
Asynchronous Knowledge with Hidden Actions in the
Situation Calculus

Ryan F. Kelly, Adrian R. Pearce1,∗

Department of Computing and Information Systems

The University of Melbourne

Victoria, 3010, Australia

Abstract

We present a powerful new account of multi-agent knowledge in the situation
calculus and an automated reasoning procedure for knowledge queries. Ex-
isting accounts of epistemic reasoning in the situation calculus require that
whenever an action occurs, all agents know that an action has occurred. This
demands a level of synchronicity that is unreasonable in many multi-agent
domains. In asynchronous domains, each agent’s knowledge must instead
account for arbitrarily-long sequences of hidden actions. By using a persis-
tence condition meta-operator to augment traditional regression techniques,
we show how agents can reason about their own knowledge using only their
internal history of observations, rather than requiring a full history of the
world. The result is a more robust and flexible account of knowledge in the
situation calculus suitable for asynchronous, partially-observable multi-agent
domains.
Keywords: Situation calculus, Knowledge, Epistemic reasoning

1. Introduction

In their landmark paper Knowledge, Action, and the Frame Problem,
Scherl and Levesque [45] incorporate knowledge-producing actions into the

∗Corresponding Author
Email addresses: ryan@rfk.id.au (Ryan F. Kelly), adrianrp@unimelb.edu.au

(Adrian R. Pearce)
1Tel: +61 3 8344 1399, Fax: +61 3 9348 1184

Preprint submitted to Elsevier January 5, 2015

situation calculus [37], inheriting Reiter’s solution to the frame problem [38]
and so enabling use of the regression operator to reason about the changing
knowledge of an agent. Extensions to multiple agents [48] and concurrent ac-
tions [44] have produced an expressive logic of knowledge, action and change
in which regression provides an automated reasoning procedure

While powerful, this formalism has a restriction that can make it unsuit-
able for modelling complex multi-agent domains. It requires that whenever
an action occurs, all agents know that an action has occurred, demanding
a level of synchronicity that is unreasonable in many multi-agent domains.
If this restriction is lifted then each agent’s knowledge must account for
arbitrarily-long sequences of hidden actions [21], and proofs about knowl-
edge must use a second-order induction axiom for quantifying over all future
situations. This precludes the use of regression for automated reasoning. It
also makes it difficult for agents to reason about their own knowledge, as
they may not have enough information to formulate an appropriate query.

We overcome this limitation by combining two elements – an explicit
representation of an agent’s local perspective and a persistence condition
meta-operator – to formulate an account of knowledge in the situation calcu-
lus that can faithfully represent the hidden actions inherent in asynchronous
domains while maintaining regression as a key tool for automated reasoning.

To decouple knowledge from the specific actions that have occurred, we
explicitly reify the local observations made by each agent, so that every situa-
tion corresponds to an agent-local view. An agent is said to know proposition
φ if and only if φ is true in all situations matching its current view. Our work
thus has strong parallels with the classic view-based account of knowledge
of Halpern and Moses [15], but grounded in the situation calculus and with
an emphasis on regression for automated reasoning. This work appeared in
preliminary form in [17]; the current paper presents an expanded treatment
including proofs, properties and application domains.

The main challenge we overcome is developing regression rules that can
handle arbitrarily long sequences of hidden actions. To ensure its knowledge
is valid, an agent must reason about all future situations that are compati-
ble with its observations. Such universal quantification over situation terms
requires a second-order induction axiom, which the standard regression op-
erator cannot handle. In previous work we have developed the persistence
condition operator to handle this induction as a meta-level fixpoint calcula-
tion [19]. Using this operator to augment the regression techniques developed
by Scherl and Levesque [45], we maintain their elegant solution to the frame

2

problem while handling arbitrarily long sequences of hidden actions.
The formulation is shown to respect basic intuitions about how knowledge

should behave, and to preserve important properties of the agent’s epistemic
state through the occurrence of actions. Moreover, it is elaboration toler-
ant, automatically preserving these properties in the face of more complex
information-producing actions, such as the guarded sensing actions of [32],
that can be tricky to axiomatize correctly in existing formalisms.

Decoupling knowledge from action in this manner makes it easy to express
varying degrees of observability, from actions that are public through to ones
that are completely hidden. To illustrate, we present a running example
based on the well-known “Hunt the Wumpus” domain [41] which has been
previously used to demonstrate the interleaved sensing and action typical of
realistic domains in the situation calculus [42]. Our variant is complicated
by the presence of multiple agents and partial observability of actions:

Ann and Bob are hunting a Wumpus in a dungeon with many in-
terconnecting rooms. They can fully observe each other’s actions
if they are in the same room, can hear each other’s actions from
adjacent rooms, and have no other means of synchronisation.

Like any Wumpus, this one does not move, causes a stench in all
adjacent rooms, and if shot will emit a piercing scream that can
be heard anywhere in the dungeon.

Can Ann and Bob coordinate their knowledge and actions in order
to find and shoot the Wumpus?

The possibility of hidden actions makes this domain difficult to represent,
let alone reason about, in standard theories of knowledge in the situation cal-
culus. Our approach offers a straightforward formulation and an automated
reasoning procedure.

Further demonstrating the utility of our approach, we show how the new
regression rules can be applied using an agent’s individual view, rather than
requiring a full situation term. Agents can thus use our techniques to reason
about their own knowledge using only their local information, making the
formalism suitable both for reasoning about, and for reasoning in, rich multi-
agent domains.

The end result is a significantly more general and robust theory of knowl-
edge in the situation calculus that still permits an automated reasoning pro-
cedure. There is a large body of work that could benefit from our formalism,

3

including: specification and verification of multi-agent systems [52]; theories
of coordination [13] and ability [22]; reasoning about the epistemic feasibility
of plans [23]; analysing multi-player games [1]; and our own work on the com-
putation of complex epistemic modalities [18] and the cooperative execution
of Golog programs [16].

The paper now proceeds with a review of the standard account of multi-
agent knowledge in the situation calculus, before treating the individual
knowledge of each agent in the face of hidden actions. We develop the axioms
for our new observation-based account of knowledge in Section 3 and develop
a regression rule for our formalism using the persistence condition operator
in Section 4. Potential applications are shown in Section 5, where we show
how our approach to axiomatising observations overcomes several difficulties
encountered in previous formulations. An illustrative example of its use for
reasoning about a partially-observable domain is provided in Section 6.

2. Background

Our work utilises the situation calculus [28, 37] with multiple agents [48]
and concurrent actions [40], and we begin from the standard account of
knowledge due to Scherl and Levesque [45]. Several conservative extensions
to the standard situation calculus meta-theory are also employed: the Poss
predicate is subsumed by a general class of action description predicates ;
the unique names axioms for actions are subsumed by a general background
theory ; reasoning is performed using the single-step regression operator along
with a new reasoning tool called the persistence condition operator [19].

There are of course a wide range of related formalisms for reasoning about
knowledge, action and change, which we do not directly consider in this pa-
per. We find the notation and meta-theory of the situation calculus particu-
larly suitable for expressing our main ideas. Moreover, the strong underlying
similarities between the major action formalisms should allow these ideas to
transcend the specifics of the situation calculus [46, 53, 54].

2.1. The Situation Calculus for Multiple Agents
The situation calculus is a many-sorted language of first-order logic aug-

mented with a second-order induction axiom. Its has the following sorts:
Agent terms represent the agents operating in the world; Action terms
are functions denoting individual instantaneous events that can cause the
state of the world to change, with the initiating agent indicated by their first

4

argument; Concurrent terms are non-empty, finite sets of actions that oc-
cur simultaneously; Situation terms are histories of the actions that have
occurred in the world, with the initial situation represented by S0 and suc-
cessive situations built using the function do : Concurrent × Situation →
Situation; Object terms represent any other object in the domain. Fluents
are predicates or functions that represent properties of the world that may
change between situations; they take a situation term as their final argument.

We follow standard naming conventions for the situation calculus: lower-
case Roman names indicate variables; upper-case Roman names indicate con-
stants; Greek letters indicate meta-variables and meta-operators; macros are
presented in bold face; all axioms universally close over their free variables.
The connectives ∧, ¬, ∃ are taken as primitive, with ∨, →, ≡, ∀ defined in
the usual manner. The name s is used for variables of sort Situation, a for
sort Action, c for sort Concurrent, agt for sort Agent and x for sort
Object. The notation x̄ indicates a vector of terms of context-appropriate
sort and arity.

Some example statements from the “Hunt the Wumpus” domain are “Ini-
tially everyone is in the first room of the dungeon, R1” and “Bob is not in
room R1 after moving to room R2”. Written formally:

∀agt : In(agt, R1, S0)

¬In(Bob,R1, do({move(Bob,R2)}, S0))

The dynamics of a particular domain are captured by a set of sentences
called a basic action theory. Queries about the behaviour of the world are
posed as logical entailment queries relative to this theory.

Definition 1 (Basic Action Theory). A basic action theory, denoted D, is
a set of situation calculus sentences (of the specific syntactic form outlined
below) describing a particular dynamic world. It consists of the following
disjoint sets: the foundational axioms of the situation calculus (Σ); action
description axioms defining various aspects of action performance, such as
preconditions (Dad); successor state axioms describing how primitive fluents
change between situations (Dssa); axioms describing the value of primitive
fluents in the initial situation (DS0); and axioms describing the static back-
ground facts of the domain (Dbg):

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg

5

These axioms must satisfy some simple consistency criteria to constitute a
valid domain description; see [37] for details. This is a conservative extension
of the definition used by Pirri and Reiter, designed to accommodate our
forthcoming extensions.

The uniform formulae can be thought of as properties of the state of
the world, and are basically logical combinations of fluents referring to a
common situation term. The meta-variable φ is used to refer to an arbitrary
uniform formula. For the moment we restrict ourselves to objective uniform
formulae; the complete definition includes statements about knowledge and
will be introduced in the next section.

Definition 2 (Uniform Terms). Let σ be a fixed situation term, r an arbitrary
rigid2 function symbol, f an arbitrary fluent function symbol, and x a variable
that is not of sort Situation. Then the terms uniform in σ are the smallest
set of syntactically-valid terms satisfying:

τ ::= x | r(τ̄) | f(τ̄ , σ)

Definition 3 (Objective Uniform Formulae). Let σ be a fixed situation term,
R an arbitrary rigid predicate, F an arbitrary primitive fluent predicate, τ
an arbitrary term uniform in σ, and x an arbitrary variable that is not of
sort Situation. Then the objective formulae uniform in σ are the smallest
set of syntactically-valid formulae satisfying:

φ ::= F (τ̄ , σ) |R(τ̄) | τ1 = τ2 |φ1 ∧ φ2 | ¬φ | ∃x : φ

Since they represent properties of the world, it is often useful to evaluate
uniform formulae at several different situation terms, and to suppress the
situation terms in order to simplify the presentation. The notation φ[s′] rep-
resents a uniform formula in which all fluents have their situation argument
replaced with the particular situation term s′, while φ−1 represents a uniform
formula with the situation argument removed from all its fluents.

The axiom set Dbg contains all the static background facts about the
domain. It must include: the definitions for sets and set membership; unique
names axioms to ensure that action terms with different names or different
arguments are in fact different; and the function actor(a) giving the agent

2Fluents are predicates or functions that change as a result of actions, and hence take
a situation as their final argument; rigids do not change and take no situation argument.

6

performing an action, which is always the action’s first argument. It may
also contain domain-specific background facts, such as situation-independent
formulae or simple state invariants.

The axiom set Dssa contains one successor state axiom for each primitive
fluent in the domain, providing a monotonic solution to the frame problem
for that fluent. These axioms have the following general form:

F (x̄, do(c, s)) ≡ Φ+
F (x̄, c, s) ∨ F (x̄, s) ∧ ¬Φ−F (x̄, c, s)

Here Φ+
F and Φ−F are formulae uniform in s. This may be read as “F is

true after performing c if c made it true, or it was previously true and c did
not make it false”.

The axiom set Dad defines fluents that describe various aspects of the per-
formance of an action, which we call action description predicates. The pre-
condition predicate Poss(c, s) is the canonical example, indicating whether
it is possible to perform a set of actions c in a given situation s. In principle
there can be any number of predicates or functions defined in a similar way
– forthcoming examples include the sensing-result function SR and the ob-
servability predicate CanObs . The meta-predicate α will denote an arbitrary
action description predicate. For each such predicate the set Dad contains a
single axiom of the following form, where Πα is uniform in s:

α(x̄, c, s) ≡ Πα(x̄, c, s)

Note that this is a departure from the standard approach of Pirri and
Reiter [37] where a separate axiom specifies the preconditions for each indi-
vidual action type. The single-axiom approach used in this paper embodies
a domain-closure assumption on the Action sort. It is necessary when rea-
soning about formulae that universally quantify over actions [43, 58], and
is assumed to appropriately axiomatise any interactions that may occur be-
tween primitive actions when they are performed concurrently [36].

For convenience we will allow action description predicates to be defined
in terms of other action description predicates; as long as these definitions
are well-founded they can be expanded out to a definition that uses only
uniform formulae.

The foundational axioms Σ capture axiomatically the intuition that sit-
uations are finite sequences of actions. There are initial situations identified
by the predicate Init(s), with a distinguished initial situation S0 called the
actual initial situation. Other initial situations are used to represent the

7

agents’ epistemic uncertainty, and will be discussed in the following section.
Situations in general form a tree structure with an initial situation at the root
and do(c, s) constructing the successor situation resulting when the actions
c are performed in s; all situations thus produced are distinct:

do(c1, s1) = do(c2, s2) → c1 = c2 ∧ s1 = s2

We abbreviate the performance of several successive actions by writing:

do([c1, . . . , cn], s)
def
= do(cn, do(. . . , do(c1, s)))

There is also a second-order induction axiom asserting that all situations
must be constructed in this way, which is needed to prove statements that
universally quantify over situations [39]:

(∀P) : [∀ c, s : (Init(s)→ P (s)) ∧ (P (s)→ P (do(c, s)))] → ∀s : P (s)

The root of a situation is the initial situation from which it was con-
structed:

Init(s) → root(s) = s

root(do(c, s)) = root(s)

The relation s @ s′ indicates that s′ is in the future of s and is defined as
follows:

Init(s) → ¬(s′ @ s)

s @ do(c, s′) ≡ s v s′

Here s v s′ is the standard abbreviation for s @ s′ ∨ s = s′. This
notation for “in the future of” can be extended to consider only those futures
in which all actions satisfy a particular action description predicate. We
include a relation <α(x̄) for each action description predicate α(x̄, c, s), with
the following definitions:

Init(s) → ¬
(
s′ <α(x̄) s

)
s <α do(c, s′) ≡ s ≤α(x̄) s

′ ∧ α(x̄, c, s′)

Note that we suppress the action and situation arguments to the action
description predicate in order to simplify the presentation. For notational

8

simplicity we will henceforth leave any additional arguments x̄ implicit, writ-
ing just <α for a generic relation of this kind.

For example, by stating that s <Poss s
′ we assert that not only is s′ in

the future of s, but that all actions performed between s and s′ were actually
possible; this is equivalent to the < operator of Pirri and Reiter [37] in the
sense that the legal situations are those in which every action performed was
actually possible:

Legal(s) ≡ root(s) ≤Poss s

Finally, the axiom set DS0 describes the state of the world before any
actions are performed. It is a collection of sentences uniform in S0 stating
what holds in the actual initial situation. The initial knowledge of each agent
is also captured in these axioms, as described in the next section.

2.2. Knowledge and Sensing
Epistemic reasoning was first introduced to the situation calculus by

Moore [29], and formalised extensively by Scherl and Levesque [45] whose
paper is now the canonical reference for these techniques. Their work has
been extended to include concurrent actions [44] and multiple agents [48].

