effect was shown to be transient due to an immune response, indicating the
necessity for preclinical testing to ensure efficacy and safety within the context of the targeted condition and tissue.

Gene therapy has a number of benefits over other possible therapies; it allows for localised introduction of transgene(s) to specific cells (via cell-specific promoters), the desired protein is produced for longer periods than can be safely provided by most long-term release devices and, in the case of the Atoh1 gene, gene therapy can be used to replace cells that were thought to be permanently lost.

To achieve the most desirable outcome when utilising gene therapy a number of factors have to be considered. Initially, the intended biological effect needs to be ascertained; whether that be the replacement of a missing gene, the production of a therapeutic protein or the expression of an inhibitory gene. Another important determinate is the tissue of interest, its accessibility and its ability to be transduced. The gene must also be targeted to the desired cell population. This can be crudely achieved by injecting into the specific cochlear compartment in which the cells reside or more specifically via molecular targeting using cell specific promoters or viral vectors.

11. Gene Therapy in the Cochlea

The cochlea is ideal for localized gene therapy. The scala tympani is easily accessible and is the site of cochlear implantation. It can be directly accessed via the round window membrane or via a cochleostomy. After injection into the scala tympani, reporter genes are expressed in cells lining the perilymphatic space, spiral ganglion neurons and within cells of the sensory epithelium52,53 (Figure 2A,B), with the distribution being dependent on the viral vector type and surgical approach. There is some hearing loss associated with this approach, but not significantly more than occurs after cochlear implantation54. The scala tympani can also be indirectly accessed via the vestibular system. After injection of adenovirus into the posterior semi-circular canal,
reporter gene expression is detected within the perilymphatic space of the cochlea with no associated hearing loss55.

The bony wall of the cochlea need not necessarily be compromised to express genes within cochlear cells. Gene therapy vectors such as adenovirus can cross the round window membrane, but with reduced efficiency compared to direct injection into cochlear fluids56, 57. Enhanced transgene expression was observed when hyaluronic acid was added to the round window membrane prior to delivering the adenoviral vector58.

Accessing the scala media of the cochlea containing the endolymphatic fluid is surgically more challenging. It is a smaller compartment with tight junctions surrounding the cells. Experimentally it can be accessed through the basilar membrane or through the lateral wall of the cochlea52, 59, 60, but not without risks of damaging the delicate sensory cells near the injection site and the cells of the stria vascularis, which are involved in the homeostatic regulation of potassium in the cochlea. Some hair cell loss, and in turn, hearing loss occurs using these approaches52, 61. After injection into the scala media, there is localized reporter gene expression in the sensory epithelium, including hair cells, supporting cells, as well as interdental cells of the cochlea52 (Figure 2C,D). Gene therapy with the glial fibrillary acidic protein reporter gene has been used to target supporting cells of the sensory epithelium62. To avoid hearing loss during gene therapy, the cochlear endolymph can be accessed via the endolymphatic sac of the vestibular system with resulting gene expression in the supporting cells of the sensory epithelium63.

After a trauma to the cochlea, the sensory hair cells and supporting cells die and the epithelium rapidly degenerates until it becomes a flattened epithelium. There is a limited time frame during which the Atoh1 transgene can be introduced into supporting cells of the sensory epithelium.
before the supporting cells degenerate. The efficacy of gene therapy to the sensory epithelium was reduced 1 week after severe ototoxic injury in guinea pigs compared to normal hearing guinea pigs. Reporter gene expression within the sensory epithelium was even more compromised when gene therapy was given at 8 weeks after injury \(^1\) (Figure 3). The period of the window of opportunity for gene therapy to the sensory epithelium would vary greatly between different pathologies of hearing loss and between species. The degeneration of the sensory epithelium may be slower in humans, however, it eventually becomes a flattened epithelium as observed in animal studies \(^2\).

