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Abstract
Objective—To use a unique obesity-discordant sib-pair study design to combine differential
expression analysis, expression quantitative trait loci (eQTLs) mapping, and a co-expression
regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to
the obese state.

Study design—Genome-wide transcript expression in subcutaneous human adipose tissue was
measured using Affymetrix U133+2.0 microarrays and genomewide genotyping data was obtained
using an Applied Biosystems SNPlex linkage panel.

Subjects—154 Swedish families ascertained through an obese proband (Body Mass Index
>30kg/m2) with a discordant sibling (BMI>10kg/m2 less than proband).

Results—Approximately one-third of the transcripts were differentially expressed between lean
and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the
largest number of differentially expressed genes under cis-acting genetic control. By using a novel
approach to contrast CAMs co-expression networks between lean and obese siblings, a subset of
differentially regulated genes was identified, with the previously GWAS obesity-associated
NEGR1 as a central hub. Independent analysis using mouse data demonstrated that this finding for
NEGR1 is conserved across species.
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Conclusion—Our data suggests that, in addition to its reported role in the brain, NEGR1 is also
expressed in subcutaneous adipose tissue and acts as a central “hub” in an obesity-related
transcript network.
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Introduction
Obesity, commonly defined as a body mass index (BMI) > 30 kg/m2, has steadily risen in
prevalence globally, a trend that could lead to over a billion people being obese by 2030 1.
Obesity is already a major public health problem, resulting in increased morbidity and
mortality 2 and different hypotheses have been suggested to account for this 3. Genome-wide
linkage analysis alone has identified many genomic regions linked to obesity but replication
has been problematic 4. More recently, common low-penetrant variants associated with
obesity have been identified in genome-wide association studies (GWAS) 5-8. Additionally,
rare copy number variants 9 have also been implicated in the causality of obesity. All of
these approaches rely on the correlation between genomic variation and either obesity status
or an obesity-related quantitative phenotype, e.g. BMI.

Gene expression levels reflect the combined effects of a wide range of genomic
modifications including point mutations, structural variants and epigenetic changes.
Abundance of any specific mRNA is therefore likely to more closely reflect the overall
genomic effects than each type of variation separately. This is especially true for those
changes having a direct effect on the transcription levels, although alterations in protein
structure and function might also have a feedback effect on transcriptional activity 10.
Environmental effects are also likely to be indirectly captured by transcript levels, as
recently shown in leukocyte gene expression studies among three Moroccan sub-populations
where at least 37% of the differentially expressed transcripts were not explainable by genetic
and methylation differences11. Therefore, the assessment of genome-wide gene expression
provides a snapshot of underlying cellular processes and their environmental and genomic
influences.

Since the transcript levels are strongly modulated by polymorphisms in regulatory regions,
they can be powerfully mapped by correlating gene expression with genetic data. The
regions identified by such correlations, named expression quantitative trait loci (eQTLs),
directly pinpoint the functional link between variants in the genome and their biological
effect. For this reason, eQTL analysis has been suggested as a means to identify genetic
variants involved in the susceptibility to complex diseases and to fill the gap between
disease associations identified by GWA and the mechanism by which they contribute to the
disease 12, 13. The choice of tissue is central to a gene expression study, as the expression
profile is context dependent and differs between tissues 14. In addition, within the same
tissue, eQTLs can be specific to the cellular differentiation state 15. Subcutaneous adipose
tissue (SAT) is the tissue of choice to investigate common human obesity because it displays
obesity-related changes in gene expression 16, it has clear endocrine organ characteristics 17,
and samples can be obtained from large numbers of human subjects. Altered expression of a
number of genes implicated with obesity and the metabolic syndrome has been reported in
studies of SAT from obese subjects, including CD36 18 and PFKFB3 19.