The semantics of knowledge are based on a reification of the “possible
worlds” semantics of modal logic, using situation terms rather than abstract
worlds. A special fluent K(agt, s′, s) is used to indicate that “in situation
s, the agent agt considers the alternate situation s′ to be possible”. The
macro Knows is then defined as a shorthand for the standard possible-
worlds definition of knowledge, stating that an agent knows φ when φ is true
in all situations considered possible:

Knows(agt, φ, s)
def
= ∀s′ : K(agt, s′, s)→ φ[s′] (1)

The foundational axioms Σ define a special fluent K0(agt, s′, s) that is
used to model the initial epistemic uncertainty of the agents, with DS0 con-
taining sentences of the form Knows0(agt, φ, S0) to specify what is initially
known3:

K0(agt, s′, s) → Init(s) ∧ Init(s′)

Knows0(agt, φ, s)
def
= ∀s′ : K0(agt, s′, s)→ φ[s′]

3The standard account does not require a separate K0 fluent, as evidenced by Equation
(2). It will be required when we incorporate hidden actions, so we introduce it now to
maintain consistency.

9

The action description function SR(a, s) specifies the sensing result re-
turned by a when executed in situation s. For non-sensing actions the value
of SR is an arbitrary constant. The dynamics of knowledge are then specified
by an additional set of axioms.

Definition 4. We will denote by DstdK the axioms of the standard account
of knowledge due to Scherl and Levesque [45], as detailed in Equations (2,3)
below:

Init(s)→ (K(agt, s′, s) ≡ K0(agt, s′, s)) (2)

K(agt, s′′, do(c, s)) ≡∃s′ : s′′ = do(c, s′) ∧K(agt, s′, s) ∧ Poss(c, s′)

∧ ∀a ∈ c : (actor(a) = agt → SR(a, s) = SR(a, s′))
(3)

Equation (2) ensures that the agents begin with their knowledge as speci-
fied by DS0 . Equation (3) takes the form of a standard successor state axiom
for the K fluent. It ensures that s′′ is considered a possible alternative to
do(c, s) when s′′ is the result of doing the same actions c in a situation s′

that is considered a possible alternative to s. It must furthermore have been
possible to perform those actions in s′, and the sensing results must match
for each action that was carried out by the agent in question. Thus an agent’s
knowledge after an action occurs is completely determined by its knowledge
before the action, and the sensing results from the action.

Scherl and Levesque [45] show how the Knows macro can be treated
syntactically as if it were a primitive fluent, allowing it to appear as part
of a uniform formula for the purposes of reasoning. We can now present
the complete definition of a uniform formula, which may contain statements
about knowledge:

Definition 5 (Uniform Formulae). Let σ be a fixed situation term, let τ , τ1

and τ2 be arbitrary terms uniform in σ and x an arbitrary variable that is
not of sort Situation. Then the formulae uniform in σ are the smallest set
of syntactically-valid formulae satisfying:

φ ::= F (τ̄ , σ) |R(τ̄) | τ1 = τ2 |φ1 ∧ φ2 | ¬φ | ∃x : φ

|Knows(agt, φ, σ) |Knows0(agt, φ, σ)

10

While powerful, this knowledge-representation formalism has an impor-
tant limitation: it is fundamentally synchronous. Each agent is assumed to
have full knowledge of all actions that have occurred - in other words, all
actions are public. While suitable for some domains, there are clearly many
multi-agent domains where achieving total awareness of actions would be in-
feasible. A major contribution of this paper is a more flexible formalism for
knowledge that can be applied to a much wider range of domains.

2.3. Reasoning and Regression
One of the attractions of the situation calculus is the existence of auto-

mated reasoning procedures for certain types of query. These are generally
based on syntactic manipulation of a query into a form that is more amenable
to reasoning – for example, because it can be proven without using some of
the axioms from D.

In the general case, answering a query about a basic action theory D is
a theorem-proving task in second-order logic (denoted SOL) due to the in-
duction axiom included in the foundational axioms. This is clearly problem-
atic for automated reasoning, but fortunately there exist particular syntactic
forms for which some of the axioms in D are not required [37]. In particular,
queries about the initial situation can be answered using only first-order logic
(FOL) and a limited set of axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]

By making a closed-world assumption over DS0 ∪Dbg, logic programming
environments such as Prolog can be used to handle this type of query quite
effectively [38]. Automated reasoning depends on transforming queries into
more easily-handled forms such as this.

The principle tool for automated reasoning in the situation calculus is the
regression meta-operator RD, a syntactic manipulation that encodes the pre-
conditions and effects of actions into the query itself, meaning fewer axioms
are needed for the final reasoning task [37]. The idea is to reduce a query
about some future situation to a query about the current situation only.

Regression is only defined for a certain class of formulae, the regressable
formulae.

Definition 6 (Regressable Terms). Let σ be an arbitrary situation term, x
an arbitrary variable not of sort situation, r an arbitrary rigid function and

11

f an arbitrary fluent function. Then the regressable terms are the smallest
set of syntactically-valid terms satisfying:

ν ::= σ |x | f(ν̄, σ) | r(ν̄)

Definition 7 (Regressable Formulae). Let σ be an arbitrary situation term,
x an arbitrary variable not of sort situation, ν an arbitrary regressable term,
R an arbitrary rigid predicate, F an arbitrary primitive fluent predicate, α
an arbitrary action description predicate and c a set of actions. Then the
regressable formulae are the smallest set of syntactically-valid formulae sat-
isfying:

ϕ ::= F (ν̄, σ) |α(ν̄, c, σ) |R(ν̄) | ν1 = ν2 | ¬ϕ |ϕ1 ∧ ϕ2 | ∃x : ϕ

Regressable formulae are more general than uniform formulae. In partic-
ular, they can contain action description predicates and may mention differ-
ent situation terms. They cannot, however, quantify over situation terms or
compare situations using a ≤α relation.

The regression operator is then defined using a series of regression rules
such as those shown below, which mirror the structural definition of regress-
able formulae.

Definition 8 (Regression Operator). Let R be a rigid predicate, α be an
action description predicate with axiom α(ν̄, c, s) ≡ Πα(c, s) in Dad, and F be
a primitive fluent with axiom F (x̄, s) ≡ ΦF (x̄, s) in Dssa. Then the regression
of φ, denoted RD(φ), is defined according to the following structural rules:

RD(ϕ1 ∧ ϕ2) = RD(ϕ1) ∧RD(ϕ2)

RD(∃x : ϕ) = ∃x : RD(ϕ)

RD(¬ϕ) = ¬RD(ϕ)

RD(α(ν̄, c, σ)) = RD(Πα(ν̄, c, σ))

RD(F (ν̄, do(c, σ))) = ΦF (ν̄, c, σ)

RD(F (ν̄, s)) = F (ν̄, s)

RD(F (ν̄, S0)) = F (ν̄, S0)

We have omitted some technical details here, such as the handling of
functional fluents; consult [37] for the details. The key point is that each
application of the regression operator replaces action description predicates

12

with their definitions from Dad and primitive fluents with their successor
state axioms from Dssa, “unwinding” a single action from each do(c, σ) term
in the query. Situation terms not constructed using do are left unchanged.

Since D is fixed, we will henceforth drop the subscript and simply write
R for the regression operator. When dealing with situation-suppressed uni-
form formulae, we will use a two-argument operator R(φ, c) to indicate the
regression of φ over the action c. It should be read as a shorthand for
R(φ[do(c, s)])−1 using the situation-suppression operator from Section 2.1.

Repeated applications of this operator, denoted by R∗, can transform a
query about some future situation into a query about the initial situation
only. This is typically easier to answer as it requires fewer axioms from the
theory, as shown in [37]. The axioms Dad and Dssa are essentially “compiled
into” the query. The trade-off is that the length of the regressed query may
be exponential in the length of φ. While an efficiency gain is not guaranteed,
regression has proven a very effective technique in practice [24] and there are
techniques to avoid exponential growth of the query in some cases [57].

A key contribution of Scherl and Levesque [45] was showing how to apply
the regression operator to formulae containing the Knows macro, allowing
it to be treated syntactically as if it were a primitive fluent. This means that
epistemic queries can be approached using standard reasoning techniques of
the situation calculus. Although we have changed the notation somewhat
to foreshadow the techniques we will develop in Section 3, their definition
operates as follows.

First, we introduce a notational convenience for pairing an action with
its corresponding sensing result:

Definition 9 (Action#Result Pair). An action#result pair, de-
noted a#r, represents an Action term a and a corresponding Result term
r as might be returned from the sensing-result function r = SR(a, s). We
require unique-names axioms for the pairing operator:

a#r = a′#r′ ≡ a = a′ ∧ r = r′

We will use the special Result term Nil as the sensing result for non-
information-producing actions.

We then define the results of a concurrent action to be the set of
action#result pairs for all primitive actions performed by the agent in ques-
tion.

res(agt, c, s)
def
= {a#SR(a, s) | a ∈ c ∧ actor(a) = agt}

13

This definition can be used to formulate a regression rule (denoted R(SL)

to distinguish it from our subsequent rule) as follows:

R(SL)(Knows(agt, φ, do(c, s)) = ∃y : y = res(agt, c, s)

∧Knows(agt, [Poss(c) ∧ res(agt, c) = y]→ R(SL)(φ[do(c, s)]), s) (4)

This works by collecting the sensing results from each action performed
by the agent into the set y, then ensuring matching sensing results in every
situation considered possible. It expresses the knowledge of the agent after
a concurrent action in terms of what it knew before the action, along with
the information returned by the action. This technique relies heavily on the
fact that all actions are public, since it requires every agent’s knowledge to
be updated in response to every action.

Repeated applications of R can thus transform a knowledge query into
one that is uniform in the initial situation. While it would be valid to then
expand the Knows macros and handle the query using first-order logic, in
practice the reasoning procedure would leave Knows intact and use a spe-
cialised prover based on modal logic.

It is possible to formulate an alternate successor state axiom for knowl-
edge that does not assume all actions are public, such as that of Lespérance
et al. [21]. Such formulations invariably require universal quantification over
situation terms, to account for arbitrarily-long sequences of hidden actions.
This is incompatible with regression rules like the above, and these formula-
tions offer no reasoning procedure other than general second-order theorem
proving. By utilising a new reasoning technique called the persistence condi-
tion to factor out this universal quantification, our work is the first to provide
an account of knowledge with hidden actions while maintaining regression in
the style presented above as an effective reasoning tool.

2.4. Property Persistence and the Persistence Condition
Queries that universally quantify over situation terms are often in a simple

syntactic form called property persistence queries [19]. Such queries assert
that a uniform formula φ holds in a given situation, and will continue to hold
as long as all future actions satisfy some action description predicate α:

∀s′ : s ≤α s′ → φ[s′]

In [19] we developed the persistence condition meta-operator PD(φ, α) to
handle such queries more effectively. It is a meta-level fixpoint calculation

14

producing a uniform formula such that:

D |= PD(φ, α)[s] ≡ ∀s′ : s ≤α s′ → φ[s′]

As with regression, we will use the simpler notation P(φ, α) and leave
D implicit. We briefly describe its operation below since we will need some
details for a worked example; for a full treatment see our previous work [19].

First, the one-step-persistence operator P1 is defined to assert that φ
holds in s and all its immediate successors:

P1(φ, α)[s] = φ[s] ∧ ∀c : α(c, s)→ R(φ, c)[s]

Repeated application asserts persistence after greater numbers of actions:

Pn(φ, α) = P1(Pn−1(φ, α), α)

Intuitively P(φ, α) should be a fixpoint of P1(φ, α), and indeed it can be
shown that:

Dbg |= Pn(φ, α) → Pn+1(φ, α) iff D −DS0 |= Pn(φ, α) ≡ P(φ, α)

The calculation of P(φ, α) thus replaces a second-order reasoning task
with a fixpoint search, using iterated first-order reasoning against the back-
ground theory. This is in contrast to the regression operator, which is a purely
syntactic transformation, and so it comes with two important caveats: the
fixpoint P(φ, α) may not exist at all, or it may be impossible to calculate
within finitely many iterations.

Nevertheless, our experience has shown this technique to be useful in
practice, thanks to the relative simplicity of the axioms in Dbg. Claßen and
Lakemeyer [4] have also had success with a similar approach in a modal vari-
ant of the situation calculus know as ES, where they study fixpoint properties
of non-terminating Golog programs.

Our paper [19] discusses several restricted domains in which a terminating
calculation of P(φ, α) can be guaranteed, including finite domains (which can
be reduced to propositional logic) and certain kinds of context-free domains
(which can be shown to have a finite state-space). We shall have more to say
on the effectiveness of this technique in Section 4.

The important point is that P(φ, α) allows one to factor out certain kinds
of universally-quantified queries, dealing with them via special-purpose meta-
level reasoning machinery, and reducing them to a uniform formula that can
then be approached via standard regression techniques.

15

3. Observations, Views and Knowledge

Existing accounts of knowledge in the situation calculus directly express
the dynamics of knowledge update in terms of the actions that have occurred,
as seen in Section 2.2. This works well when agents can be assumed to have
full knowledge of the actions that have been performed, but quickly becomes
cumbersome when trying to allow for hidden actions. In this Section we first
develop a principled axiomatisation of the observability of actions, then build
a powerful yet succinct axiomatisation of knowledge upon it.

The basic idea is as follows: each occurrence of an action results in an
agent making a set of observations. Every situation then corresponds to a
local view for that agent: the sequence of all its observations, excluding cases
where the set of observations was empty. An agent knows something if it is
true in all situations matching its current view. Decoupling knowledge in this
manner makes it easy to express various degrees of observability of actions,
from public actions through to actions that are completely hidden.

The direct coupling between knowledge and action also has undesirable
implications for situated agents reasoning about their own knowledge. As a
consequence of using regression to handle knowledge queries, one can only
reason about knowledge if one has a situation term rooted in S0, as the
required query is:

DS0 ∪ Dbg |= R∗(Knows(agt, φ, do([c1, . . . , cn], S0)))

In asynchronous domains with hidden actions, where agents are not nec-
essarily aware how many actions have been performed, the agents cannot
use this formulation to reason about their own knowledge. Since knowledge
is directly coupled to actions, and hence to situation terms, they cannot
construct the appropriate query.

Our approach will allow this kind of query to be posed in terms of an
agent’s local view, rather than requiring a full situation term, allowing them
to reason about their own knowledge using only their local information

3.1. Observations and Views
To remove the direct coupling between knowledge and actions, we in-

troduce an explicit notion of observations. These are internal notifications
that agents receive when an action has occurred. By expressing knowledge
in terms of observations rather than actions, we ensure that agents can al-
ways reason about their own knowledge based on their own internal history
of observations.

16

Definition 10 (Observations). An observation is a notification event re-
ceived by an agent, making it aware of some change in the state of the world.
When an agent receives such a notification, we may say that it “observed”,
“made” or “perceived” that observation.

Since the state of the world may only change in response to some action,
observations can only be made as a result of some action. For simplicity we
assume that agents perceive observations instantaneously, i.e. in the same
instant as the actions that cause them.

Since “observation” is quite a loaded term, it is worth re-iterating this
point: observations are instantaneous events generated internally by each
agent in response to actions occurring in the world. We make no commitment
as to how these events are generated, preferring a clean delineation between
the task of observing change and the dynamics of knowledge update based on
those observations. As with the work of Scherl and Levesque [45], we consider
change-awareness to be the responsibility of a lower-level component of the
agent’s control software.

To make this idea concrete, let us introduce an additional sort Observa-
tions to the language of the situation calculus, for the moment without any
particular commitment towards what this sort will contain. We then add to
Dad an axiom for the action description function Obs:

Obs(agt, c, s) = o

This function returns a finite set of observations, and should be read as “when
actions c are performed in situation s, agent agt will perceive o”. Using a
set of observations allows an agent to perceive any number of observations
in response to an action occurrence - perhaps several observations, perhaps
none. When Obs(agt, c, s) is the empty set (denoted ∅) then the agent makes
no observations and the actions c are completely hidden.

The concept of a view follows naturally - it is the sequence of all the
observations made by an agent as the world has evolved.

Definition 11 (Views). An agent’s view in a given situation s is the cor-
responding sequence of observations made by the agent as a result of each
action in s, excluding those actions for which no observations were made.