12. Hair Cell Regeneration using Gene Therapy

Due to its role in hair cell differentiation during development, Atoh1 has been a prime candidate for regenerating hair cells after damage to the sensory epithelium. Atoh1 has been delivered to the cochlea of embryonic animals \(^3\), \(^4\), neonatal animals \(^5\), \(^6\) and mature animals \(^7\), \(^8\), \(^9\) with hair cell regeneration being achieved to differing degrees of success. Ectopic expression of Atoh1 in embryonic and neonatal animals resulted in greater trans-differentiation of supporting cells to hair cells and greater recovery of hearing after hearing loss compared to mature animals.

Embryonic expression of the Atoh1 gene induces functional ectopic hair cell formation \(^3\), \(^4\).

Cochlear explant cultures were established from E13.5-14.5 embryos and individual cells within the developing sensory epithelium (Kölliker’s organ) were transfected with Atoh1 by electroporation. New hair cells were generated with clusters of supporting cells surrounding the hair cells, reminiscent of the sensory mosaic structure of the normal mature sensory epithelium. The supporting cells surrounding the ectopic hair cells were not positive for Atoh1 suggesting that they were induced by neighbouring Atoh1-positive cells. The induction of supporting cells
was inhibited with a gamma-secretase inhibitor indicating the role of Notch signalling in supporting cell formation10. The level of induction of supporting cells around Atoh1-positive transfected cells decreased with the age of the embryo. It was also shown that only transient ectopic expression of Atoh1 is required for hair cell formation, as a positive feedback loop is initiated in the Atoh1-positive cells10. In another study, embryonic (E11.5) mice that were microinjected with an expression plasmid containing the Atoh1 gene also developed hair cells67. Detailed examination of the ectopic hair cells revealed that they had phalloidin-positive stereociliary bundles with an immature phenotype. The ectopic hair cells attracted neuronal fibres that terminated at the bases of the hair cells. Approximately half of the new hair cells expressed correctly localized ribbon synapse proteins (Ctbp2) suggesting that the nerve fibres could be synapsing with the new hair cells. The new hair cells were also found to have mechanotransduction properties that were similar to normal developing hair cells67.

The sensory epithelium of neonatal animals appears to be just as permissive to Atoh1-induced hair cell formation as embryonic tissue26. Cochlear explants were prepared from P0-P3 rats and the Atoh1 gene was transfected by electroporation or introduced with an adenoviral vector. Ectopic hair cells were observed in the greater and lesser epithelial ridges that normally develop into inner sulcus cells and Hensen’s and Claudius’ cells, respectively. The new hair cells were positive for the hair cell marker myosinVIIa, had stereociliary bundles, were derived from direct trans-differentiation36, 72 and attracted neurite outgrowths despite the abnormal location of the new hair cells73.

Viral gene delivery methods have been used to ectopically express the Atoh1 gene in the cochlea of mature animals49, 61, 68, 70, 71, 74. Initially, young adult guinea pigs with normal hearing were injected with the Atoh1 adenoviral vector via the scala media. Immature hair cells were
observed in the sensory epithelium in ectopic locations, some with recruited neuronal fibres\cite{61}. In a subsequent study, guinea pigs were deafened by ototoxic drugs and the cochleae were injected with adenoviral vectors containing the Atoh1 gene 4 days later. Hair cells exhibited stereociliary bundles and stable, albeit partial, hearing recovery was seen\cite{70}. However, it could not be determined if the new hair cells were regenerated hair cells or whether they were hair cells that recovered or were repaired by the Atoh1 gene. A study in which Atoh1 was expressed in the adult mammalian cochlea of noise-exposed guinea pigs revealed an additional role for Atoh1 in hair cell repair\cite{74}. In this study, adenoviral delivery of the Atoh1 gene via the round window membrane into the perilymphatic fluid resulted in expression in supporting cells only (not in hair cells). Hair cells were still present at the time of gene therapy (7 days after noise exposure) and hearing recovery was reported as a result of repair to the damaged stereocilia. This study highlights the importance of distinguishing between the role of Atoh1 in hair cell repair and hair cell regeneration with regard to hearing recovery. It is necessary to ascertain the level of hair cell degeneration at the time of gene therapy. In Atkinson et al., 2014, guinea pigs were deafened by kanamycin for 4 days. A 4-day deaf control group demonstrated that most hair cells were absent at the time of gene therapy, but there were about 10 residual hair cells per millimeter of the sensory epithelium, just under 10% of the number of hair cells seen in normal hearing guinea pigs. After Atoh1 gene therapy, the number of hair cells had increased significantly indicating trans-differentiation of supporting cells (Figure 4), but it is also possible that some repair to existing hair cells could also have taken place. No hearing recovery was observed in this study, but the study did not extend beyond 3 weeks after Atoh1 inoculation\cite{49}, and other studies indicate that this is the minimum time is needed for supporting cells to convert to hair cells and hearing recovery was observed to take place between 1 and 2 months post-transfection\cite{48,71}.
The induction of hair cell differentiation after ototoxic deafness in mature guinea pigs, however, has only been possible when Atoh1 was introduced within 4-days post ototoxic deafening. Supporting cells are known to be lost with increasing periods of deafness suggesting that the presence of differentiated supporting cells are needed for trans-differentiation to occur. The need for differentiated supporting cells may limit the clinical viability of Atoh1 gene therapy for hair cell regeneration.