Instead of analyzing each transcript independently from the others, novel approaches can
exploit the interactions among transcripts to identify gene networks. They delineate the
complex interrelationships occurring amongst gene transcription levels which can be
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correlated with phenotypic and genomic data for the identification of relevant biological
pathways 12. Measurement of gene expression in multiple tissues in mice has allowed the
delineation of a gene network enriched for genes involved in the inflammatory response and
macrophage activation that is highly correlated with obesity-related phenotypes 20. A similar
overlapping network has been identified in human SAT 21.

Our study takes advantage of the SibPair cohort, which consists of154 families (n=732)
identified by having an obese proband (BMI>30kg/m2) with a BMI-discordant sibling (BMI
difference of at least 10kg/m2) 22. SAT and blood samples were available from the siblings
and peripheral blood from all subjects. These unique discordant families allowed a
combined approach for the identification of genes and pathways involved in obesity. Using a
relatively small sample, we have combined eQTL mapping, differential-expression analysis,
and a novel differential co-expression network approach in sib-pairs to identify biologically-
relevant transcriptional modules and their key regulators to provide insights into the
pathogenesis of obesity.

Materials and Methods
Participants and study design

The study cohort was 154 nuclear families (732 subjects) ascertained via an extremely BMI-
discordant sib-pair (difference >= 10kg/m2)22. Average family size was 4.75. SAT samples
were available from the siblings and peripheral blood from all subjects. Median BMI (1st-3rd

quartiles) was 27.2 (23.0–33.2), range 16.9-57.8. Median age (1st-3rd quartiles) was 45 years
(36–63). Informed written consent was obtained from all participants. This study was
approved by the ethics committee of Gothenburg University.

Nucleic acid isolation
Genomic DNA was isolated from whole blood using the QIAamp DNA Blood Maxi Kit
(Qiagen, Hilden, Germany) according to the manufacturers' recommendations.
Subcutaneous adipose tissue biopsies were immediately frozen in liquid nitrogen and RNA
was extracted using the Qiagen RNeasy Lipid Tissue kit.

Linkage Genotyping
The SNPlex™ System Linkage Mapping Set (http://www.appliedbiosystems.com) was used,
comprising 3 922 SNPs, of which ~75% are in clusters, distributed across 95 probe pools.
Allelic discrimination was performed using an Applied Biosystems 3730xl DNA Analyzer
and GeneMapper3.7 software. Pedcheck 23 was used to detect Mendelian inconsistency.
Genetic markers giving rise to tight double recombinants were identified with MERLIN 24

and treated as missing data.

Gene expression measurement
Gene expression was measured using the Affymetrix Human Genome U133+2.0 array
(Affymetrix, Santa Clara, CA). In brief, RNA was reverse transcribed into cDNA and biotin-
labelled cRNA was prepared by in vitro transcription (Enzo Diagnostics Inc, Farmingdale,
NY). After hybridisation, the arrays were scanned using the Affymetrix GeneArray
GCS3000 scanner and visualised using GeneChip Operating Software (GCOS, Affymetrix).
Gene expression levels were normalised using the Robust Multiarray Average (RMA)
method 25.
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RT-PCR gene expression analysis
Adipose tissue biopsies were obtained from subcutaneous fat depots of two French
volunteers, as previously described 26. For each sample, 1μg of total RNA was transcribed
into cDNA using the cDNA Archive Kit (Applied Biosystems) or Random Primed First
Strand Synthesis (Applied Biosystems). 4μl of a 1/10th dilution of each resulting cDNA was
used in a 20μl reaction, including 10μl of TaqMan gene expression mastermix (Applied
Biosystems) and 1μl of the appropriate assay (Applied Biosystems). Quantitative RT-PCR
analyses were performed using ABI 7900 HT SDS2.3 software and each sample was run in
triplicate. NEGR1 expression levels were obtained relative to three housekeeping genes
(ACTB, TOP1 and POLR2A). The cDNA sample content was normalized by subtracting the
number of copies of the mean of three housekeeping genes from the number of copies of the
target gene (ΔCt = Ct of target gene – Ct of housekeeping genes). Expression was calculated
using the formula 100×2-ΔCt.