We introduce another sort Views consisting of sequences of finite sets of
observations. Using ε to represent the empty sequence and · to prepend a

17

new element to a sequence4 , the functional fluent V iew is defined as follows
to give the history of observations associated with a particular situation:

Init(s) →View(agt, s) = ε

Obs(agt, c, s) = ∅ →View(agt, do(c, s)) = View(agt, s)

Obs(agt, c, s) 6= ∅ →View(agt, do(c, s)) = Obs(agt, c, s) · View(agt, s) (5)

Observations and views can be seen as localised analogues of actions and
situations respectively. An action is a global event that causes the state of
the world to change, while an observation is an internal event that causes an
agent’s knowledge of the state of the world to change. Similarly, a situation
represents a complete, global history of all the actions that have occurred in
the world, while a view is an agent’s local history of all the observations it
has made. The situation is an omniscient perspective on the world, the view
a local perspective. This distinction is fundamental to developing a truly
general multi-agent semantics for knowledge, as we shall see.

The axiomatisation of Obs will depend on the particulars of the domain
being modelled, and we make no commitment beyond requiring it to be for-
mulated as an action description predicate. Under the common assumption
that all actions are public, it may be as simple as defining:

a ∈ Obs(agt, c, s) ≡ a ∈ c

With sensing actions included, Obs may be extended to include Ac-
tion#Result pairs so that:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c
∧ (actor(a) = agt→ r = SR(a, s))

∧ (actor(a) 6= agt→ r = Nil)

For an asynchronous domain where all actions are private, Obs may in-
stead be defined to include only the actions of the agent in question:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r

We will discuss some more detailed axiomatisations for Obs in Section 5.
The main point, as we shall see, is that the particular axiomatisation of Obs
does not affect the general axioms and behaviour of knowledge.

4We rely on the standard semantics of sequences for function symbol ‘·’; specifically we
assume it excludes non-standard infinite sequences that do not grow from ε.

18

3.2. Knowledge
It is a basic tenet of epistemic reasoning that an agent’s knowledge at

any particular time must depend solely on its local history: the knowledge
that it started out with combined with the observations it has made since
then [15]. Given an explicit account of the observations made by each agent,
the required semantics of the K relation are clear: K(agt, s′, s) must hold
whenever s′ is legal, both s and s′ would result in the same view for the
agent, and s and s′ are rooted at K-related initial situations:

K(agt, s′, s) ≡
Legal(s′) ∧ View(agt, s′) = View(agt, s) ∧K0(agt, root(s′), root(s)) (6)

In essence, this is a direct encoding into the situation calculus of the
definition of knowledge in classical epistemic reasoning [30, 15, 10].

While a wonderfully succinct definition of how knowledge should behave,
this formulation cannot be used directly in a basic action theory. The dynam-
ics of fluent change must be specified by a successor state axiom, expressing
K at do(c, s) in terms of K at situation s. We must formulate a successor
state axiom for the K fluent which enforces the equivalence in Equation 6.

For notational convenience, let us first introduce an action description
predicate PbU (for “possible but unobservable”) indicating that the actions
c are possible in s, but no observations will be made by agt if they occur:

PbU(agt, c, s)
def
= Poss(c, s) ∧Obs(agt, c, s) = ∅ (7)

By stating that s ≤PbU(agt) s
′, we assert that agt would make no obser-

vations were the world to move from situation s to s′. This means that the
agent’s view in both situations would be identical, so if it considers s possible
then it must also consider s′ possible. Following this intuition, we propose
the following successor state axiom to capture the desired dynamics of the
knowledge fluent:

K(agt, s′′,do(c, s)) ≡ [Obs(agt, c, s) = ∅ → K(agt, s′′, s)]

∧ [Obs(agt, c, s) 6= ∅ → ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧Poss(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) ≤PbU(agt) s
′′] (8)

This axiom considers two independent cases, depending on whether the
actions c produced any observations. The cases are illustrated in Figure 1
and Figure 2 respectively.

19

s′′OO

K

gg

K

s
Obs(agt,c)=∅

// do(c, s)

Figure 1: Illustration of the successor state axiom for knowledge fluent K(agt, s′′,do(c, s))
from Equation 8, for the case where Obs(agt, c, s) = ∅.

s′
Obs(agt,c′)=o

// do(c′, s′)
Obs(agt,c′′)=∅

// do(c ′′, do(c ′, s ′))

s′′
s

K

OO

K

��

Obs(agt,c)=o
// do(c, s)

K

OO

K

44

s ′1
Obs(agt,c′1)6=o

// do(c′1, s
′
1)

Figure 2: Illustration of the successor state axiom for knowledge fluent K(agt, s′′,do(c, s))
from Equation 8, for the case where Obs(agt, c, s) 6= ∅.

Figure 1 shows the case where Obs(agt, c, s) = ∅ and the actions c are
hence totally unobservable. In this case the agent’s state of knowledge does
not change – the situations considered possible in do(c, s) are precisely those
considered possible in s.

Figure 2 shows the case where Obs(agt, c, s) 6= ∅ and hence the actions c
produce some observations o. In this case the agent considers possible any
legal successor to a possible alternate situation s′ that can be brought about
by actions c′ yielding identical observations. Actions that would not produce
matching observations do not produce K-related situations. Crucially, the
agent also considers possible any future of do(c′, s′) that could be reached
through a sequence of unobservable actions.

To reiterate: unlike the standard successor state axiom from Equation
(3), our approach requires agents to consider any possible future situation in
which they would make no further observations. This requirement is funda-
mental to the correct specification of knowledge in asynchronous domains.

It remains to specify K in the initial situation. The relation K0 defines

20

knowledge before any actions have occurred, but the agents must consider
the possibility that some hidden actions have occurred. In other words, we
must include situations where root(s) ≤PbU(agt) s in the K-relation for initial
situations. We therefore propose the following axiom:

Init(s)→
[
K(agt, s′′, s) ≡ ∃s′ : K0(agt, s′, s) ∧ s′ ≤PbU(agt) s

′′)
]

(9)

Definition 12. We will denote by DobsK the axioms for our new observation-
based semantics for knowledge, as detailed in Equations (8,9) above.

These axioms suffice to ensure that knowledge behaves as we require: two
situations will be related by K(agt, s′, s) if and only if they result in identical
views for that agent, s′ is legal, and their root situations were initially related:

Theorem 1. For any agent agt and situations s and s′′:

D ∪DobsK |= K(agt, s′′, s) ≡
Legal(s′′) ∧ View(agt, s′′) = View(agt, s) ∧K0(agt, root(s′′), root(s))

Proof sketch. For the if direction we show how to construct an s′ satisfying
the ∃s′ parts of Equations (8,9). For the only-if direction we establish each
of the three conjuncts individually. The root case is trivial since Equation
(8) always expresses K(s′′, do(c, s)) in terms of K(s′, s), while Equation (9)
relates K for initial situations back to K0. The Legal case relies on the
fact that PbU implies Poss, while the V iew case relies on the fact that
s ≤PbU s′ → View(s) = View(s′). For the complete proof, see Appendix
C.

Using this new formulation, an agent’s knowledge is completely decou-
pled from the global notion of actions, instead depending only on the local
information that it has observed. Of course, this must be combined with a
specific axiomatisation of how the Obs function behaves. We detail a vari-
ety of axiomatisations in Section 5, and our account of knowledge is directly
applicable to all of them.

3.3. Properties of Knowledge
As a demonstration of the correctness of their axioms, Scherl and Levesque

[45] prove five properties of their formalism: that knowledge-producing ac-
tions have only knowledge-producing effects; that unknown fluents remain

21

unknown by default; that knowledge incorporates the results of sensing ac-
tions; that known fluents remain known by default; and that agents have
knowledge of the effects of their actions.

However, the intuition behind these properties depends heavily on the as-
sumption of public actions and on the separation of actions into two classes:
knowledge-producing actions that only return sensing information, and ordi-
nary actions that only affect the state of the world. In asynchronous multi-
agent domains, these restrictions cannot be meaningfully applied.

For example, it is entirely possible that a knowledge-producing action
and an ordinary action are performed concurrently by two different agents, so
the results of a sensing action might immediately be made invalid. Moreover,
suppose that an agent performs an action to make a formula φ true, but there
is a series of hidden actions that could subsequently make φ false. The agent
cannot meaningfully claim to know φ, since it could become false without
updating the local view of that agent.

The proofs used in [45] all hinge on showing that the situations K-related
to do(a, s) are precisely the “correct” ones, where correctness is formulated
in terms of the preconditions and effects of a. We claim that in our formula-
tion, the “correct” situations to be related to do(c, s) are precisely those that
are legal and have the same view, and the validity of Theorem 1 provides
sufficient justification for the correctness of our knowledge axioms.

Indeed, it can be shown that our formulation is strictly equivalent to the
standard account of Scherl and Levesque [45] when all actions are public.
Let each agent observe all actions, as well as the sensing results of actions
that they themselves perform:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c
∧ actor(a) = agt→ r = SR(a, s)

∧ actor(a) 6= agt→ r = Nil (10)

Our new account of knowledge will then behave identically to the standard
account:

Theorem 2. Suppose Dad contains Equation (10) as its definition of the Obs
function, then for any legal situation terms σ and σ′:

D ∪DstdK |= K(agt, σ′, σ) iff D ∪DobsK |= K(agt, σ′, σ)

Proof. Equation (10) means that Obs(agt, c, s) cannot be empty for c 6= ∅,
so s ≤PbU(agt) s

′ iff s = s′. Since we restrict our attention to legal situations,

22

we can substitute ⊥ for Obs(agt, c, s) = ∅ and > for Obs(agt, c, s) 6= ∅ into
Equations (8,9) to obtain the following:

K(agt, s′′, do(c, s)) ≡ [⊥ → K(agt, s′′, s)]

∧ [> → ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧Poss(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) = s′′]

Init(s)→ [K(agt, s′′, s) ≡ ∃s′ : K0(agt, s′, s) ∧ s′ = s′′]

Which further simplifies to:

K(agt, s′′, do(c, s)) ≡ ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧ Poss(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) = s′′ (11)

Init(s)→ [K(agt, s′′, s) ≡ K0(agt, s′′, s)] (12)

Using Equation (10), it is straightforward to show that:

Obs(agt, c′, s′) = Obs(agt, c, s) ≡
c = c′ ∧ ∀a ∈ c : actor(a) = agt→ [SR(a, s) = SR(a, s′)]

Equations (11,12) are therefore equivalent to Equations (2,3) from DstdK ,
meaning that K behaves the same under both theories.

Having established that our account subsumes the standard “public ac-
tions” account of knowledge, we can also show that it maintains many of
its desirable properties in the general case. One of the fundamental results
in [45] is that if the initial knowledge relation K0 is reflexive, symmetric,
transitive or Euclidean, then the K relation has these properties for any sit-
uation. In our formalism, such preservation of accessibility properties follows
immediately from Theorem 1 and the reflexive, symmetric, transitive and
Euclidean nature of the equality operator.

Theorem 3. If the K0 relation is restricted to be reflexive, transitive, sym-
metric or Euclidean, then the K relation defined by DobsK will satisfy the same
restrictions at every legal situation.

Proof. Each follows directly from Theorem 1 and the properties of equality.
We will take the transitive case as an example; the rest are virtually identical.

23

Suppose that K0 is transitive, and we have legal situations s1, s2, s3

such that K(agt, s2, s1) and K(agt, s3, s2). Then by Theorem 1 we have the
following:

K0(agt, root(s2), root(s1))

K0(agt, root(s3), root(s2))

View(agt, s1) = View(agt, s2)

View(agt, s2) = View(agt, s3)

From the transitivity of K0 we can conclude that K0(agt, root(s3), root(s1))
and from the transitivity of equality we can conclude that
View(agt, s1) = View(agt, s3). Since s3 is restricted to be legal, we have
enough to satisfy the RHS of the equivalence in Theorem 1, so K(agt, s3, s1)
and K is therefore transitive.

That these properties hold regardless of the axiomatisation of Obs is a
compelling argument in favour of our approach. Certain kinds of sensing
actions can easily invalidate these properties if not axiomatised carefully
under the standard account, such as the guarded sensing actions of [32]. We
will explore this case in detail in Section 5.

Our formalism is not only a proper generalisation of the standard ac-
count of knowledge in the situation calculus, it is an elaboration tolerant
generalisation. It maintains important general properties of knowledge as
more complex models of sensing and observability are introduced.

One problem remains: the successor state axiom for K in Equation 8 is
incompatible with standard regression techniques. The right-hand side is not
a regressable formula, as the ≤PbU(agt) component universally quantifies over
situation terms. A similar problem prevented the development of a regression
rule in [21]. In the following section we will use the persistence condition
operator to formulate a regression rule that can handle these arbitrarily-long
sequences of hidden actions.

4. Reasoning about Knowledge

For our new account of knowledge to be useful in practice, we must extend
the standard techniques for automated reasoning in the situation calculus to
handle the modified formalism – that is to say, we must provide a regression
rule for Knows.

24

4.1. Regressing Knowledge Queries
The appearance of ≤PbU(agt) in Equation (8) means that our new suc-

cessor state axiom universally quantifies over situations, so the regression
technique developed in [45] cannot be used directly. We must appeal to
the persistence condition meta-operator introduced in Section 2.4 to handle
the inductive component of this reasoning, by transforming the quantifica-
tion into a uniform formula so that standard regression techniques can be
applied.

We propose the following as the regression rule for Knows under our
formalism:

R(Knows(agt, φ, do(c, s))) = ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → Knows(agt, φ, s)]

∧ [o 6= ∅ → Knows(agt,∀c′ : Obs(agt, c′) = o

∧ Poss(c′)→ R(P(φ,PbU(agt)), c′), s)]
(13)

Note the similarity to the standard regression rule for knowledge from
Equation (4). New in our version are: the replacement of the res macro
with an explicit definition of what the agent has observed; explicit handling
of the case when the agent makes no observations; and use of the persistence
condition to account for arbitrarily-long sequences of hidden actions.

As required for a regression rule, Equation (13) reduces a knowledge query
at do(c, s) to a knowledge query at s. It is also intuitively appealing: to
know that φ holds, the agent must know that in all situations that agree
with its observations, φ cannot become false without it making some further
observation. This is the meaning of P(φ,PbU(agt)) in the above, to state
that “if φ were to become false, I would notice”.

We must also specify a regression rule for Knows in the initial situation,
as Equation (9) also uses the ≤PbU(agt) ordering. This clause produces an
expression in Knows0 at S0, meaning that it can be handled by epistemic
reasoning about the initial situation only:

R(Knows(agt, φ, S0)) = Knows0(agt,R(P(φ,PbU(agt))[S0])−1, S0)
(14)

The use of P here is similar to its use in the previous regression rule. The
use of R(. . . [S0])−1 ensures that the transform is applied recursively to any
nested knowledge formulae – when the enclosed formula φ does not contain

25

nested knowledge macros, regressing it at S0 and suppressing the situation
term leaves it unchanged.

Assuming that P can be calculated as described in Section 2.4, these
regression rules provide a sound and complete procedure for reducing queries
about knowledge to queries about the initial knowledge of the agents:

Theorem 4. Given a basic action theory D and a uniform formula φ for
which P(φ,PbU(agt)) exists:

D ∪DobsK |= Knows(agt, φ, s) ≡ R(Knows(agt, φ, s))

Proof sketch. By induction on situation terms. In the do(c, s) case, we pro-
ceed by expanding the definition for Knows using our new successor state
axiom for K, collecting sub-formulae that match the form of the Knows
macro, and using regression and the persistence condition to render the re-
sulting expressions uniform in s. In the base case, we apply the persistence
condition to an expansion of Knows at S0 to produce the desired result.
For the complete proof, see Appendix C.

These regression rules thus enable us to handle knowledge queries in our
formalism using a standard regression-based approach, with the persistence
condition operator allowing us to “factor out” the inductive component of the
reasoning.

4.2. Regression over Views
While this regression rule is suitable for modelling and simulation pur-

poses, it would be unreasonable for a situated agent to ask “do I know φ in the
current situation?” using the situation calculus queryD |= Knows(agt, φ, σ).
As discussed in Section 3, an agent cannot be expected to have the full cur-
rent situation σ. It will however have its current view v and can construct a
query about its own knowledge as follows:

D |= ∀s : View(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

Such a query universally quantifies over situations and so cannot be han-
dled using regression. It is also not in a form amenable to the persistence
condition operator.