Direct trans-differentiation of supporting cells into hair cells depletes the supporting cell population and could compromise the stability and function of the sensory epithelium. Expanding the supporting cell population prior to hair cell regeneration could therefore be required to maintain a stable sensory epithelium that contains appropriately patterned supporting cells and hair cells. The Wnt-responsive Lgr5-expressing supporting cells have the capacity for proliferation and differentiation into hair cells, but this does not occur after hair cell loss in mammals. Other approaches to encourage cellular proliferation might be needed. A study conducted by Chen and colleagues, for example, using cultured sensory epithelia from neonatal mice demonstrated that expression of Pax2 (implicated in proliferation of progenitor cells in the cochlea) and Atoh1 by adenoviral gene delivery increased supporting cell proliferation in both damaged and non-damaged cochleae and these cells differentiated into hair cells with functional mechanotransduction channels.

Assessing the most appropriate vector for gene delivery is also a critical step in evaluating the viability of gene therapy in the cochlea. It is known, for example, that 65-75% of the population have neutralizing antibodies to Adenovirus type 5, which may lower the safety and efficacy profiles of this vector. In a recent study, Adenovirus type 28 has been shown to have superior transfection kinetics to Adenovirus type 5 and have preferential uptake into supporting cells.
Kraft and colleagues trialled the use of Adenovirus serotype 28 rather than the more commonly used Adenovirus type 5 to transfec t cells with Atoh1. Injection of Atoh1 into the perilymph via the posterior canal of profoundly deafened mature mice was shown to result in the regeneration of hair cells and a moderate hearing recovery in the more apical regions of the cochlea when assessed at 2 months post intervention.71

13. Clinical translation of Atoh1 gene therapy

Scientists are now embarking on a clinical trial for Atoh1 gene therapy at the University of Kansas Medical School, led by Hinrich Staecker. About 45 volunteers with severe hearing loss will have the Atoh1 gene injected into their cochlea. The trial will involve the use of adenovirus type 5 with the Atoh1 gene expressed from the glial fibrillary acidic protein promoter which has been shown to restrict gene expression to supporting cells in the cochlea.62 The trial will give us important safety information about gene therapy in the cochlea and the efficacy of the Atoh1 gene in restoring hearing in people with severe hearing loss. An intra-labyrinthine approach is proposed which has been shown to result in gene expression within supporting cells of the cochlea with minimal damage.63