Linkage analysis
After quality control, 149 families were considered suitable for analysis. We selected the
subset of transcripts having a unique position or specificity > 70% in the genome (n=27 904
transcripts) using SCAMPA (http://web.bioinformatics.ic.ac.uk/scampa). Linkage was
evaluated using MERLIN-REGRESS24. Although robust to misspecification, MERLIN-
REGRESS requires the population trait's mean, variance, and heritability. Population
parameters were estimated using the variance component model implemented in SOLAR 27.
Since the variance components analysis requires a normal distribution for the trait, we
applied a Box-Cox transformation to each transcript level 28. Gene expression values falling
outside the mean ±3 SDs were excluded from the analysis. Age and sex were included as
covariates in the SOLAR analyses.

To identify cis-eQTLs, a window of 2.5cM left and right of each transcript position was
used. Given this map resolution there are 1 483 transcripts which have no marker within
5cM, therefore a subset of 26 421 transcripts was analysed. All 27 904 transcripts were
included in the trans-eQTL analysis. Linkage disequilibrium among the SNPs was modelled
by specifying in MERLIN-REGRESS to treat as a “super-locus” all SNPs for which the
observed pairwise r2>0.1 29. All P values were calculated from LOD-scores, then corrected
for multiple testing by the FDR procedure 30.

Assessing the significance of trans-eQTLs
To determine the empirical significance of trans-eQTLs, the approach of Emilsson 21 was
used. Linkage analysis of the 27 904 transcripts was repeated using ten genome-wide
datasets simulated by gene dropping under the null hypothesis of no linkage. The top-hit
trans-eQTL for every transcript was extracted from each of the ten genome-wide analyses,
giving a distribution of 279 040 LOD-scores that was used to assess empirical P values for
the trans-eQTLs observed in the original data.

For the detection of hotspots of trans-regulation, we are interested in the probability for
different signals, each of them genome-wide significant, to randomly arise at the same
location. Hidden underlying correlation structure between the IBD at a genetic location and
the transcription levels might influence the occurrence of false coincident linkages. The 5%
LOD-score observed in the simulated dataset was used as threshold for the genome-wide
significance of each analysed transcript in our data. The number of coincident linkages was
then recorded at each marker location. Applying the same procedure to the simulated
dataset, we obtained the distribution of coincident linkages under the null hypothesis of no-
linkage. We used this distribution to assess empirical P values for the size of the observed
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coincident linkages. Finally, multiple test correction was assessed using the FDR procedure
30.

Differential expression
Log-transformed expression levels for the whole set of 54 675 transcripts were corrected for
age and sex and 119 pairs of extreme sibs were selected. The Limma package was used to
identify significant genes that were over- or under-expressed 31. Linear and robust
regressions were performed separately, before applying the Empirical Bayes shrinkage
method, obtaining similar results. Paired design was taken into account and specified
accordingly. Correction for multiple testing was performed using Storey's FDR procedure 32

on the P values of the shrunk test statistics.

Differential co-expression analysis
Diseases can often result from the dysregulation of a gene network 33. Differential co-
expression analysis 34 35 might help in identifying those genes within the network that lead
to the disruption of the regulatory mechanisms.

We propose a novel approach of testing the difference between gene networks in two
groups. Firstly, we built obese and lean relevance networks with correlation matrices
calculated using Kendall's tau correlation 36 in order to robustify the analysis. Then we
contrasted the two networks calculating the differences between the transcript-transcript
correlation matrices. Significant difference were evaluated using permutation tests 37 with
different resample schemes chosen according to the two samples dependencies. Empirical P
values were computed as the proportion of the differences observed in the permuted data
sets that were equal or greater than what was observed in the original data set. An FDR
thresholding procedure 32 was applied to the empirical P values to highlight the most
significant differences.