However, we should expect from Theorem 1 that the quantification over
situations is unnecessary in this case – after all, any situation with the same

26

view for that agent should result in it having the same knowledge. Let us
explicitly define knowledge with respect to a view as follows:

Knows(agt, φ, v)
def
=

∀s : View(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

We can then modify the regression rules in Equations (13,14) to work
directly on formulae of this form. The resulting rules are actually simpler
than for regression over situations, as there are no empty observations in a
view. The result is:

R(Knows(agt, φ, o · v)) = Knows(agt,∀c : Obs(agt, c) = o

∧ Poss(c)→ R(P(φ,PbU(agt)), c), v) (15)
R(Knows(agt, φ, ε)) = Knows0(agt,R(P(φ,PbU(agt))[S0])−1, S0)

(16)

Using regression in this way, an agent can reduce the query Knows(agt, φ, v)
to an equivalent query about its knowledge in the initial situation.

Theorem 5. Given a basic action theory D and a uniform formula φ for
which P(φ,PbU(agt)) exists:

D ∪DobsK |= Knows(agt, φ, v) ≡ R(Knows(agt, φ, v))

Proof sketch. The proof hinges on a simple corollary of Theorem 1: that
situations with the same root and same view entail the same knowledge:

D ∪DobsK |= ∀s, s′, s′′ : root(s) = root(s′) ∧ View(s) = View(s′)

∧K(agt, s′′, s)→ K(agt, s′′, s′)

We can then proceed by induction over views. For the ε and o·v cases we split
on whether there exists a situation having that view. If no such situation
exists, we show that the regression rules (15, 16) generate a formula that is
vacuously true, as an invalid view causes anything to be known. If such a
situation does exist, we select an arbitrary witness and demonstrate that rules
(15, 16) generate an equivalent formula to rules (13,14) using that witness.
By the above corollary, this is enough to establish equivalence for any such
situation. For the complete proof, see Appendix C.

Our formalism thus allows agents to reason about their own knowledge
using only their local information, even in asynchronous domains where they
do not know how many actions have been performed.

27

4.3. Reasoning in Practice
It is worth re-iterating that our regression rules are no longer straightfor-

ward syntactic transformations – rather, they involve a fixpoint calculation
to generate P(φ,PbU(agt)). Our previous work on the persistence condition
meta-operator [19] discussed the advantages of this approach in detail, but
its primary advantage is to make automated reasoning approachable at all –
the alternative is second-order theorem proving against the full theory D.

Section 6 demonstrates our technique in action, answering multi-agent
knowledge queries in a purely mechanical fashion. We have also completed a
preliminary implementation of our technique in Prolog, using a modal variant
of the LeanTAP theorem prover [3, 11] as its core reasoning engine, and have
verified its operation on several simple domains, including some of the Hunt
the Wumpus examples presented in Section 6. More details of the domains
and examples are available along with the implementation5.

At a high level, we replace a single second-order theorem-proving task:

D |=SOL Knows(agt, φ, σ)

With iterated first-order reasoning to calculate the persistence condition:

Dbg |=FOL Pn(φ,PbU(agt))→ Pn+1(φ,PbU(agt))

Followed by first-order reasoning about the initial situation only:

DS0 ∪ Dbg |=FOL R∗(Knows(agt, φ, σ))

We thus “factor out” the components of the reasoning process, allowing
each to be treated in isolation. The inductive aspects are handed by property
persistence, and the dynamic aspects are handled by regression, leaving just
static epistemic reasoning in the target domain. Each may be more or less
challenging depending on the target domain, and each may be studied and
improved in isolation.

The problem of performing possible-worlds reasoning in the initial sit-
uation has received considerable attention in the literature [32], as has the
general problem of full epistemic reasoning about unrestricted forms of nested

5To obtain the code please visit http://people.eng.unimelb.edu.au/adrianrp/ or
http://agentlab.cis.unimelb.edu.au/

28

knowledge in Kn [14]. Since our approach has these challenges in common
with the standard account from [45], we will not discuss them further here.

Our insistence on considering “all possible future actions” introduces an
additional challenge not faced by the standard account – the calculation of
P may be very complex, and is not guaranteed to terminate in the general
case. Our previous work identified several classes of basic action theory in
which the persistence condition can be computed [19], and we will review
some specific examples below.

Since decidability results for the most general reasoning tasks in the sit-
uation calculus are known to be rather rare, recent approaches frequently
seek to restrict action theories in an appropriate way to achieve termina-
tion, depending upon the problem domain. Importantly, our approach is
compatible with a range of existing techniques, facilitated by our first-order
representation used for answering property persistence queries.

We consider below three classes of action theory in which P(φ,PbU(agt))
is guaranteed to be calculable.

4.3.1. Synchronous action theories
An important sanity-check for our approach is that is does not introduce

additional complexity for purely synchronous domains.

Definition 13 (Synchronous Action Theory). A basic action theory D is
synchronous if every agent observes something whenever an action occurs:

D |= ∀agt, c, s : Poss(c, s) → Obs(agt, c, s) 6= ∅

It is straightforward to show that P(φ,PbU(agt)) in synchronous do-
mains is always equivalent to φ. The regression rules in Equations (13,14)
then reduce to purely syntactic manipulations:

Theorem 6. Let Dsync be a synchronous basic action theory, then:

Dsync |= ∀s, agt : φ[s] ≡ P(φ,PbU(agt))[s]

Proof. By definition, we have:

Dsync |= ∀agt, c, s : Poss(c, s) → Obs(agt, c, s) 6= ∅

Recall from Equation (7) that:

PbU(agt, c, s) ≡ Poss(c, s) ∧Obs(agt, c, s) = ∅

29

So clearly:

Dsync |= ∀agt, c, s : PbU(agt, c, s) ≡ ⊥

The definition of P1(φ,PbU(agt)) will then produce:

P1(φ,PbU(agt)) ≡ φ ∧ (∀c : ⊥ → R(φ, c)) ≡ φ

The calculation of P thus terminates immediately at the first iteration,
giving P(φ,PbU(agt)) equal to P1(φ,PbU(agt)), which is equivalent to φ
as desired.

We thus do not introduce unnecessary complications for domains in which
effective reasoning procedures already exist, while extending the reach of our
formalism into richer domains where some inductive reasoning is required.

4.3.2. Propositional action theories
For domains in which all non-situation sorts are finite, reasoning about

uniform formulae can be reduced to propositional logic and is therefore
strongly decidable. Calculating the persistence condition is also decidable
in this case – since the domain has a finite state-space, the fixpoint calcula-
tion operates over a complete well-founded lattice and is therefore guaranteed
to terminate [19].

The Scherl and Levesque [45] account of knowledge has been shown to
admit to an optimal decision procedure and regression algorithm by inte-
grating observation actions and modal knowledge operators into a dynamic
epistemic logic encoding [57].

There are advantages to maintaining the expressive power of first-order
logic, even when the domain can be propositionalized, as the use of quantifiers
and free variables can produce exponentially-shorter formulae and hence lead
to shorter proofs.

4.3.3. Context-free action theories
Suppose that the theory of action is context free [27]. In such theories

successor state axioms have the following form:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a) ∨

(
F (x̄, s) ∧ ¬Φ−F (x̄, a)

)
The effects of an action are thus independent of the situation in which it is
performed. Quantification is still permitted, provided the quantifiers only
range over the situation-independent formulae.

30

Lin and Levesque [25, lemma 6.2] show that context-free theories with a
finite number of parameterless actions have a finite state space. This is there-
fore sufficient to ensure a terminating computation of persistence condition,
P , in the same manner as propositional domains [19].

Context free theories capture the expressivity of the usual formation of
classical planning problems encoded in STRIPS, with add and delete lists,
in which every action is considered to be context-free, as identified in [25].

4.4. Approximate Reasoning
Rather than restricting the domain to guarantee terminating calculation

of P(φ,PbU(agt)), it is also possible to restrict the form of queries so that
it can be pre-calculated offline. This kind of approximate reasoning about
knowledge is key to the formalism of Demolombe and Pozos Parra [9], in
which knowledge is limited to be about fluent literals only.

Their basic idea is to introduce, for each fluent F in the domain, two
additional fluents K+

agtF and K−agtF to explicitly represent “agt knows F ”
and “agt knows ¬F ”. By formulating ordinary successor state axioms for
these fluents, literal-level knowledge can be reasoned about using standard
regression and does not require an explicit possible-worlds K-relation. The
trade-off is that this approach cannot represent indeterminate disjunctive
knowledge such as “agt knows F or G”.

The Demolombe and Pozos Parra approach has been formally related to
the standard Scherl and Levesque approach by Petrick and Levesque [31].
They show there is an equivalence between the two approaches when an
agent’s knowledge is restricted to be disjunctive, so that the following holds:

Knows(agt, φ1 ∨ φ2, s)→ Knows(agt, φ1, s) ∨Knows(agt, φ2,s)

In [32] this equivalence is extended to cover existential quantification by
restricting knowledge to also satisfy the following:

Knows(agt,∃x : φ(x), s)→ ∃x : Knows(agt, φ(x), s)

These disjunctive properties of knowledge are not entailed by a general
possible-worlds style theory in the tradition of [45], although there are re-
strictions that can be placed on the theory in order to enforce them [33, 32].

Even when these disjunctive knowledge properties are not enforced by
the domain, they permit a sound approximation of knowledge that can be

31

reasoned about more tractably than the standard possible-worlds account.
Following the style of [31] we can provide the following definitions:

KnowsA(agt, φ1 ∧ φ2, s) = KnowsA(agt, φ1, s) ∧KnowsA(agt, φ2, s)

KnowsA(agt,¬(φ1 ∧ φ2), s) = KnowsA(agt,¬φ1, s) ∨KnowsA(agt,¬φ2, s)

KnowsA(agt,∀x : φ(x), s) = ∀x : KnowsA(agt, φ(x), s)

KnowsA(agt,¬∀x : φ(x), s) = ∃x : KnowsA(agt,¬φ(x), s)

KnowsA(agt,¬¬φ, s) = KnowsA(agt, φ, s)

KnowsA(agt, F, s) = Knows(agt, F, s)

KnowsA(agt,¬F, s) = Knows(agt,¬F, s)

A knowledge query is split across the logical operators until we are left
with only knowledge of fluent literals, which is then handled using our for-
malism. If we assume a finite number of fluents, then we can use our re-
gression rule for knowledge to pre-calculate an explicit successor state axiom
for KnowsA(agt, F, s) and KnowsA(agt,¬F, s), allowing them to be treated
as primitive fluents and reasoned about at run-time using purely syntactic
transformations.

Unlike the approach of Demolombe and Pozos Parra [9] in which knowl-
edge fluents must be axiomatised separately from the concrete fluents they
describe, the approach suggested here would allow a successor state axiom
for literal-level knowledge to be derived from the dynamics of the domain.
The calculation of P(F,PbU(agt)) for each fluent could be performed once,
offline, and then used directly for approximate reasoning about knowledge.

5. Axiomatising Observations

We now show how observations and views can be used to model a variety
of common domain dynamics from the situation calculus literature. We ar-
gue that these axiomatisations intuitively capture the “correct” information
in each case, and show how our explicit representation of the agent’s local
perspective can overcome difficulties encountered in previous formulations.

32

5.1. Public Actions
In Section 3 we showed how public actions can be easily captured using

the following axiom for Obs (reproduced from Equation 10):

a#r ∈ Obs(agt, c, s) ≡ a ∈ c
∧ actor(a) = agt→ r = SR(a, s)

∧ actor(a) 6= agt→ r = Nil

It should be clear that these definitions capture the intuition behind the
most common model of action observability, and indeed Section 3 formally
proved an equivalence to the standard knowledge axioms of [45].

This approach clearly leads to synchronous domains, since an agent’s set
of observations can only be empty if the set of actions is also empty, and the
empty action set is never legal to perform.

5.2. Private Actions
Private actions can be easily modelled by the following definition of Obs:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r

As noted by Lespérance et al. [21], private actions mean that agents need
to consider arbitrarily-long sequences of hidden actions which may or may not
have occurred, and standard regression techniques are insufficient to handle
this case. By explicitly formalising this situation, we are able to provide an
approach to effective automated reasoning in such asynchronous domains.

Private actions also serve to demonstrate the elaboration tolerance of our
approach. Consider the successor state axiom for knowledge with hidden
actions that is formulated in [21]:

K(agt, s′′, do(a, s)) ≡ ∃s′ : K(agt, s′, s)

∧ (actor(a) 6= agt → s′ ≤actor(a)6=agt s
′′))

∧ (actor(a) = agt → ∃s∗ :
[
s′ ≤actor(a)6=agt s

∗∧
s′′ = do(a, s∗) ∧ Poss(a, s∗) ∧ SR(a, s) = SR(a, s∗))]

While the axiom seems intuitively plausible, it has a subtle problem: an
agent’s knowledge can change in response to actions performed by others.
Suppose that agt has just performed action a1, so the world is in situation
do(a1, s). Another agent then performs the action a2, leaving the world in

33

situation do(a2, do(a1, s)). Since it is not aware of the occurrence of a2, the
knowledge of agt should be unchanged between these two situations. This is
not the case under the formulation of [21], which introduces arbitrarily-long
sequences of hidden actions into the past of the possible situation s′′. Based
on our explicit formalisation of the agent’s local view, our axiom includes
hidden actions in the future of s′′ and avoids this unintuitive behaviour.

By explicitly formalising the notion of a view, Theorem 1 guarantees that
our formulation will avoid subtle problems such as this.

5.3. Guarded Sensing Actions
Petrick [32] extends the approach of [45] to include guarded sensing ac-

tions. These actions cause the agent to learn that some formula φ holds,
but only if an additional guard formula ψ also holds in the world. They are
introduced by modifying the successor state axiom for K as follows:

K(agt, s′′, do(a, s)) ≡ ∃s′ : s′′ = do(a, s) ∧K(agt, s′, s) ∧ . . .
a = senseφ,ψ → [ψ(s) → φ(s) ≡ φ(s′)]

Petrick [32] demonstrates that this modified successor state axiom is no
longer guaranteed to preserve the symmetry of the K fluent, invalidating one
of the fundamental properties of knowledge. The problem is that although
the agent will learn φ if the guard ψ is true, it cannot conclude that the guard
was false by virtue of not learning φ. Since the agent’s local perspective is
only modelled implicitly, it has no way of detecting that the action failed to
produce its sensing result.

To ensure that symmetry is preserved through action, it is necessary
to axiomatise these sensing actions in such a way that the status of the
guard formula itself also becomes known. This is achieved in [32] through
special syntactic restrictions, but our approach of explicitly representing the
observations made by each agent avoids this problem automatically.

To model guarded sensing actions in our framework, one would leave K
unchanged and instead modify the definition of Obs to add guard conditions
Ψ as follows:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r ∧Ψ(a, s)

For example, an action senseφ,ψ that senses the truth of some formula φ
when the guard condition ψ is true would require something like the following

34

to be entailed by the definition of Obs:

senseφ,ψ#T ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c
∧ actor(senseφ) = agt ∧ ψ(s) ∧ φ(s)

senseφ,ψ#F ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c
∧ actor(senseφ) = agt ∧ ψ(s) ∧ ¬φ(s)

senseφ,ψ#Nil ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c
∧ actor(senseφ) = agt ∧ ¬ψ(s)

An agent using our formalism can therefore explicitly conclude, by virtue
of not receiving a sensing result from senseφ,ψ, that the guard condition
must not hold. This is sufficient to maintain symmetry of the knowledge
accessibility relation as guaranteed by Theorem 3.

5.4. Speech Acts
Communication in the situation calculus is traditionally modelled using

explicit communicative actions or “speech acts” [50, 49]. These actions are
axiomatised as per standard actions, but special-case handling is introduced
in the axioms for knowledge in order to model their communicative effects.