One hurdle to clinical application of gene therapy technologies is the inability to control and modulate the level of gene expression within cells. This could be a critical factor in the regeneration of mature hair cells after damage, as it is known during development and into early postnatal stages in the mouse cochlea that Atoh1 expression is dynamic. Atoh1 is up-regulated as early in development as E12.5 followed by a subsequent down-regulation between E17 and P5 as hair cells mature and become fully integrated and functional.29 In multiple mouse transgenic studies, the duration and level of Atoh1 expression have been found to be important for the outcomes of hair cell differentiation, the resulting type of hair cell (type I or type II),
function and long-term viability \(^{27,48,80}\). In a transgenic model in which Atoh1 expression was down-regulated earlier than normal, non-functional hair cells were formed which degenerated over time, with inner and outer hair cells affected differently \(^{27}\). In another study, brief ectopic expression of Atoh1 in neonatal transgenic mice led to ectopic hair cell induction in the supporting cells of the sensory epithelium, but extended Atoh1 expression was necessary to force more mature supporting cells to trans-differentiate into new hair cells \(^{80}\). Also using transgenic mouse models, another study demonstrated that permanent Atoh1 expression in mature hair cells resulted in their death, while permanent expression of Atoh1 in immature hair cells did not \(^{48}\). Hence, if gene therapy is to one day generate mature hair cells, a mechanism to switch off Atoh1 gene expression may be required. Parker et al have developed a system in which the Atoh1 gene is regulated via a helper gene. Cells express an inactive form of the Atoh1 gene, but when tamoxifen is added, Atoh1 can be activated and deactivated in a regulated manner. Atoh1 need only be expressed to transform supporting cells into hair cells, and once done, the gene can be turned off \(^{81}\).

The use of Atoh1 gene therapy in the cochlea may be applied across a larger range of conditions and not just specifically for the regeneration of hair cells. Indeed, Atoh1 gene therapy enabled hearing recovery in guinea pigs deafened with simulated gun-shot exposure. In this case Atoh1 was shown to repair damaged hair cell stereocilia, demonstrating a more diverse function of the Atoh1 gene in hair cells than purely driving hair cell specification \(^{74}\).

14. Conclusion

Hearing loss is the most common sensory deficit and arises from the loss of sensory hair cells of the cochlea. The loss of hair cells is followed by the degeneration of supporting cells and peripheral fibres of the auditory neurons. The regeneration of hair cells is therefore critical for
restoring hearing function. To achieve this outcome studies have examined the factors necessary for hair cell formation during development. Atoh1, a transcription factor, is necessary for hair cell specification. In concert with hair cell development surrounding cells become supporting cells through Notch-mediated lateral inhibition and a down-regulation of Atoh1. It has been demonstrated that if Atoh1 gene therapy is provided to supporting cells before they degenerate after hearing loss, they can be forced to trans-differentiate into new hair cells, but at the expense of the supporting cell. Atoh1 gene therapy in very young animals results in a high rate of conversion of supporting cells to hair cells. The new hair cells have many of the markers of mature hair cells and are functional. Atoh1 gene therapy in mature mammals has not been as successful to date, with the conversion rate of supporting cells to hair cells being lower and with fewer mature hair cell markers. It is possible that hearing recovery observed in some of the studies to date is mediated through repair of existing hair cells rather than acquired function in the newly converted hair cells.

15. Expert Opinion

The sensory epithelium of the cochlea is a complex structure containing a mosaic of sensory hair cells and supporting cells with afferent and efferent innervation. Acquired or hereditary deafness results in permanent loss of hair cells, supporting cells and innervation. The cochlear implant does a remarkable job of restoring hearing to people with severe to profound deafness. The cochlear implant does have some limitations in certain situations, such as hearing with background noise and conveying tonal languages and the complex characteristics of music. Reversing hearing loss through the regeneration of sensory cells in the cochlea would be a remarkable feat that could benefit millions of people. However, there are many obstacles to overcome to achieve this goal.
The human cochlea is accessible to gene therapy. The best route of application of Atoh1 gene therapy to the cochlea will be one that takes into account the need for the vector to reach the supporting cells of the sensory epithelium and the specificity of the resulting gene expression pattern while minimising side effects from the surgical approach such as dizziness or loss of residual hearing. The fluids of the endolymphatic sac are continuous with the cochlear endolymphatic space (the scala media), allowing access to the supporting cells of the cochlea. Gene therapy to the endolymphatic sac in animals results in gene expression in supporting cells in the cochlea with little to no hearing loss or dizziness. Other routes of administration to the cochlea include gene delivery to the scala tympani. This option is especially attractive if surgery to access the scala tympani is already being considered (e.g. for cochlear implantation). Gene expression has been reported in supporting cells of the sensory epithelium after injection into the scala tympani, but with lower efficiency than direct administration to the endolymphatic space. Direct injection into the scala media of the cochlea, although performed experimentally, would not be ideal due to the loss of hair cells in sensory epithelium near the injection site, the temporary loss of the endocochlear potential and the ionic balance of the cochlear fluids and the potential to damage residual hearing.