Our approach, although similar in spirit to other methods that look at differences in
coexpression networks between different conditions/or case control groups (for a review see
38), is new in many respects. Firstly, through a model-free permutation test, we test directly
whether the observed correlations differences are significant so we are not considering
differences in the graph's topology 39. Secondly, simply changing the sampling scheme for
the permutation test, we can accommodate different levels of dependence between the
groups. Thirdly, we do not consider just strong (positive or negative) correlations or strong
differences using ad hoc thresholding 40. Selection of what is relevant is obtained by
applying the FDR procedure. Finally, the network module is defined as the connected
component after FDR calculation, avoiding the ad hoc metric distances required in cluster
algorithms 40, 41

Identification of obesity-related biological pathways
At 10% FDR level we selected those differentially expressed transcripts for which cis-
eQTLs were also identified. Enrichment of KEGG pathways was assessed with DAVID.
Using all differentially expressed transcripts belonging to identified KEGG pathways and
the same sub-sample selected by the Limma analysis, we applied the differential co-
expression analysis approach at 10% FDR level. To take into account the paired design, we
randomly relabelled the data within each pair in each permuted data set.

We tested whether the number of connections observed for the analysed genes was larger
than that expected under the null hypothesis of these genes being randomly connected 42.
We also contrasted 1 000 relevance networks between obese and lean subjects generated
using randomly-selected transcripts. The maximum number of connections was recorded for

Walley et al. Page 5

Int J Obes (Lond). Author manuscript; available in PMC 2012 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



each simulation to evaluate the empirical significance for the most connected genes in the
original dataset.

Validation of the differential co-expressed network in mouse
To validate the differential co-expression network identified in human SAT, we used
adipose tissue gene expression data that were available from a mouse F2 intercross, although
this was from white adipose tissue rather than pure subcutaneous adipose tissue 43. The first
and third quartiles of mouse weight were used to select the most obese and most lean mice
(n=144). Orthologous genes were identified using Ensembl Biomart (build 37) 44. For
comparison, the differential co-expression analysis in humans was re-evaluated using the
subset of genes also present in the mouse dataset. To assess the empirical significance of the
difference observed between relevance networks, we applied the differential co-expression
analysis approach at 10% FDR level. Assuming the independence of the two samples, in
each permuted data set the pooled sample was randomly split preserving the original sample
size of the two groups.

Statistical assessment was carried out to determine whether any gene showed a number of
connections in both the human and mouse differential co-expression networks higher than
expected under the assumption of independence. Assuming that the number of connections
in each network follows a Poisson distribution, we simulated 1 000 000 times a sample of n
paired observations from two independent Poisson, with n equal to the number of genes used
to build the two networks. In each simulation we calculated the proportion of connections
for the same gene in both networks and we recorded the highest joint proportion which,
under the null hypothesis, corresponds to the product of the two marginal distributions.
Finally, the empirical distribution of the highest joint proportion was used to evaluate the
empirical P value for each pair of significant genes identified in both the human and mouse
difference relevance networks.

Correlation of NEGR1 Gene expression in human SAT and hypothalamus
In order to investigate the possibility of correlation between expression of NEGR1 in
adipose tissue and in the hypothalamus, a publicly available dataset was used (NCBI GEO
accession number GSE3526) 45. This study analysed gene expression in different normal
tissues from ten healthy donors using the Affymetrix Human Genome U133 Plus 2.0 Array.
Genome-wide expression levels in hypothalamus were available for eight subjects. For three
subjects, expression levels were also available for adipose tissue. We assessed NEGR1
correlation in expression levels between the two tissues, using the genome-wide data to
generate a null distribution of no association. An empirical P value was derived using one
million permutations.

Results
Differentially expressed transcripts

We determined which transcripts were differentially expressed between obese and lean
subjects. The results are reported in Table 1. Obesity showed a global effect on genome-
wide gene expression. A majority (55%) of the differentially expressed transcripts were up-
regulated in lean subjects. DAVID/KEGG analysis of the differentially expressed transcripts
did not identify significant enrichment for any obvious obesity-related pathway.