Instantaneous communication is modelled using actions such as inform,
where inform(agts, agtr, φ) means the sender agts informs the receiver agtr
of the truth of some formula φ. If we assert that only truthful speech acts are
allowed, and all actions are publicly observable, then this requires no further
axiomatisation:

Poss(inform(agts, agtr, φ), s) ≡ Knows(agts, φ[s], s)

The inform action will be included in each agent’s observations whenever
it occurs, from which the agent can conclude that it was possible and thus
that the contained formula holds in the world.

However, this simple approach can lead to third-party agents being aware
of what was communicated, which is often undesirable. In [50] encrypted
speech acts are introduced to overcome this limitation, ensuring that only the
intended recipient of a message is able to access its contents by performing
a special decrypt action. While it would be straightforward to copy this
approach in our formalism, the problem it was introduced to solve no longer
exists – we can directly limit the accessibility of the message contents adding

35

another type of observation, inform(agts, agtr), that indicates the occurrence
of the action but not its contents:

inform(agts, agtr) ∈ Obs(agt, c, s) ≡ ∃m : inform(agts, agtr,m) ∈ c

inform(agts, agtr,m) ∈ Obs(agt, c, s) ≡
inform(agts, agtr,m) ∈ c ∧ (agt = r ∨ agt = s)

Here all agents will observe that the communication occurred, but only
the sender and recipient can observe the contents of the message.

Non-instantaneous communication can be modelled using a message queue
for each agent with separate send and check actions [21]. The send action
adds a message to the queue, while the check action returns the details of
pending messages as its sensing result. Since this approach uses the standard
sensing-result machinery, it requires no special axiomatisation here.

5.5. Explicit Observability Axioms
Our approach offers a straightforward way to explore the middle ground

between the two extremes of “public actions” and “private actions” discussed
above. To axiomatise general partial observability of actions, we introduce a
new action description predicate CanObs(agt, a, s) that defines the conditions
under which agent agt would observe action a being performed in situation
s. If CanObs(agt, a, s) is false, then that action will be hidden. We can then
define Obs as follows:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s)

This permits a great deal of flexibility in the axiomatisation. In our Hunt
the Wumpus domain, agents are aware of all the actions performed in the
same room as themselves:

CanObs(agt, a, s) ≡ ∃r : ∧In(agt, r) ∧ In(actor(a), r)

It is also possible to allow partial observability of sensing results using an
analogous predicate CanSense(agt, a, s) and the following definition of Obs:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s) ∧ ¬CanSense(agt, a, s)
a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ SR(a, s) = r

∧ CanObs(agt, a, s) ∧ CanSense(agt, a, s)

36

For example, consider an agent waiting for a train who activates a speaker
to determine when it will arrive. The results of this sensing action would
provide information to any other agent within earshot:

CanSense(agt, activateSpeaker(agt2), s) ≡ CloseToSpeaker(agt)

We feel that this formulation provides a good balance between simplicity
and expressiveness; it allows the observability of actions to vary according
to the state of the world, but provides agents with a complete description of
each action that they are capable of observing.

5.6. Observability Interaction
Reasoning about observability of concurrent actions raises the potential

for observability interaction, in which some actions produce different obser-
vations when they are performed concurrently with another action. Like the
precondition interaction problem for Poss, which has undergone extensive
research and is discussed in [36, 34, 35], we assume that the axiom defin-
ing Obs contains the appropriate logic to handle such interaction. A simple
axiomatisation might have actions being “masked” by the co-occurrence of
another action, and would appear like so:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s) ∧ ¬∃a′ ∈ c : Masks(a′, a, s)

The important point is that, given an explicit account of the local per-
spective of each agent, such interaction can be axiomatised independently of
the rest of the action theory.

5.7. Observing the Effects of Actions
In many domains it would be infeasible for an agent to observe all of the

details of a particular action when it occurs, but it may observe some of the
effects of that action. For example, suppose that an agent monitors the state
of a light in its environment, such that it notices it changing from dark to
light. While it knows that some action must have occurred to produce that
effect, it may not be sure precisely what action took place (e.g. precisely who
turned on the light). This can be modelled by further extending the Ob-
servation sort to contain a special “effect observation” term lightCameOn,
and axiomatising like so:

lightCameOn ∈ Obs(agt,c, s) ≡
¬lightIsOn(s) ∧ ∃agt′ : turnLightOn(agt′) ∈ c

37

When the light is switched on, each agent’s observation set will contain
the term lightCameOn, and they will be able to deduce that this change has
occurred without necessarily knowing the specific action responsible for the
change. This is similar to the “fluent change” actions proposed by De Gia-
como et al. [6], but embedded in the theory itself rather than generated by
the agent when it discovers that it must update its beliefs.

5.8. Delayed Communication
Delayed communication can be modelled using separate send and recv ac-

tions. However, unlike the use of explicit communication channels discussed
previously, we do not want the receiving agent to have to poll the message
queue. Rather, the recv action should occur automatically some time after
the send action.

This is easily modelled using natural actions as defined by Reiter [40], ac-
tions that occur automatically at a particular time. By making recv a natural
action, send/recv pair can be axiomatised mirroring the standard account
of long-running tasks in the situation calculus. A fluent PendMsg(s, r,m, t).
indicates that some message is pending and will be delivered at time t. We
have:

natural(recv(agts, agtr,m, t))

send(agts, agtr,m, t) ∈ Obs(agt, c, s) ≡ send(agts, agtr,m, t) ∈ c ∧ agt = agts

recv(agts, agtr,m, t) ∈ Obs(agt, c, s) ≡ recv(agts, agtr,m, t) ∈ c ∧ agt = agtr

Poss(recv(agts, agtr,m, t), s) ≡ PendMsg(agts, agtr,m, t, s)

PendMsg(s, r,m, tm, do(c, s)) ≡
send(s, r,m, t) ∈ c ∧ tm = t+ delay(s, r,m, s)

∨ PendMsg(s, s,m, tm, s) ∧ recv(s, r,m, tm) 6∈ c

A send action thus causes the message to become pending, with its de-
livery time determined by the functional fluent delay. Once the delay time
has elapsed, the natural action recv will be triggered and the message deliv-
ered. The send and recv actions are observed only by the sender and receiver
respectively.

If the agents have incomplete information about the delay function, this
could easily model domains in which the message delay is unpredictable or
even unbounded, giving asynchronous communication in the style of [15].

38

6. An Illustrative Example

We now give a brief demonstration of our formalism in action, using it to
model the “Hunt The Wumpus” domain outlined in Section 1. Our variant
is complicated by the presence of multiple hunters and partial observability,
but we also simplify it by omitting common features such as pits and breezes.
The full axiomatisation is available in Appendix A.

We take as a static background fact the predicate Adjacent(r, r′) defining
the layout of the dungeon, as shown in Figure 3. Since it is part of Dbg, the
layout is known to all agents.

The actions of interest in the domain are move(agt, r) by which agents
may move between adjacent rooms, shoot(agt, r) by which an agent may
shoot into an adjacent room, and alert(agt) by which agents may alert each
other to the presence of a stench in their current room.

The fluents of interest are the function r = Loc(agt, s) giving the current
room each agent is in, r = Wumpus(s) giving the room containing the Wum-
pus, Stench(r, s) indicating whether a room contains a stench, and Killed(s)
indicating whether the Wumpus has been killed.

Figure 3: Hunt-the-Wumpus Dungeon Layout.

39

We have the following precondition axioms:

Poss(move(agt, r), s) ≡Adjacent(r,Loc(agt, s))

Poss(shoot(agt, r), s) ≡Adjacent(r,Loc(agt, s))

Poss(alert(agt), s) ≡ Stench(Loc(agt, s), s)

Along with the following successor state axioms:

r = Loc(agt, do(c, s)) ≡move(agt, r) ∈ c
∨ (r = Loc(agt, s) ∧ ¬∃r′ : move(agt, r′) ∈ c)

Killed(do(c, s)) ≡Killed(s)

∨ ∃agt, r : shoot(agt, r) ∈ c ∧ r = Wumpus(s)

r = Wumpus(do(c, s)) ≡ r = Wumpus(s)

Stench(r, do(c, s)) ≡ Stench(r, s)

Note that Wumpus and Stench do not vary, but they must be fluents to
allow for agents having partial knowledge of these facts. They are related by
the following background theory axiom, stating that only rooms adjacent to
the Wumpus have a stench:

Stench(r, s) ≡ Adjacent(r,Wumpus(s))

This is a simple state invariant that, if true initially, is implied for all
situations by the successor state axioms above. Typical approaches would
discard such invariants after encoding their effects into the successor state
axioms, as in [26]. We keep it as part of the background theory since it is
useful when calculating the persistence condition; see Appendix B for a
detailed treatment.

For Observation terms we include all actions along with the following:
footsteps indicating movement of an agent in an adjacent room, alert in-
dicating an announcement by an agent in an adjacent room, stench as a
sensing result when moving into a stench-filled room, and scream to indicate

40

the death of the Wumpus. They are axiomatized as follows:

move(agt1, r1) ∈ Obs(agt, c,s) ≡ move(agt1, r1) ∈ c
∧ [Loc(agt, s) = Loc(agt1, s) ∨ Loc(agt, s) = r1]

shoot(agt1, r1) ∈ Obs(agt, c,s) ≡ shoot(agt1, r1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)

alert(agt1) ∈ Obs(agt, c,s) ≡ alert(agt1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)

footsteps ∈ Obs(agt, c,s) ≡ ∃agt1, r1 : move(agt1, r1) ∈ c
∧ [Adjacent(Loc(agt, s), r1)∨

Adjacent(Loc(agt, s),Loc(agt1, s))]

alert ∈ Obs(agt, c,s) ≡ ∃agt1 : alert(agt1) ∈ c
∧ Adjacent(Loc(agt, s),Loc(agt1, s))

stench ∈ Obs(agt, c,s) ≡ ∃r1 : move(agt, r1) ∈ c
∧ Stench(r1, s)

scream ∈ Obs(agt, c,s) ≡ ∃agt1, r1 : shoot(agt1, r1) ∈ c
∧ r1 = Wumpus(s) ∧ ¬Killed(s)

The hunters know their initial state, being located in room R1 where
there is no Wumpus and no stench:

Init(s)→ ∀agt : Loc(agt, s) = R1

Init(s)→Wumpus(s) 6= R1 ∧ ¬Stench(R1, s)

The Wumpus is in room R5, but this is not known to the agents. It is a fact
about the actual initial situation rather than all possible initial situations:

Wumpus(S0) = R5

The agents have no additional knowledge about the state of the dungeon.
The following are examples of knowledge queries that can be posed in our

formalism, a brief explanation of their outcome, and a demonstration of how
they can be answered using our new regression rules.

41

Example 1. Initially, Ann does not know where the wumpus is:

D ∪DobsK |= ¬∃r : Knows(A,Wumpus() = r, S0)

Intuitively: it is given that ¬∃r : Knows0(A,Wumpus() = r, S0), and
there is no sequence of hidden actions that could result in her learning the
location of the wumpus.

Formally: we answer the query by regressing it to produce a query about
her initial knowledge Knows0:

R(¬∃r : Knows(A,Wumpus() = r, S0))⇒
¬∃r : Knows0(A,R((P(Wumpus() = r,PbU(A))[S0])−1, S0)

The calculation of this persistence condition is trivial since the location
of the wumpus cannot change, so the fixpoint search terminates after a single
iteration:

P(Wumpus() = r,PbU(A)) ⇒ Wumpus() = r

Which gives:

R(¬∃r : Knows(A,Wumpus() = r, S0))⇒
¬∃r : Knows0(A,R((Wumpus() = r)[S0])−1, S0)

The nested regression of Wumpus(r) at S0 leaves the formula unchanged.
The query thus regresses to the following, which is entailed by the domain:

DS0 ∪ Dbg |= ¬∃r : Knows0(A,Wumpus() = r, S0)

Example 2. Bob knows that the wumpus is not in an adjacent room, since
he knows there is no stench in room R1.

D ∪DobsK |= Knows(B,Wumpus() 6= R2 ∧Wumpus() 6= R4, S0)

It is therefore safe for him to move to an adjacent room.

Regressing as in the previous example gives the equivalent query:

DS0 ∪ Dbg |= Knows0(B,Wumpus() 6= R2 ∧Wumpus() 6= R4, S0)

All initial situations have ¬Stench(R1) and the background theory has
Adjacent(R2, R1), Adjacent(R4, R1), and the axiom relating a stench to an
adjacent wumpus. All initial situations thus have no Wumpus in rooms
adjacent to R1, so the regressed query is entailed by the domain.

42

Example 3. After Bob moves into room R2, he knows that it has a stench.

D ∪DobsK |= Knows(B, Stench(R2), do({move(B,R2)}, S0))

The move action causes Bob to receive a stench observation, and since
a room’s stenchiness cannot change, he can be sure the stench persists after
any hidden actions.

Formally, we regress over the move action like so:

R(Knows(B, Stench(R2), do({move(B,R2)}, S0))⇒
∃o : Obs(B, {move(B,R2)}, S0) = o

∧ [o = ∅ → Knows(B, Stench(R2), s)]

∧ [o 6= ∅ → Knows(B, ∀c′ : Obs(B, c′) = o

∧Poss(c′)→ R(P(Stench(R2),PbU(B)), c′), s)]

Since this domain has a finite number of possible observations, we can ex-
pand the “∃o” clause into a finite disjunction. Indeed there are only two pos-
sible values for Obs(B, {move(B,R2)}, s), corresponding to the room having
or not having a stench:

• Stench(R2, s) ≡ Obs(B, {move(B,R2)}, s) = {move(B,R2), stench}

• ¬Stench(R2, s) ≡ Obs(B, {move(B,R2)}, s) = {move(B,R2)}

Expanding and replacing each observation with its preconditions yields:

R(Knows(B, Stench(R2), do({move(B,R2)}, S0))⇒
(Stench(R2, S0) ∧ [Knows(B, . . .)])

∨ (¬Stench(R2, S0) ∧ [Knows(B, . . .)])

The domain entails Stench(R2, S0) so we can simplify the other option
away, leaving:

R(Knows(B, Stench(R2), do({move(B,R2)}, S0))) ⇒
Knows(B, ∀c′ : Poss(c′) ∧Obs(B, c′) = {move(B,R2), stench} →

R(P(Stench(R2),PbU(B)), c′), S0)

The persistence condition calculation again terminates after one iteration:

P(Stench(R2),PbU(B))⇒ Stench(R2)

R(P(Stench(R2),PbU(B)), c′)⇒ Stench(R2)

43

So the query further simplifies to:

Knows(B, ∀c′ : Poss(c′) ∧Obs(B, c′) = {move(B , R2), stench} →
Stench(R2), S0)

Since this domain has a finite number of possible actions, we can expand
the “∀c′” clause into a finite conjunction – indeed, the only value of c′ that
can produce those observations is {move(B,R2)}. Substituting it and its
action description predicates Poss and Obs gives:

Knows(B,Adjacent(R2,Loc(B)) ∧ Stench(R2) → Stench(R2), S0)

This tautology is clearly entailed by the domain.

Example 4. Ann learns that Bob is in room R2 by observing Bob’s move.

D ∪DobsK |= Knows(A,Loc(B) = R2, do({move(B,R2)}, S0))

Ann observes move(B,R2) and learns that Bob is in room R2. If Bob
leaves room R2, Ann will observe footsteps and know that he has left, pro-
vided she remains in room R1.