Viral gene therapy is finding more and more acceptance as clinical trials continue to demonstrate its safety and efficacy. New generation viral vectors are less immunogenic than their earlier counterparts with very little viral genetic material remaining in the vectors. There are many different serotypes of viral vectors, each with different cell type specificities and this can be used to some advantage when targeting cells such as supporting cells in the cochlea. Gene expression from some viral vectors has been reported to last for many years $^{82-84}$ which is of advantage for some types of gene therapy applications, but not necessarily for Atoh1-induced
hair cell regeneration. If we are to follow the developmental pattern of Atoh1 expression, Atoh1 should be expressed for a short period before being down-regulated in hair cells.

There are three main approaches to transform existing supporting cells into new hair cells after hearing loss: expression of the Atoh1 gene by viral gene therapy; delivering an inhibitor of Notch signalling to the cochlea or, simultaneously stimulating the proliferation of supporting cells to boost the population of supporting cells in the cochlea and inducing hair cell differentiation with the Atoh1 gene. In examining the outcomes of studies performed in adult mammalian cochleae, both Atoh1 gene therapy and the use of Notch inhibitors after damage to the cochlea have merit. There is no doubt that new hair cells are formed from residual supporting cells and that the new hair cells have many of the hallmark features and functions of hair cells. However, the rate of Atoh1-mediated trans-differentiation is low in mature mammals and evidence suggests that new hair cells do not become mature hair cells after Atoh1-induced trans-differentiation in mature mammals. Most reports suggest the new hair cells do attract or recruit spiral ganglion neurons peripheral fibres and synaptic connections appear to be made in some cases. It is difficult to assess whether the new hair cells are functional in mature animals as many studies are hampered by the fact that residual hair cells may have been present at the time of gene therapy giving opportunity for hair cell repair or recovery. Nevertheless, significant hearing improvements have been reported and even a small enhancement in hearing (e.g. 20 dB) would make an enormous difference to cochlear implant users or people with moderate to severe hearing loss.

Trans-differentiation of supporting cells into new hair cells necessitates the presence of residual supporting cells after the onset hearing loss. The pathologies of hearing loss vary remarkably between individuals. In severe cases of hearing loss, the sensory epithelium is flattened and
contains only simple cuboidal cells that do not respond to forced expression of the Atoh1 gene. However, even after a severe insult to the cochlea, there is a window of opportunity for gene therapy in the cochlea where the supporting cells are still present. People with hearing loss would need to be screened for the likelihood of having residual supporting cells as well as the aetiology of hearing loss. People with a genetic defect in a hair cell gene could not undergo Atoh1 gene therapy alone as the resulting hair cells would be equally defective for that gene. An additional therapy would be required to first repair the genetic defect.

Direct trans-differentiation of supporting cells into new hair cells depletes the supporting cell population in the cochlea which may become problematic for the long-term stability of the sensory epithelium. In order to regenerate the sensory mosaic pattern of the cochlea, supporting cells would need to be expanded prior to introducing the Atoh1 gene. This has been achieved in animals, but induction of mitosis in humans is risky and would need further investigation.

So much is now known about hair cell formation during development and after various manipulations of the Atoh1 or Notch signalling pathways. Atoh1 gene therapy studies have demonstrated that loss of hair cells and hearing loss in mammals are not as irreversible as once thought. New hair cells can be produced by directly trans-differentiating supporting cells but with a corresponding loss of the complex structure of the sensory epithelium and it is unknown at this stage whether the incredibly intricate structure of the cochlea can be completely restored after hearing loss with gene therapy.

16. Acknowledgements
The authors of this manuscript would like to acknowledge Action on Hearing Loss (G39), the Garnett Passe and Rodney Williams Memorial Foundation, the National Health and
Medical Research Council (GNT1024350) and the U.S. Department of Health and Human Services-National Institutes of Health for research funding. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program.