Detection of cis-eQTLs
Given the inter-SNP map distances, we defined a cis-eQTL signal for each transcript as the
maximum LOD-score obtained within 2.5cM 5′ or 3′ of each transcript position in the
genome. There were 26 421 transcripts with a SNP marker within 5cM. Median (1st - 3rd
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quartile) heritability was 0.19 (0.05 – 0.34). The maximum LOD-score was detected at a
median (1st - 3rd quartile) distance from the centre of the transcript of 1.5 cM (0.8 - 2.1cM).
We identified 1 063 (4%) eQTLs at 10% FDR level. The twenty cis-eQTLs with the highest
LOD-scores are shown in Table 2. As expected, cis-eQTLs were detected for those
expression traits with a heritability score of zero or close to zero but traits with higher
heritability also had higher LOD-scores.

Detection of trans-eQTLs
For each transcript we recorded the maximum peak LOD-score located on a chromosome
different to the chromosome where the transcript was located. Using simulations (see
Methods) with a 10% FDR, we identified 50 significant trans-eQTLs distributed across 12
chromosomes (see Table 3). Although most trans-eQTLs were not significant after multiple
testing correction, we noted that trans-linkage signals for many transcripts were
concentrated in the 1p13.3-q23.3 region. The empirical probability of observing coincident
linkage was tested by simulating under the null hypothesis of no linkage. In the simulations,
when a false positive was detected for a transcript, a number of correlated transcripts also
showed a linkage peak in the same region, as expected. Using the empirical probability of
coincident linkages through the genome, we determined a significant clustering of 374
transcripts in the 1p13.3-q23.3 region at 10% FDR.

Biological pathways involved in obesity
Given the set of 1 063 cis-eQTLs, pathway enrichment analysis using DAVID 46, 47

identified the KEGG insulin signalling pathway as the most significantly enriched
(P=1.6×10−2). The proportion of differentially expressed genes in this pathway did not differ
from that observed in the whole dataset. No significant enrichment was observed for the
small number of trans-regulated genes identified in this study. For the hotspot of trans-
regulators on chromosome 1p13.3-q23.3 the proportion of obesity-related transcripts was
again not different from what would be expected at random. Significant enrichment was
observed for genes in the apoptosis pathway (P=5.5×10−3) but no obvious obesity
candidates were present in this very large region.

To identify obesity-related networks that include transcripts under genetic control, we
focused on 425 transcripts that for an FDR of 10% were both differentially expressed
between lean and obese subjects and under cis-acting regulation. Using an EASE 48 score
threshold of 0.1 in DAVID to rank categories of genes, only the Cell Adhesion Molecule
(CAMs) KEGG functional grouping was highlighted, which in our dataset contains 160
transcripts (corresponding to 76 genes), eight of them (corresponding to seven genes) under
cis-regulation. Relevance gene networks were constructed separately in obese and lean
subjects using these 160 transcripts and the empirical significance of the observed
differences in co-expression among pairs of transcripts in the two networks evaluated by
permutations (see Methods).

The lean and obese relevance networks and their contrast are shown in Figure 1. Table 4
lists the CAMs genes and their number of connections in the contrasted network, i.e. the
number of significantly different correlations (FDR < 10%) of each gene with the remaining
genes between the two groups. The neuronal growth regulator 1 (NEGR1) gene was the
most connected gene with nine edges, while four significant connections were observed for
HLA-DQB2, three for ALCAM, and two for HLA-DQA2, ITGAM, and CD86. We tested
whether the number of connections observed for these genes was larger than that expected
by chance. Using as the null distribution a Poisson random variable with mean equal to the
average connectivity in the network, the 9 connections observed for NEGR1 were
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considered as a rare event (P=4.4×10−10). Having four, three, and two connections in this
dataset corresponds to P values of 2.7×10−4, 0.002, and 0.02, respectively.

We also evaluated the empirical significance of the connectivity observed for these genes by
contrasting relevance networks (between obese and lean subjects) randomly generated by
using the same number of transcripts and recording the gene with highest connectivity in
each simulated dataset. Out of 1 000 replicates, sporadic differences were observed between
the obese and lean correlation matrices, as expected, but none of them showed a similar
number of differences with respect to the original dataset. In no cases did a sample size of
160 transcripts contain a gene with nine edges. Marginal significance was observed for
HLA-DQB2 (P=0.028).