Regressing and enumerating the possible observations as before, we know
that Ann’s observations in this case will be {move(B,R2)} and we have:

R(Knows(A,Loc(B) = R2, do({move(B,R2)}, S0))) ⇒
Knows(A,∀c′ : Poss(c′) ∧Obs(A, c′) = {move(B,R2)} →

R(P(Loc(B) = R2,PbU(A)), c′), S0)

As before, there is only a single possible value of c′ that would match these
observations. Setting c′ = {move(B,R2} and its definitions for Poss and
Obs gives:

R(Knows(A,Loc(B) = R2, do({move(B,R2)}, S0))) ⇒
Knows(A,Adjacent(Loc(B), R2) ∧ (Loc(A) = Loc(B) ∨ Loc(A) = R2)→

R(P(Loc(B) = R2,PbU(A)), {move(B,R2)}), S0)

Unlike previous examples, it is possible for Loc(B) = R2 to become false
by some sequence of hidden actions. Calculation of P terminates after two
iterations, yielding:

P(Loc(B) = R2,PbU(A))⇒
Loc(B) = R2 ∧ (Loc(A) = R2 ∨ Adjacent(R2,Loc(A)))

44

Ann will observe any actions that falsify Loc(B) = R2, as long as she is
either in the same room (so she will see Bob move) or in an Adjacent room
(so she will hear Bob’s footsteps).

Since move(B,R2) makes Loc(B) = R2 true, regressing over it gives the
following:

R(P(Loc(B) = R2,PbU(A)), {move(B,R2)})⇒
Loc(A) = R2 ∨ Adjacent(R2,Loc(A))

Substituting into the overall expression results in:

Knows(A,Adjacent(Loc(B), R2) ∧ (Loc(A) = Loc(B) ∨ Loc(A) = R2)→
Loc(A) = R2 ∨ Adjacent(R2,Loc(A)), S0)

At this point we must apply R again to convert it into a formula about
Knows0, the details of which proceed identically to the previous examples.
It suffices to note that D |= Knows(A,Adjacent(R2,Loc(A)), S0) which is
enough to satisfy the implication in the above formula.

Example 5. After Bob alerts that there is a stench, Ann knows there is a
stench in room R2 , since Ann knows that Bob is in room R2.

D ∪DobsK |= Knows(A, Stench(R2), do([{move(B,R2)}, {alert(B)}], S0))

Ann observes alert which informs her that there is a stench in an adjacent
room, and since she knows that Bob is in room R2, she infers Stench(R2).

We begin by regressing over the most recent action {alert(B)} to get a
formula uniform in σ def

= do({move(B,R2)}, S0):

R(Knows(A,Stench(R2), do({alert(B)}, σ)) ⇒
∃o : o = Obs(A, {alert(B)}, σ)

∧Knows(A,∀c′ : Poss(c′) ∧Obs(A, c′) = o→
R(P(Stench(R2),PbU(A)), c′), σ)

The only possible case for the “∃o” clause is o = {alert}, and the only possible
case for the “∀c′” clause is c′ = {alert(B)}. From a previous example we have
R(P(Stench(R2),PbU(B)), c′)⇒ Stench(R2). We can thus simplify this to:

Knows(A,Poss({alert(B)}) ∧Obs(A, {alert(B)}) = {alert} →
Stench(R2), do({move(B,R2)}, S0))

45

Inserting definitions of Poss and Obs gives:

Knows(A, Stench(Loc(B)) ∧ Adjacent(Loc(A),Loc(B))→
Stench(R2), do({move(B,R2)}, S0))

From a previous example, we have that Ann knows
Loc(B, do({move(B,R2)}, S0)) = R2, so this will reduce the following tau-
tology:

Knows(A, Stench(R2) ∧ Adjacent(Loc(A), R2)→
Stench(R2), do({move(B,R2)}, S0))

Which is clearly entailed by the domain.

Example 6. After moving to room R4 Ann observes a stench, knows that
there is a stench in both R2 and R4:

D ∪DobsK |= Knows(A, Stench(R2) ∧ Stench(R4),

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}], S0))

And hence knows that the wumpus is in room R5:

D ∪DobsK |= Knows(A,Wumpus() = R5,

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}], S0))

The mechanics of Ann learning Stench(R4) are identical to Example 3, so
we will not repeat them here. The interesting point is that, since agents know
all logical consequences of their knowledge, Ann can deduce the location of
the Wumpus based on:

D |= Stench(R2, s) ∧ Stench(R4, s)→Wumpus(s) = R5

Example 7. Ann doesn’t know where Bob is, since she can’t observe his
footsteps from room R4.

D ∪DobsK |= ¬∃r :Knows(A,Loc(B) = r,

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}] , S0))

46

Ann isn’t adjacent to Bob, so she is no longer assured of hearing his
footsteps if he moves out of room R2.

Formally, using σ = do([{move(B,R2)}, {alert(B)}], S0) we have:

R(¬∃r : Knows(A,Loc(B) = r, do({move(A,R4)}, σ)))⇒
∃o : o = Obs(A, {move(A,R4)}, σ)

∧ ¬∃r : Knows(A, ∀c′ : Poss(c′) ∧Obs(A, c′) = o→
R(P(Loc(B) = r),PbU(A), c′), σ)

Expanding “∃o” and “∀c′” as before, we find that the only relevant value
of c′ is {move(A,R4)}. Recall from Example 4 that:

P(Loc(B) = r,PbU(A))⇒
Loc(B) = r ∧ (Loc(A) = r ∨ Adjacent(r,Loc(A)))

Regressing this over move(A,R4) fixes Ann’s location as R4, producing:

R(P(Loc(B) = r,PbU(A)), {move(A,R4})⇒
Loc(B) = r ∧ (R4 = r ∨ Adjacent(r, R4))

In Example 4 we also established that:

Knows(A,Loc(B) = R2, σ)

So there can be no value of r satisfying (R4 = r ∨ Adjacent(r, R4)), which
is required in this expression, and therefore no r satisfying the initial query.

Example 8. Ann shoots the wumpus, observes the scream and knows the
wumpus is dead.

D∪DobsK |= Knows(A,Killed ,

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}, {shoot(A,R5)}], S0))

Abbreviating all but the last action as σ, and using
Obs(A, {shoot(A,R5)}, σ) = {shoot(A,R5), scream}, we have:

R(Knows(A,Killed , do({shoot(A,R5)}, σ)))⇒
Knows(A,Poss({shoot(A,R5)})
∧Obs(A, {shoot(A,R5)}) = {shoot(A,R5), scream}
→ R(P(Killed ,PbU(A), {shoot(A,R5)}), σ)

47

No actions can cause Killed to become false, so:

P(Killed ,PbU(A))⇒ Killed

Regressing over action {shoot(A,B5)} results in:

R(P(Killed ,PbU(A)), {shoot(A,R5)})⇒ Killed ∨Wumpus() = R5

Substituting definitions of Poss and Obs we get:

Knows(A,Adjacent(Loc(A), R5) ∧ ¬Killed ∧Wumpus() = R5→
Killed ∨Wumpus() = R5, σ)

This tautology is clearly entailed by the domain.

Example 9. Ann knows that Bob knows the wumpus is dead, as he will have
heard the scream regardless of his location.

D ∪DobsK |= Knows(A,Knows(B,Killed),

do([{move(B,R2)}, {alert(B)}, {move(A,R4)}, {shoot(A,R5)}], S0))

Abbreviating all but the last action as σ, and using
Obs(A, {shoot(A,R5)}, σ) = {shoot(A,R5), scream}, as in Example 8, we
have:

R(Knows(A,Knows(B,Killed), do({shoot(A,R5)}, σ)))⇒
Knows(A,Poss({shoot(A,R5)})
∧Obs(A, {shoot(A,R5)}) = {shoot(A,R5), scream}
→ R(P(Knows(B,Killed),PbU(A), {shoot(A,R5)}), σ)

Since no future actions can cause Killed to be false:

P(Knows(B,Killed),PbU(A))⇒ Knows(B,Killed)

We then need to regress this inner knowledge expression over the ac-
tion {shoot(A,R5)}, which can proceed in much the same way as previous
examples:

R(Knows(B,Killed), {shoot(A,R5)})⇒
∃o : o = Obs(B, {shoot(A,R5)})
∧ [o = ∅ → Knows(B,Killed)]

∧ [o 6= ∅ → Knows(B, ∀c′ : Poss(c′) ∧Obs(B, c′) = o→ R(P(Killed), c′))]

48

Note, however, that we cannot expand the “∃o” into a disjunction based
on the value of Obs(B, {shoot(A,R5)}, σ). We must instead enumerate all
possible observations that Ann thinks he might make. There are three cases
to consider:

• Obs(B, {shoot(A,R5)}, s) = {shoot(A,R5), scream}

• Obs(B, {shoot(A,R5)}, s) = {shoot(A,R5)}

• Obs(B, {shoot(A,R5)}, s) = {scream}

From previous examples, we have that Knows(A,Wumpus() = R5, σ)
and Knows(A,Loc(B) 6= R4, σ). This is enough to limit Bob’s potential
observations to a single option:

Knows(A,Obs(B, {shoot(A,R5)}) = {scream}, σ)

So regression of the inner expression can proceed in an identical manner
to Example 8.

In fact, at this point the hunters will have common knowledge that the
Wumpus is dead. The current formalism is not rich enough to reason directly
about common knowledge, but we have preliminary work on this topic in [18]
that could be integrated with the approach taken here.

7. Related and Future Work

There has been a great deal of work on multi-agent systems in the situ-
ation calculus, including: specification of multi-agent systems Shapiro et al.
[52]; theories of coordination [13] and ability [22]; reasoning about the epis-
temic feasibility of plans [23]; analysing multi-player games [1]; and our own
work on the cooperative execution of Golog programs [16]. Many of these
explicitly assume that all actions are public, in order to use regression to
reason about knowledge. Our richer theory of knowledge could immediately
be used to extend and generalise formalisms such as these to more complex
multi-agent domains.

We have developed the first principled axiomatisation of the observability
of actions, using the notion of observations and views as analogues of actions

49

and situations that are localised to an individual agent. This terminology
has been deliberately chosen to match similar concepts in other formalisa-
tions of knowledge, such as the well-known treatise of Halpern and Moses
[15]. By reifying these concepts as terms in the logic, we are able to give a
succinct definition of the dynamics of the knowledge fluent and prove that
its behaviour matches our intuitive expectations.

A further advantage of our explicit axiomatisation of observations is in
establishing properties of the knowledge relation. A major theorem of Scherl
and Levesque [45] states that if the K-relation is reflexive, symmetric or
transitive at the initial situation, then it has that property at every situation.
In our formulation these are all simple corollaries of Theorem 1, based on the
reflexive, symmetric and transitive nature of the equality symbol.

As we discussed in Sections 3 and 5, different kinds of information-
generating actions have previously been modelled by directly modifying the
successor state axiom for K [48, 21, 50, 32, 49]. Unfortunately, these ex-
tensions do not in general maintain the important theorems of the standard
account of knowledge [45]; there is no guarantee that a modified axiom will
preserve accessibility properties of K, or will permit a regression rule for
Knows. This approach is not elaboration tolerant.

By contrast, the proof of Theorem 3 and the examples in Section 5 have
shown that our approach is naturally elaboration tolerant in the face of pri-
vate actions, guarded sensing actions, speech acts, and other extensions that
have required special treatment in previous work. By basing our approach
on an explicit, separately-axiomatised account of the local perspective of
each agent, our formulation robustly maintains both accessibility property
preservation and a regression rule regardless of the specific semantics of
information-producing actions.

Our approach depends crucially on the ability to do epistemic reason-
ing about unrestricted forms of nested knowledge in Kn. Several promising
tractable approaches have been developed for such reasoning, such as restrict-
ing theories to proper epistemic knowledge bases (PEKBs) and transforming
queries into a certain normal form, which is complete and tractable for im-
portant classes of applications [20]. Lakemeyer and Lespérance [20] point
out that reasoning about other agents’ actions is really also required in such
systems, and highlight the importance of future work on the first-order case.
Our approach could form a component of such work.

While our formalism has explicitly focused on modelling knowledge, there
has also been substantial work on modelling belief in the situation calculus,

50

where agents may be mistaken about the state of the world [51]. In such
systems there are alternatives to reasoning about arbitrarily-long sequences
of hidden actions, such as assuming that no hidden actions occur until there
is evidence to the contrary. Shapiro and Pagnucco [47] show how agents may
hypothesise the occurrence of hidden exogenous actions when they discover
that their beliefs are wrong. We note that these belief-based systems are
also based on the original formulation of epistemic modalities by Scherl and
Levesque [45], therefore aspects of our approach could be used to enrich such
systems.

Our explicit notions of observations and views could also provide benefits
for such formalisms, as well as for the formulation of other modalities (e.g
goals as in [49]) in the situation calculus. Our approach could facilitate the
monitoring of goal achievement during execution, where ongoing commitment
to the planned execution of goals is subject to what an agent believes. We
could potentially answer the relativized persistent goal queries of Cohen and
Levesque [5], where agents must consider dropping persistent goals should
they believe that they have become unachievable.

The knowledge formalism we have developed here is permissive, in that it
assumes the world could potentially evolve via any legal sequence of actions.
In the wider field of epistemic reasoning, it is common to constrain the world
to evolve according to a given protocol [15, 10, 55]. One then speaks of an
agent’s knowledge under a particular protocol. The situation calculus has
shown promise for verifying protocols, such as cryptographic protocols [8].

As discussed in [55], permissive formulations of knowledge can easily be
extended to support local protocols, where the allowable next actions can be
determined based on the current state of the world. Our use of Poss in the
axioms for knowledge could easily be replaced with predicates axiomatising
actions that are, for example, Permissable orMotivated. But recent work by
Fritz et al. [12] also presents an intriguing possibility to extend our approach
to more general protocols.

The most natural language for expressing a protocol in the situation calcu-
lus is Golog, so one may wish to reason about an agent’s knowledge assuming
the world evolves as specified by the Golog program δ:

Kp(agt, δ, s
′, s)

def
= K(agt, s′, s) ∧ ∃s′′, δ′ : Init(s′′) ∧ Trans∗(δ, s′′, δ′, s′)

Such knowledge would be queried like so:

D ∪Dgolog ∪ DobsK |= Knowsp(agt, δ, φ, σ)

51

It is this kind of knowledge that would be needed to integrate epistemic
reasoning into our MIndiGolog execution planner [16], as the agents in that
case know their teammates will act according to the shared control program.

Fritz et al. [12] have demonstrated that the details of a given ConGolog
program δ can be compiled into a theory of action D, producing a new theory
Dδ in which the only legal situations are those that form part of a legal
execution of δ:

D ∪Dgolog |= ∃δ′ : Trans∗(δ, S0, δ
′, σ)

iff

Dδ |= Legal(σ)

So to investigate the knowledge of an agent under a protocol, we could
use the compilation technique of [12] to get a query which can be handled
using our formalism:

D ∪Dgolog ∪ DobsK |= Knowsp(agt, δ, φ, σ)

iff

Dδ ∪ DobsK |= Knows(agt, φ, σ)

The details are not quite so straightforward, as the compilation procedure
introduces some auxiliary actions and fluents that should be hidden from the
agent’s knowledge. However, it does offer a possibility for future work.

Another promising avenue of future research is to bound the number of
fluents maintained at any point in time, based on the implicit assumption
that agents will eventually forget facts after a certain period of time. In a
model checking setting this leads to an abstract transition system with a finite
number of states that can be decidably checked, and can still represent infinite
executions [7]. This bounds the number of fluents in the active domain and
could have merit for computing the property persistence fixpoint of P .

Finally, we note that a multi-agent logic of knowledge and action naturally
raises the question of common knowledge, a key concept in the coordination
and distributed systems literature [15]. The formalism presented here does
not include a common knowledge operator, as it would be difficult to han-
dle using regression – indeed, Batlag et al. [2] have shown that epistemic
logic with both actions and common knowledge is more expressive than epis-
temic logic with common knowledge alone. The proper treatment of common
knowledge requires a much richer language of complex epistemic modalities

52

in the style of van Benthem et al. [56]. In previous work we have introduced
such modalities to the situation calculus for synchronous domains [18], and
our ongoing research will unify that approach with the asynchronous formal-
ism developed in this paper.

8. Conclusion

We have provided the first foundational account of epistemic reasoning
in the situation calculus in asynchronous multi-agent domains. A principled
axiomatisation of the observability of actions is used to explicitly define an
agent’s knowledge in terms of its local view. By reifying observations and
views as terms in the logic, we are able to give a succinct definition of the
dynamics of the knowledge fluent and prove that its behaviour matches our
intuitive expectations.