17. References

9. Bermingham N, Hassan B, Price S, Vollrath M, Ben-Arie N, Eatock R, et al. Math 1: An essential gene for the generation of inner ear hair cells. Science 1999;284:1837-41. **This study showed that Atoh1-null mice failed to generate inner ear hair cells. This was the first study to demonstrate that Atoh1 is necessary for the development of hair cells in the cochlea and vestibular systems.**
10. Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nature neuroscience 2004 Dec;7(12):1310-8. **This paper extends upon the finding that Atoh1 is needed for hair cell development and demonstrated that it is critical to the formation of both the hair cells and supporting cells of the sensory epithelium.**
17. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999 Mar;21(3):289-92. ** A seminal study, which found that Notch1 and its ligand are expressed in alternating cell types within the developing sensory epithelia and further, the deletion of the Notch1 ligand resulted in a increase in hair cell formation. These findings highlighted the integral role Notch signaling plays in the correct development and patterning of the cochlea.
24. Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nature reviews Neuroscience 2006 Nov;7(11):837-49. ** A well written and clear review which highlights and discusses cell fate determination in the inner ear, with a specific focus on the dynamic and complex regulation within sensory regions during development.
25. Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002 May;129(10):2495-505. * An important study which offered further insight into the role of Atoh1 in the developing cochlea. This paper demonstrated that Atoh1 does not act by specifying the sensory domain but rather has a more limited
role in the differentiation of sensory hair cells from within the already established sensory epithelium.

29. Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 2013 Apr 1;376(1):86-98. *Using lineage tracing this study shows that up to 30% of supporting cells express Atoh1 early during cochlea development, suggesting that Atoh1 alone does not commit cells to a hair cell fate.

32. Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988 Jun 24;240(4860):1772-4. **An integral study, which demonstrated for the first time that hair cells regenerate in the chicken after acoustic trauma. Moreover, this regeneration was shown to occur via the mitotic division of supporting cells.

33. Forge A, Li L, Nevill G. Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 1998;397(1):69-88. **This study highlighted the intrinsic difference in the regenerative capacity of the vestibular system as compared to the cochlea. It was shown that after insult the mammalian vestibular system has some regenerative capacity, albeit incomplete.

34. White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006 Jun 22;441(7096):984-7. **A seminal paper, which was the first to show that cells purified from the postnatal mammalian cochlea retain the ability to undergo mitosis and trans-differentiate into hair cells in vitro

* An interesting study, which observed hair cell regeneration after damage in the neonatal cochlea. These regenerated hair cells however were short lived, which suggested that while factors necessary for hair cell formation are still present early after birth, the factors necessary for survival are absent.

39. Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. The Journal of neuroscience : the official journal of the Society for Neuroscience 2012 Jul 11;32(28):9639-48. * A known marker of Wnt responsive adult stem cells in other systems such as the liver was shown to be also present in the neonatal and adult murine cochlea. Upon purification these cells were shown to have an enhanced capacity to act as progenitor cells and indeed differentiate into hair cells.
48. Liu ZY, Dearman JA, Cox BC, Walters BJ, Zhang LL, Ayraud O, et al. Age-Dependent In Vivo Conversion of Mouse Cochlear Pillar and Deiters’ Cells to Immature Hair Cells by Atoh1 Ectopic Expression. Journal of Neuroscience 2012 May 9;32(19):6600-10. * This study highlighted the effect of age on the ability to convert supporting cells to hair cells. A dramatic decrease in the competency of supporting cells to transform into hair cells within the cochlea was demonstrated with age.
49. Atkinson PJ, Wise AK, Flynn BO, Nayagam BA, Richardson RT. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs. PLOS ONE 2014;accepted.

61. Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003 Jun 1;23(11):4395-400. *This important study was the first to utilise Atoh1 gene therapy in the adult mammalian cochlea in vivo. Further, this study showed that ectopic expression of Atoh1 in the endolymphatic space leads to the generation of immature hair cells in the organ of Corti and in other non sensory regions. This demonstrated that the mature cochlea may retain at least some level of competence to generate new hair cells under the right conditions.

67. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008 Sep 25;455(7212):537-41. *Utilising in utero gene transfer and eletrophysiological measurements this study was able to show that hair cells induced by ectopic Atoh1 are capable of mechanoelectrical transduction and have age-appropriate basolateral conductances.

74. Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, et al. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One 2012;7(9):e46355. *This paper illustrated that Atoh1 not only plays a role in the development of hair cells but also can act to repair hair cells after damage.

Figures

Figure 1. The sensory epithelium of the cochlea. (A) Schematic of the organ of Corti and surrounding structures showing inner hair cells (IHC), outer hair cells (OHC), supporting cells such as phalangeal cells (Ph), inner pillar cells (IP), inner border cells (IB), Deiters’ cells and Hensen’s cells. Interdental cells (ID) of the spiral limbus are also shown. Type I and type II afferent nerve fibres (yellow) can be seen synapsing with inner and outer hair cells, respectively. (B) Histological image of the sensory epithelium in a normal hearing guinea pig with intact inner and outer hair cells and supporting cells. (C) Histological image of the sensory epithelium 8 weeks after exposure to ototoxic drugs. The inner and outer hair cells and supporting cells have degenerated, leaving a ‘flattened’ epithelium.
Figure 2. Gene therapy in the cochlea. (A) Histological image of the cochlea in cross section showing the scala tympani (ST), a readily accessible part of the cochlea containing perilymphatic fluid. Viral vectors can be introduced into the scala tympani via a cochleostomy, through the round window membrane or via the posterior semi-circular canal. (B) Following delivery of an adenoviral vector into the scala tympani, transgene expression (green) is often observed in the cells surrounding the perilymphatic space, but also the sensory epithelium (organ of Corti; OC) in some studies (red=neurofilament heavy chain (spiral ganglion neurons), blue=phalloidin (inner and outer pillar cells)). (C) Image of the cochlea depicting the scala media (SM), a smaller compartment of the cochlea containing endolymphatic fluid. The scala media is accessible via the lateral wall through the stria vascularis (SV), through the basilar membrane (BM) or via the endolymphatic sac (not shown). (D) Following delivery of an adenoviral vector to the scala media, transgene expression (green) is observed within the sensory epithelium, including the
hair cells and supporting cells (D=Deiters’ cells, OHC=outer hair cells, OP=outer pillar cells, IP=inner pillar cell (red=phalloidin (pillar cells), blue=calretinin (Deiters’ cells)).

Figure 3. Effect of deafness on transgene expression in the sensory epithelium. (A, B) In a normal hearing guinea pig, the green fluorescent protein reporter gene from an adenoviral vector is expressed in numerous cells in the sensory epithelium (green) (A=top down view, B=cross section; IP=inner pillar cell (blue), D=Deiters’ cells). (C, D) When gene therapy is given 1 week after ototoxic hearing loss in guinea pigs, the level of transgene expression in supporting cells is significantly reduced due to deafness-induced degeneration of cells in the sensory epithelium (IP=inner pillar cell (blue)). (E, F) When gene therapy is delayed by 8 weeks after hearing loss, the number of residual cell types in the sensory epithelium is severely limited and transgene expression is similarly rare. A, C, E: Red=peripheral fibres, blue=nuclei. B, F: Red=calretinin, blue=pillar cells. D: Red=peripheral fibres, blue=pillar cells.
Figure 4. Atoh1 gene therapy after ototoxicity by aminoglycosides in the guinea pig (A) Four days after ototoxicity there are very few residual hair cells (red) in the sensory epithelium of the cochlea. (B) When Atoh1 gene therapy is given 4 days after administration of aminoglycosides, numerous hair cells are apparent within the sensory epithelium after 3 weeks, most of which co-localise with the GFP reporter gene from the adenoviral vector. Red=myosinVIIa, blue=nuclei, green=green fluorescent protein
Author/s:
Richardson, RT; Atkinson, PJ

Title:
Atoh1 gene therapy in the cochlea for hair cell regeneration.

Date:
2015-03

Citation:
Richardson, RT; Atkinson, PJ, Atoh1 gene therapy in the cochlea for hair cell regeneration.,

Persistent Link:
http://hdl.handle.net/11343/46492