Validation of the CAMs network in mouse
From the whole set of 76 genes belonging to the human CAMs pathway, 57 orthologous
genes were present in a mouse dataset 43, corresponding to 66 mouse transcripts. To assess
the importance of the NEGR1 gene in both humans and mice, we first restricted the set of
CAMs genes in the human data to those which were also present in the mouse, resulting in a
set of 115 human transcripts. Contrast of the co-expression networks were carried out in
human and mouse and significant results filtered using a 10% FDR level. Table 5 shows the
list of significantly connected genes from the mouse analysis, highlighting that NEGR1 is
highly connected in the contrasted mouse network as well. The mouse differential relevance
network contained an overall larger number of connections, probably reflecting higher intra-
group homogeneity and reduced environmental noise in this dataset. We ordered each gene
with respect to the observed joint connectivity in both networks. The empirical significance
of its rank was assessed through simulations under the null hypothesis of networks'
independence (see Methods). Only NEGR1 showed a significant departure from this
assumption (P=2.1×10−5) indicating that this gene is integral to both the human and mouse
networks.

Expression of the NEGR1 transcript in SAT
The NEGR1 gene, central to the contrasted co-expression network, is expressed at high
levels in brain 7. Using quantitative real-time PCR we demonstrated that NEGR1 is also
expressed in SAT (as well as heart and skeletal muscle) using a commercially-available
tissue panel and two independent unrelated human SAT samples (Figure 2).

Correlation of NEGR1 expression in human SAT and hypothalamus
NEGR1 expression levels were significantly correlated between adipose and hypothalamus
tissues (r = 0.99; P value = 0.020). This places NEGR1 in the top 3% of the most correlated
transcripts genome-wide. We also assessed the empirical significance of our finding using
genome-wide expression data in the two tissues to generate a null distribution of no
association (empirical P value = 0.022).

Discussion
An important goal of systems biology is the identification of biological pathways and
genetic networks underlying complex human diseases. We studied genome-wide gene
expression in SAT and its genetically determined variation in families ascertained through
sib-pairs discordant for obesity. The expression of about 30% of all genes was significantly
altered in the obese state, confirming a broad effect of obesity on SAT gene expression 21.

Linkage analysis identified a large number of significant eQTL, most of them localized in
cis, and a lesser number of trans-acting signals perhaps due to reduced power of detection.
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Gene Ontology and pathway analyses of the cis-regulated genes demonstrated that they were
enriched for genes involved in the insulin signalling pathway. The identification of genetic
regulation of the insulin pathway is intriguing as it may indicate a role for SAT in glucose
homeostasis and identify its contribution to the development of polygenic type 2 diabetes 49.
Clear identification of genetic regulation of this pathway in SAT suggests that exploration of
the regulated genes may give valuable insights into the fact that only a minority of obese
subjects develop T2D, and those that do, typically have insulin resistance, metabolic
syndrome and insulin secretion defects 50. No significant biological clustering was observed
for the small number of trans-regulated genes identified in this study. A group of 374
transcripts suggested the presence of a significant hotspot for trans-regulation on
chromosome 1p13.3-q23.3 and it may be of note that this overlaps the well-replicated T2D
linkage locus of 1q21-q25 51. Significant enrichment was observed for genes in the
apoptosis pathway but no obvious candidates could be identified in this very large region.