The standard account of knowledge requires that domains be synchronous,
so that the Knows operator need not consider arbitrarily-long sequences of
hidden actions. Handling hidden actions requires a second-order induction
axiom to universally quantify over situation terms, precluding the use of re-
gression for effective automated reasoning. We have shown that this second-
order axiom can be factored out of the regression rules, and replaced with a
fixpoint calculation performed by the meta-level reasoning machinery. This
fixpoint calculation requires theorem proving based on a very restricted set
of axioms, offering a significant advantage over generic second-order theorem
proving. Several decidable classes and tractable techniques can be realised
as special cases of this generic result.

We have demonstrated that our account of knowledge is expressive enough
to capture the standard account of knowledge based on public actions, as well
as more complex formulations where the observability of actions depends on
the state of the world. Moreover, it maintains its important theorems and
the availability of a regression rule as more complex kinds of information-
producing action are introduced.

Finally, and perhaps most importantly, we have shown that a simple mod-
ification to regression rules allows a situated agent to reason directly about
its own knowledge using only its local view, rather than constructing a query
that universally quantifies over all situations compatible with its view. Our
new observation-based semantics thus provides a powerful account of knowl-
edge suitable both for reasoning about, and for reasoning in, asynchronous
multi-agent domains.

53

9. Acknowledgements

This work has been partially supported by an Australian Research Coun-
cil (ARC) Discovery project (Foundations of human-agent collaboration:
situation-relevant information sharing), grant No. DP130102825.

References

[1] Bradley Bart, James P. Delgrande, and Oliver Schulte. Knowledge and
Planning in an Action-Based Multi-agent Framework: A Case Study. In
Advances in Artificial Intelligence, volume 2056 of LNAI, pages 121–130.
Springer, 2001.

[2] Alexandru Batlag, Lawrence S. Moss, and Slawomir Solecki. The Logic
of Public Announcements and Common Knowledge and Private Suspi-
cions. In Proceedings of the 7th conference on Theoretical Aspects of
Rationality and Knowledge (TARK’98), pages 43–56, 1998.

[3] Bernhard Beckert and Joachim Posegga. LeanTAP: Lean Tableaue-
based Deduction. Journal of Automated Reasoning, 15:339–358, 1995.

[4] Jens Claßen and Gerhard Lakemeyer. A Logic for Non-Terminating
Golog Programs. In Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR’08), pages
589–599, 2008.

[5] Philip R Cohen and Hector J Levesque. Intention is choice with com-
mitment. Artificial intelligence, 42(2):213–261, 1990.

[6] Giuseppe De Giacomo, Raymond Reiter, and Mikhail Soutchanski. Exe-
cution Monitoring of High-Level Robot Programs. In Proceedings of the
6th International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), pages 453–465, 1998.

[7] Giuseppe De Giacomo, Yeves Lespérance, and Fabio Patrizi. Bounded
situation calculus action theories and decidable verification. In Proceed-
ings of the 13th International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), pages 467–477, 2012.

54

[8] James P Delgrande, Aaron Hunter, and Torsten Grote. On the represen-
tation and verification of cryptographic protocols in a theory of action.
In Privacy Security and Trust (PST), 2010 Eighth Annual International
Conference on, pages 39–45. IEEE, 2010.

[9] Robert Demolombe and Maria del Pilar Pozos Parra. A Simple and
Tractable Extension of Situation Calculus to Epistemic Logic. In Pro-
ceedings of the 12th International Symposium on Foundations of Intel-
ligent Systems (ISMIS’00), pages 515–524, 2000.

[10] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning about Knowledge. The MIT Press, Cambridge, Mas-
sachusetts, 1995.

[11] Melvin Fitting. LeanTAP Revisited. Journal of Logic and Computation,
8(1):33–47, 1998.

[12] Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith. ConGolog, Sin
Trans: Compiling ConGolog into Basic Action Theories for Planning
and Beyond. In Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR’08), pages
600–610, 2008.

[13] Hojjat Ghaderi, Hector Levesque, and Yves Lespérance. A Logical The-
ory of Coordination and Joint Ability. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI’07), pages 421–426, 2007.

[14] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319–379,
1992.

[15] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowl-
edge in a distributed environment. Journal of the ACM, 37(3):549–587,
1990.

[16] Ryan F. Kelly and Adrian R. Pearce. Towards High-Level Programming
for Distributed Problem Solving. In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’06),
pages 490–497, 2006.

55

[17] Ryan F. Kelly and Adrian R. Pearce. Knowledge and Observations in the
Situation Calculus. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’07),
pages 841–843, 2007.

[18] Ryan F. Kelly and Adrian R. Pearce. Complex Epistemic Modalities
in the Situation Calculus. In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning
(KR’08), pages 611–620, 2008.

[19] Ryan F. Kelly and Adrian R. Pearce. Property Persistence in the Situ-
ation Calculus. Artificial Intelligence, 174:865–888, 2010.

[20] Gerhard Lakemeyer and Yves Lespérance. Efficient reasoning in mul-
tiagent epistemic logics. In Proceedings of the 20th biennial European
Conference on Artificial Intelligence (ECAI’12), pages 498–503, 2012.

[21] Y. Lespérance, H. J. Levesque, and R. Reiter. A Situation Calcu-
lus Approach to Modeling and Programming Agents. In Rao A. and
M. Wooldridge, editors, Foundations and Theories of Rational Agency,
pages 275–299. Kluwer, 1999.

[22] Y. Lespérance, H. J. Levesque, F. Lin, and R. B. Scherl. Ability and
Knowing How in the Situation Calculus. Studia Logica, 66(1):165–186,
October 2000.

[23] Yves Lespérance. On the Epistemic Feasibility of Plans in Multiagent
Systems Specifications. In Proceedings of the 8th International Work-
shop on Agent Theories, Architectures, and Languages, volume 2333 of
Lecture Notes in Artificial Intelligence, pages 69–85, 2001.

[24] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A Logic Programming Language for Dy-
namic Domains. Journal of Logic Programming, 31(1-3):59–83, 1997.

[25] F. Lin and H. Levesque. What robots can do: robot programs and
effective achievability. Artificial Intelligence, 101:201–226, 1998.

[26] Fangzhen Lin and Ray Reiter. State Constraints Revisited. Journal of
Logic and Computation, 4(5):655–678, 1994.

56

[27] Fangzhen Lin and Ray Reiter. How to progress a database. Artificial
Intelligence, 92:131–167, 1997.

[28] John McCarthy and Patrick J. Hayes. Some Philosophical Problems
from the Standpoint of Artificial Intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence 4, pages 463–502. Edinburgh
University Press, 1969.

[29] Robert C. Moore. Reasoning about Knowledge and Action. Technical
Note 191, SRI International, October 1980.

[30] Rohit Parikh and R. Ramanujam. Distributed Processes and the Logic
of Knowledge. In Proceedings of the Conference on Logic of Programs,
pages 256–268. Springer-Verlag, 1985.

[31] Ron Petrick and Hector Levesque. Knowledge equivalence in Combined
Action Theories. In Proceedings of the 8th International Conference on
Principles of Knowledge Representation and Reasoning (KR’02), pages
303–314, 2002.

[32] Ronald P. A. Petrick. A Knowledge-level approach for effective acting,
sensing, and planning. PhD thesis, Department of Computer Science,
University of Toronto, Toronto, Ontario, Canada, 2006.

[33] Ronald P. A. Petrick. Cartesian Situations and Knowledge Decomposi-
tion in the Situation Calculus. In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning
(KR’08), pages 629–639, 2008.

[34] Javier Pinto. Concurrent Actions and Interacting Effects. In Proceed-
ings of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), pages 292–303, 1998.

[35] Javier Pinto. Concurrency and Action Interaction. Technical report,
2000.

[36] Javier A. Pinto. Temporal Reasoning in the Situation Calculus. PhD the-
sis, Department of Computer Science, University of Toronto, Toronto,
Ontario, Canada, 1994.

57

[37] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of
the situation calculus. Journal of the ACM, 46(3):325–361, 1999.

[38] Ray Reiter. The frame problem in situation the calculus: a simple so-
lution (sometimes) and a completeness result for goal regression. In
Vladimir Lifschitz, editor, Artificial intelligence and mathematical the-
ory of computation: papers in honor of John McCarthy, pages 359–380.
Academic Press Professional, Inc., 1991.

[39] Ray Reiter. Proving Properties of States in the Situation Calculus.
Artificial Intelligence, 64:337–351, 1993.

[40] Ray Reiter. Natural Actions, Concurrency and Continuous Time in the
Situation Calculus. In Proceedings of the 5th International Conference
on Principles of Knowledge Representation and Reasoning (KR’96),
pages 2–13, 1996.

[41] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 3rd edition, 2010.

[42] Sebastian Sardina and Stavros Vassos. The wumpus world in indigolog:
A preliminary report. In Proceedings of the Workshop on Non-monotonic
Reasoning, Action and Change at IJCAI (NRAC-05), pages 90–95, 2005.

[43] Francesco Savelli. Existential assertions and quantum levels on the tree
of the situation calculus. Artificial Intelligence, 170(6):643–652, 2006.

[44] Richard Scherl. Reasoning about the interaction of knowledge, time
and concurrent actions in the situation calculus. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJ-
CAI’03), pages 1091–1098, 2003.

[45] Richard Scherl and Hector Levesque. Knowledge, Action, and the Frame
Problem. Artificial Intelligence, 144:1–39, 2003.

[46] S. Schiffel and M. Thielscher. Reconciling Situation Calculus and Fluent
Calculus. In Proceedings of the 21st National Conference on Artificial In-
telligence and the 18th Innovative Applications of Artificial Intelligence
Conference (AAAI’06/IAAI’06), pages 287–292, 2006.

58

[47] S. Shapiro and M. Pagnucco. Iterated Belief Change and Exogenous
Actions in the Situation Calculus. In Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI’04), pages 878–882, 2004.

[48] S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying Commu-
nicative Multi-Agent Systems. In Agents and Multi-Agent Systems -
Formalisms, Methodologies, and Applications, volume 1441 of Lecture
Notes in Artificial Intelligence, pages 1–14, 1998.

[49] S. Shapiro, Y. Lesperance, and H. Levesque. Goal Change in the Situ-
ation Calculus. Journal of Logic and Computation, 17:983–1018, 2007.

[50] Steven Shapiro and Yves Lespérance. Modeling Multiagent Systems with
the Cognitive Agents Specification Language — A Feature Interaction
Resolution Application. In Intelligent Agents Volume VII — Proceedings
of the 2000 Workshop on Agent Theories, Architectures, and Languages,
pages 244–259. Springer-Verlag, 2001.

[51] Steven Shapiro, Maurice Pagnucco, Yves Lespérance, and Hector J.
Levesque. Iterated Belief Change in the Situation Calculus. In Pro-
ceedings of the 7th International Conference on Principles of Knowledge
Representation and Reasoning (KR’00), pages 527–538, 2000.

[52] Steven Shapiro, Yves Lespérance, and Hector J. Levesque. The Cog-
nitive Agents Specification Language and Verification Environment for
Multiagent Systems. In Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’02),
pages 19–26, 2002.

[53] M. Thielscher. A Unifying Action Calculus. Artificial Intelligence, 175
(1):120–141, 2011.

[54] Johan van Benthem. Modal Logic meets Situation Calculus. Technical
Report PP-2007-04, University of Amsterdam, 2007.

[55] Johan van Benthem and Eric Pacuit. The Tree of Knowledge in Action:
Towards a Common Perspective. In Advances in Modal Logic, volume 6,
pages 87–106, 2006.

59

[56] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of Commu-
nication and Change. Information and Computation, 204(II):1620–1662,
2006.

[57] Hans van Ditmarsch, Andreas Herzig, and Tiago de Lima. Optimal
regression for reasoning about knowledge and actions. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence, pages
1070–1075, 2007.

[58] Stavros Vassos and Hector Levesque. On the Progression of Situation
Calculus Basic Action Theories: Resolving a 10-year-old Conjecture.
In Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI’08), pages 1004–1009, 2008.

60

Appendix A. Hunt the Wumpus Domain Axioms

The following are the complete axioms for the “Hunt the Wumpus” ex-
ample domain from Section 6. Free variables are assumed to be universally
quantified at outermost scope.

The background theory Dbg defines room adjacency, including symmetry
of the predicate:

Adjacent(r, r′) ≡ (r = R1 ∧ r′ = R2) ∨ (r = R1 ∧ r′ = R4)

∨ (r = R2 ∧ r′ = R1) ∨ (r = R2 ∧ r′ = R3) ∨ (r = R2 ∧ r′ = R5)

∨ (r = R3 ∧ r′ = R2) ∨ (r = R3 ∧ r′ = R6) ∨ (r = R4 ∧ r′ = R1)

∨ (r = R4 ∧ r′ = R5) ∨ (r = R4 ∧ r′ = R7) ∨ (r = R5 ∧ r′ = R2)

∨ (r = R5 ∧ r′ = R4) ∨ (r = R5 ∧ r′ = R6) ∨ (r = R5 ∧ r′ = R8)

∨ (r = R6 ∧ r′ = R3) ∨ (r = R6 ∧ r′ = R5) ∨ (r = R6 ∧ r′ = R9)

∨ (r = R7 ∧ r′ = R4) ∨ (r = R7 ∧ r′ = R8) ∨ (r = R8 ∧ r′ = R5)

∨ (r = R8 ∧ r′ = R7) ∨ (r = R8 ∧ r′ = R9) ∨ (r = R9 ∧ r′ = R6)

∨ (r = R9 ∧ r′ = R8)

The background theory contains the usual unique names axioms, asserting
that terms with different types or arguments are in fact different. The form
is standard and we do not reproduce the full set here. Example axioms are:

move(agt1, r1) 6= shoot(agt2, r2)

move(agt1, r1) = move(agt2, r2) → agt1 = agt2 ∧ r1 = r2

It also captures the fact that only rooms adjacent to the Wumpus have a
stench, using the following state invariant:

Stench(r, s) ≡ Adjacent(r,Wumpus(s))

The axioms Dadp define the precondition predicate Poss :

Poss(c, s) ≡ c 6= ∅
∧ ∀a, a′ ∈ c : actor(a) = actor(a′) ≡ a = a′

∧move(agt, r) ∈ c→ Adjacent(r,Loc(agt, s))

∧ shoot(agt, r) ∈ c→ Adjacent(r,Loc(agt, s))

∧ alert(agt) ∈ c→ Stench(Loc(agt, s), s)

61

And the observation function Obs :

Obs(agt, c, s) = o ≡
move(agt1, r1) ∈ o ≡ move(agt1, r1) ∈ c
∧ [Loc(agt, s) = Loc(agt1, s) ∨ Loc(agt, s) = r1]

∧ shoot(agt1, r1) ∈ Obs(agt, c, s) ≡ shoot(agt1, r1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)

∧ alert(agt1) ∈ Obs(agt, c, s) ≡ alert(agt1) ∈ c
∧ Loc(agt, s) = Loc(agt1, s)

∧ footsteps ∈ Obs(agt, c, s) ≡ ∃agt1, r1 : move(agt1, r1) ∈ c
∧ [Adjacent(Loc(agt, s), r1) ∨ Adjacent(Loc(agt, s),Loc(agt1, s))]

∧ alert ∈ Obs(agt, c, s) ≡ ∃agt1 : alert(agt1) ∈ c
∧ Adjacent(Loc(agt, s),Loc(agt1, s))

∧ stench ∈ Obs(agt, c, s) ≡ ∃r1 : move(agt, r1) ∈ c
∧ Stench(r1, s)

∧ scream ∈ Obs(agt, c, s) ≡ ∃agt1, r1 : shoot(agt1, r1) ∈ c
∧ r1 = Wumpus(s)

The successor state axioms Dssa define fluent change as follows:

r = Loc(agt, do(c, s)) ≡move(agt, r) ∈ c
∨ (r = Loc(agt, s) ∧ ¬∃r′ : move(agt, r′) ∈ c)

Killed(do(c, s)) ≡Killed(s)

∨ ∃agt, r : shoot(agt, r) ∈ c ∧ r = Wumpus(s)

r = Wumpus(do(c, s)) ≡ r = Wumpus(s)

Stench(r, do(c, s)) ≡ Stench(r, s)

The initial state axioms DS0 state that the Wumpus is in room R5:

Wumpus(S0) = R5

And that the hunters begin in room R1 with identical knowledge, knowing

62

the state of R1 but not of any other rooms:

Init(s)→ Loc(agt, s) = R1

Init(s)→Wumpus(s) 6= R1 ∧ ¬Stench(R1, s)

K0(agt, s′, s) ≡ K0(agt′, s′, s)

r 6= R1→ ∃s : K0(agt, s, S0) ∧Wumpus(s) = r

r 6= R1→ ∃s : K0(agt, s, S0) ∧Wumpus(s) 6= r

r 6= R1→ ∃s : K0(agt, s, S0) ∧ Stench(r, s)

r 6= R1→ ∃s : K0(agt, s, S0) ∧ ¬Stench(r, s)

Appendix B. Background State Invariants

We allow the background theory Dbg to include simple state invariants
in the style of [26], as long as their maintenance is implied by the successor
state axioms. That is, if they hold initially, then the successor state axioms
must ensure that they will hold for all future situations.