While differential expression analysis can identify those genes and pathways with a causal
or reactive role in obesity, genetic analysis can highlight which of them are under genetic
control and therefore likely to be “functionally” transcribed in SAT cells 52. Therefore,
whereas differential expression may be a result of the “obesogenic environment”, those
biological pathways enriched for differentially expressed and genetically controlled genes
are more likely to have a causative role in the development of obesity. The subset of cis-
regulated transcripts which were also differentially expressed between lean and obese
subjects suggested a possible role for genes belonging to the CAMs functional grouping.
Contrasting CAMs co-expression networks between lean and obese subjects identified a
subset of genes whose pattern of co-expression was significantly associated with the obese
state. We found NEGR1 as the central highly-connected gene of this subset and replicated
this observation using a mouse expression dataset, thus validating its central role for this
pathway. In the context of disease, the topology of gene networks is often determined by key
genes showing a high degree of connectivity. Indeed, highly connected genes are likely to
encode essential genes 53 which are often evolutionarily conserved 54. Genes showing an
intermediate number of connections have been shown to be more likely to harbour inherited
mutations for common diseases 55. Whereas NEGR1 was the most connected gene in the
contrasted network, it showed intermediate connectivity within each group-specific co-
expression network, thus supporting its possible role as a disease gene. The GiANT
consortium meta-analysis of obesity GWA studies reported that genetic markers near the
NEGR1 gene are associated with obesity 7.

The NEGR1 protein is a member of the immunoglobulin superfamily, is highly expressed in
the hypothalamus 56 where it appears to modulate synapse number in neurons 57 and this
makes it a good functional candidate for obesity 58, especially when considering obesity as a
disorder having a neurobehavioral origin 59. Our findings demonstrate that NEGR1 is
expressed in human SAT where it appears to be central to the network of the most
differentially-expressed set of functionally-related genes between lean and obese subjects.
Using publicly-available data 60 we observed high correlation in the expression levels of
NEGR1 between human subcutaneous adipose and hypothalamus tissues. These results
suggest a similar expression pattern for NEGR1 across tissues. Thus, transcriptional
regulation of NEGR1 might not be restricted to neural development and might involve
additional mechanisms shared by other tissues.

In addition to NEGR1, other genes in the CAMs network have been previously shown to be
over-expressed in SAT. In a study of BMI-discordant identical twins 61 the up-regulation of
inflammatory and cytoskeleton pathways and down-regulation of energy metabolism and
cell differentiation pathways was clearly demonstrated. Specifically, an over-expression of
MHC Class II transcripts in obese subjects was reported and these are present in our CAMs
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relevance network. This further supports the utility of our approach and suggests that other
genes within the identified obesity subset of CAMs genes might be good candidates for
further investigation.

In summary, we have identified a subset of genes that are both differentially-expressed
between lean and obese subjects and are under cis-regulation, and so are very good
candidates to investigate further for the presence of gene variants regulating their expression
and thus contributing to obesity. We have applied a novel differential co-expression analysis
strategy to identify NEGR1 as a gene central to the CAMs network in the obese state and
confirmed this finding in a different species.
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Figure 1. Differential co-expression analysis of CAM gene expression in human subcutaneous
adipose tissue
Differentially co-expressed network of the CAMs functional grouping resulting from the
contrast between obese (A) and lean (B) networks at FDR 10%. Red and blue edges
represent negative and positive correlations respectively. For simplicity, gene names are
only shown for the external nodes in (A) and (B).

Walley et al. Page 14

Int J Obes (Lond). Author manuscript; available in PMC 2012 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. NEGR1 expression levels in human tissues
Relative expression of the NEGR1 transcript in human subcutaneous adipose tissue (SAT)
compared to expression in other human tissues from a commercially-available multiple
tissue panel.
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Table 1

Numbers (and percentage) of differentially expressed transcripts between lean and obese subjects identified
using the Limma package at different FDR levels using the linear regression option. Number (and percentage)
of upregulated transcripts in obese subjects is also provided.

FDR
level

Transcripts differentially expressed (%) Upregulated in obese (%)

5% 12 621 (23) 6 179 (49)

10% 16 454 (30) 7 478 (45)

20% 23 251 (43) 9 679 (42)
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Table 4

Genes showing significantly different co-expression between lean and obese human SAT CAMs networks at
FDR 10% in descending order of their number of connections

Gene Symbol Gene Name Connectio ns

NEGR1 neuronal growth regulator 1 9

HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 4

ALCAM activated leukocyte cell adhesion molecule 3

CD86 CD86 antigen 2

HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2 2

ITGA9 integrin, alpha 9 2

ITGAM integrin, alpha M (complement component 3 receptor 3
subunit)

2

SELP selectin P (granule membrane protein 140kDa, antigen CD62) 2

CADM1 cell adhesion molecule 1 1

CD99 CD99 antigen 1

GLG1 golgi apparatus protein 1 1

HLA-DMB major histocompatibility complex, class II, DM beta 1

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 1

HLA-DRB5 major histocompatibility complex, class II, DR beta 5 1

ITGA8 integrin, alpha 8 1

ITGAL integrin, alpha L 1

ITGB1 integrin, beta 1 1

ITGB2 integrin, beta 2 1

NLGN1 neuroligin 1 1

NRCAM neuronal cell adhesion molecule 1

NRXN1 neurexin 1 1

PTPRM protein tyrosine phosphatase, receptor type, M 1

PVRL3 poliovirus receptor-related 3 1

SIGLEC1 sialic acid binding Ig-like lectin 1, sialoadhesin 1
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Table 5

Genes showing significantly different co-expression by contrasting the mouse SAT CAMs networks between
mice in the first and third quartile of the weight distribution at 10% FDR level in descending order of their
number of connections.

Gene symbol Gene name Connectio ns

SDC2 syndecan 2 25

CLDN11 claudin 11 23

CDH2 cadherin 2 22

PTPRF protein tyrosine phosphatase, receptor type, F 21

NEGR1 neuronal growth regulator 1 20

NRXN1 neurexin I 19

F11R F11 receptor 18

NLGN1 Neuroligin 1 17

HLA-DRB5 major histocompatibility complex, class II, DR beta
5

16

ITGB1 integrin beta 1 16

JAM2 junction adhesion molecule 2 16

PTPRM protein tyrosine phosphatase, receptor type, M 14

SIGLEC1 sialic acid binding Ig-like lectin 1, sialoadhesin 13

VCAN versican 13

ALCAM activated leukocyte cell adhesion molecule 12

ITGB8 integrin beta 8 12

NRXN3 neurexin 3 12

CLDN15 claudin 15 11

ICAM1 intercellular adhesion molecule 10

JAM3 junction adhesion molecule 3 10

SPN sialophorin 10

CADM1 cell adhesion molecule 1 9

PTPRC protein tyrosine phosphatase, receptor type, C 9

CLDN5 claudin 5 8

ITGA8 integrin alpha 8 8

ITGAL integrin alpha L 8

ITGAM integrin alpha M 8

ITGAV integrin alpha V 8

SELPLG selectin, platelet (p-selectin) ligand 8

CD274 CD274 antigen 7

CD86 CD86 antigen 7

CLDN19 claudin 19 7

HLA-DQB2 major histocompatibility complex, class II, DQ beta
2

7

ITGA9 integrin alpha 9 7

MPZL1 myelin protein zero-like 1 7

NCAM1 neural cell adhesion molecule 1 7
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Gene symbol Gene name Connectio ns

CD2 CD2 antigen 6

HLA-DOA major histocompatibility complex, class II, DO alpha 6

SELP selectin, platelet 6

VCAM1 vascular cell adhesion molecule 1 6

CD4 CD4 antigen 5

CLDN9 claudin 9 5

NEO1 neogenin 5

PVRL3 poliovirus receptor-related 3 5

GLG1 golgi apparatus protein 1 4

PVRL2 poliovirus receptor-related 2 4

NCAM2 neural cell adhesion molecule 2 3

NRCAM neuron-glia-CAM-related cell adhesion molecule 3

CD34 CD34 antigen 2

ITGB2 integrin beta 2 2

NLGN3 neuroligin 3 2

CD28 CD28 antigen 1

CD8B CD8b antigen 1

PDCD1 programmed cell death 1 1
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