Formally, let Dinv ⊂ Dbg be the set of such invariants, each of which have
the form:

(∀s : φ[s]) ∈ Dinv
Let Dinv0 be the same formulae applied to just the initial situations:

Dinv0 = {Init(s)→ φ[s] | (∀s : φ[s]) ∈ Dinv}

Then we require that:

Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg |= Ψ

iff

Σ ∪ Dad ∪ Dssa ∪ (DS0 ∪ Dinv0) ∪ (Dbg −Dinv) |= Ψ

Such invariants thus do not imply any additional dynamics of the world,
but merely provide an explicit encoding of static facts of the domain, such
as fixed relationships between fluents.

Typical approaches to state invariants in the situation calculus, such as
[26], would modify Dssa and DS0 to ensure maintenance of the constraints as
above, then discard Dinv from the theory as redundant.

63

We keep the invariants as an explicit part of the background theory be-
cause they are useful when calculating the persistence condition. The al-
gorithm for calculating P(φ, α) requires reasoning relative to D − DS0 and
hence cannot take advantage of implicitly-encoded state constraints.

Appendix C. Complete Proofs

Lemma 1. For situation terms s and s′′, and agent agt:

D ∪DobsK |= Legal(s) ∧ s ≤PbU(agt) s
′′ → Legal(s′′)

Proof. By induction on situation s′′. The base case is s′′ = s, for which
the lemma is trivial. The inductive case is s′′ = do(c′, s′) where s ≤PbU(agt)

s′ and PbU(agt, c′, s′). Expanding the definition of Legal , the inductive
hypothesis gives root(s′) ≤Poss s′. Since PbU(agt, c′, s′) implies Poss(c′, s′)
we have root(s′) ≤Poss do(c′, s′), which matches the definition of Legal(s′′)
as required.

Lemma 2. For situation terms s and s′′, and agent agt:

D ∪DobsK |= s ≤PbU(agt) s
′′ → View(agt, s) = View(agt, s′′)

Proof. By induction on situation s′′. The base case is s′′ = s, for which the
lemma is trivial. The inductive case is s′′ = do(c′, s′) where s ≤PbU(agt) s

′ and
PbU(agt, c′, s′). In this case we have that PbU implies Obs(agt, c′, s′) = ∅,
so View(agt, s′′) = View(agt, s′) by equation (5), and the inductive hypoth-
esis of View(agt, s′) = View(agt, s) gives the required result.

Lemma 3. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → K0(agt, root(s′′), root(s))

Proof. By induction on situation s. In the base case of Init(s), equation (9)
ensures there is some s′ such that K0(agt, s′, s)∧s′ ≤PbU(agt) s

′′, and we have
the desired implication using root(s′′) = root(s′) = s′.

For the do(c, s) case, suppose that we have K(agt, s′′, do(c, s)). Then
by equation (8) there is some s′ such that s′ v s′′ and K(agt, s′, s). Then
root(s′′) = root(s′), andK0(agt, root(s′), root(s)) by the inductive hypothesis,
giving the required result.

64

Lemma 4. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → Legal(s′′)

Proof. By induction on situation s. In the base case of Init(s), using equa-
tion (9), if K(agt, s′′, s) then there must be an s′ such that K0(agt, s′, s)
and s′ ≤PbU(agt) s

′′. The foundational axioms ensure that K0(agt, s′, s) →
Init(s′), so all such s′ are legal, making s′′ legal by Lemma 1.

For the do(c, s) case, the inductive hypothesis gives that K(agt, s′, s) →
Legal(s′) and we split on Obs(agt, c, s). Suppose Obs(agt, c, s) = ∅, then
equation (8) gives K(agt, s′′, s) and Legal(s′′) follows immediately from the
inductive hypothesis.

Alternately, suppose Obs(agt, c, s) 6= ∅, then equation (8) ensures there
must be a c′, s′ satisfying three conditions: K(agt, s′, s), Poss(c′, s′) and
do(c′, s′) ≤PbU(agt) s

′′. The first of these yields Legal(s′) by the inductive
hypothesis. Given that, the second yields Legal(do(c′, s′)) by the definition
of Legal . Given that, the third yields Legal(s′′) by Lemma 1 and we have the
required result in both cases.

Lemma 5. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → View(agt, s′′) = View(agt, s)

Proof. By induction on situation s. For the base case of Init(s), using equa-
tion (9), K(agt, s′′, s) implies that there must be an s′ such that Init(s′)
and s′ ≤PbU(agt) s′′. Then View(s′) = View(s) = ε by definition, and
View(s′′) = View(s′) by Lemma 2 to give the required result.

For the do(c, s) case, suppose Obs(agt, c, s) = ∅. The definition of V iew
givesView(agt, do(c, s)) = View(agt, s), while equation (8) givesK(agt, s′′, s)
and hence View(agt, s′′) = View(agt, s) by the inductive hypothesis.

Alternately, suppose Obs(agt, c, s) 6= ∅, then equation (8) gives us s′,c′
where do(c′, s′) ≤PbU(agt) s

′′, Obs(agt, c, s) =Obs(agt, c′, s′), andK(agt, s′, s).
The definition of V iew gives:

View(agt, do(c, s)) = Obs(agt, c, s) · View(agt, s)

View(agt, do(c′, s′)) = Obs(agt, c′, s′) · View(agt, s′)

The inductive hypothesis gives us View(agt, s′) = View(agt, s) and hence
View(agt, do(c′, s′)) = View(agt, do(c, s)), while Lemma 2 completes the
equivalence by giving us View(agt, s′′) = View(agt, do(c′, s′)).

65

Lemma 6. For any situation s and agent agt:

D ∪DobsK |= Legal(s) ∧ View(agt, s) = ε→ root(s) ≤PbU(agt) s

Proof. By induction on situation s. For the base case of Init(s) the lemma
is trivial since root(s) = s.

For the do(c, s) case, the empty view implies Obs(agt, c, s) = ∅ and
View(agt, s) = ε, while Legal(do(c, s)) implies Poss(c, s) and Legal(s). This
gives s ≤PbU(agt) do(c, s), and using root(s) ≤PbU(agt) s from the inductive
hypothesis gives the required result.

Lemma 7. For any situation s, observations o, view v and agent agt:

D ∪DobsK |= Legal(s)∧View(agt, s) = o · v →
∃c′, s′ : Legal(s′) ∧ View(agt, s′) = v

∧Obs(agt, c,′ s′) = o ∧ do(c′, s′) ≤PbU(agt) s

Proof. By induction on situation s. For the base Init(s) case we have
View(agt, s) = ε, so the LHS is never true and the lemma is trivial. For
the do(c, s) case we split on whether c is observable.

Suppose Obs(agt, c, s) 6= ∅. Then by definition of V iew we have that
Obs(agt, c, s) = o and View(agt, s) = v, and the ∃c′, s′ on the RHS of the
lemma is trivially satisfied by c and s themselves.

Alternately, suppose Obs(agt, c, s) = ∅. Then by definition of V iew we
have View(agt, do(c, s)) = View(agt, s). The inductive hypothesis gives us c′
and s′ satisfying the RHS of the lemma with do(c′, s′) ≤PbU(agt) s. Since the
LHS gives us Legal(do(c, s)) we have Poss(c, s), hence PbU(agt, c, s), hence
do(c′, s′) ≤PbU(agt) do(c, s). So the c′, s′ for the predecessor situation s also
satisfy the RHS of the lemma for do(c, s).

Lemma 8 (From [37, 45]). Suppose ϕ is a regressable formula of the situation
calculus and D is a basic action theory. Then:

D |= (∀)(ϕ ≡ R[ϕ]),

where (∀)φ denotes the universal closure of the formula φ with respect to its
free variables.

66

Proof. This is a foundational result of the situation calculus, proven for ex-
ample as Theorem 2 in [37] and as part of Theorem 7 in [45]. We repeat it
here for completeness.

Theorem 1. For any agent agt and situations s and s′′:

D ∪DobsK |= K(agt, s′′, s) ≡
K0(agt, root(s′′), root(s)) ∧ Legal(s′′) ∧ View(agt, s′′) = View(agt, s)

Proof. The only-if direction is a trivial combination of Lemmas 3, 4 and 5.
For the if direction we proceed by induction on situation s.

In the base case of Init(s), we need some s′ to satisfy the ∃s′ part of
equation (9). Using root(s′′) is sufficient, since we have View(agt, s′′) =
View(agt, s) = ε and hence root(s′′) ≤PbU(agt) s

′′ by Lemma 6.
For the inductive case with do(c, s), we have two sub-cases to consider.

Suppose Obs(agt, c, s) = ∅: then
View(agt, s′′) = View(agt, do(c, s)) = View(agt, s) and hence K(agt, s′′, s)
holds by the inductive hypothesis, satisfying the equivalence in equation (8)
and giving K(agt, s′′, do(c, s)) as required.

Alternately, suppose Obs(agt, c, s) 6= ∅: then we have:

View(agt, do(c, s)) = Obs(agt, c, s) · View(agt, s) = View(agt, s′′)

And we need some s′, c′ to satisfy the ∃s′, c′ part of equation (8).
Since s′′ is legal, Lemma 7 implies there is some s′,c′ satisfying

Obs(agt, c′, s′) = Obs(agt, c, s), View(agt, s′) = View(agt, s) and
do(c′, s′) ≤PbU(agt) s

′′ . This is enough to satisfy equation (8) and so the
equivalence holds as required.

Theorem 4. Given a basic action theory D∪DobsK and a uniform formula φ
for which P(φ,PbU(agt)) exists:

D ∪DobsK |= Knows(agt, φ, s) ≡ R(Knows(agt, φ, s))

67

Proof. To obtain this result, we must establish that our new regression rules
in equations (13) and (14) are equivalences under the theory of action D ∪
DobsK . The proof proceeds by cases on situation s and its mechanics mirror the
analogous Theorem 7 in [45], but with the addition of a persistence condition
application.

For notational clarity we define the abbreviation PEO(agt, φ, o, s) (for
“persists under equivalent observations”) which states that φ holds in all
legal futures of s compatible with observations o:

PEO(agt, φ, o, s) =

∀c′ : Obs(agt, c′, s) = o∧Poss(c′, s)→
[
∀s′ : do(c′, s) ≤PbU(agt) s

′ → φ[s′]
]

First, note that we need only consider two cases: do(c, s) and S0. We
do not provide a regression rule for knowledge at other situation terms, so
R(Knows(agt, φ, s)) would leave the formula unchanged and the theorem is
trivial.

In the do(c, s) case, by definition of the Knows macro we have:

Knows(agt, φ, do(c, s)) ≡ ∀s′′ : K(agt, s′′, do(c, s)) → φ[s′′]

Applying the successor state axiom from equation (8), introducing a vari-
able to name Obs(agt, c, s), and distributing ∀s′′ across the two conjuncts
gives us:

Knows(agt, φ, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → ∀s′′ : (K(agt, s′′, s) → φ[s′′])]

∧ [o 6= ∅ → ∀s′′ : (∃c′, s′ : Obs(agt, c′, s′) = o ∧ Poss(c′, s′)

∧K(agt, s′, s) ∧ do(c′, s′) ≤PbU(agt) s
′′) → φ[s′′]

]
To make the third conjunct match PEO we rearrange using:

(∃x : P (x))→ Q ⇒ ∀x : (P (x)→ Q)

To give:

Knows(agt, φ, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → ∀s′′ : (K(agt, s′′, s) → φ[s′′])]

∧ [o 6= ∅ → ∀c′, s′, s′′ : (Obs(agt, c′, s′) = o ∧ Poss(c′, s′)

∧K(agt, s′, s) ∧ do(c′, s′) ≤PbU(agt) s
′′ → φ[s′′]

)]
68

Pushing quantifiers over independent conjuncts and re-arranging using:

(A ∧B)→ C ⇒ A→ (B → C)

We obtain:

Knows(agt, φ, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → ∀s′′ : (K(agt, s′′, s) → φ[s′′])]

∧ [o 6= ∅ → ∀s′ : (K(agt, s′, s)→ ∀c′ : Obs(agt, c′, s′) = o

∧Poss(c′, s′)→ ∀s′′ : do(c′, s′) ≤PbU(agt) s
′′ → φ[s′′]

)]
Which matches the form of our PEO macro:

Knows(agt, φ,do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → ∀s′ : K(agt, s′, s)→ φ[s′]]

∧ [o 6= ∅ → ∀s′ : K(agt, s′, s)→ PEO(agt, φ, o, s′)]

Since both conjuncts contain sub-formulae matching the form of the
Knows macro, it can be substituted back in to give:

Knows(agt, φ,do(c, s)) ≡ ∃o : Obs(agt, c, s) = o

∧ [o = ∅ → Knows(agt, φ, s)]

∧ [o 6= ∅ → Knows(agt,PEO(agt, φ, o), s)]

For PEO(agt, φ, o, s′) to legitimately appear inside the Knows macro
it must be uniform in the situation variable s′. Applying the persistence
condition and regressing to make the expression uniform, we develop the
following equivalence:

PEO(agt, φ, o, s) ≡
∀c′ : Obs(agt, c′, s) = o ∧ Legal(c′, s)→ R(P(φ,PbU(agt)), c′)

Suppressing the situation term in this uniform formula gives the regression
rule from equation (13) as required.

For the base case of S0, a straightforward transformation of equations (1)
and (9) gives:

Knows(agt, φ, S0) ≡ ∀s : K0(agt, s, S0)→
[
∀s′ : s ≤PbU(agt) s

′ → φ[s′]
]

69

Applying the persistence condition operator, this can easily be re-written as:

Knows(agt, φ, S0) ≡ ∀s : K0(agt, s, S0)→ P(φ,PbU(agt))[s]

This matches the form of the definition for Knows0, which we can sub-
stitute in to give:

Knows(agt, φ, S0) ≡ Knows0(agt,P(φ,PbU(agt)), S0)

Since all situations reachable byK0 are initial, and since Lemma 8 ensures
that regression preserves equivalence with respect to the original query, it is
therefore valid to use R(ψ[S0])−1 on the enclosed formula to give:

Knows(agt, φ, S0) ≡ Knows0(agt,R(P(φ,PbU(agt))[S0])−1, S0)

This is the regression rule from equation (14) as required.
Our regression rules are thus equivalences under the theory D ∪DobsK .
For base cases Init(s) other than S0 there is no explicit regression rule

defined, so it would leave the formula unchanged in this case. The theorem
thus holds for all situations s.

Theorem 5. Given a basic action theory D and a uniform formula φ for
which P(φ,PbU(agt)) exists:

D ∪DobsK |= Knows(agt, φ, v) ≡ R(Knows(agt, φ, v))

Proof. Recall the definition of Knows(agt, φ, v) as follows:

Knows(agt, φ, v)
def
=

∀s : View(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

We also have the following simple corollary of Theorem 1:

D ∪DobsK |= ∀s, s′, s′′ : root(s) = root(s′) ∧ View(agt, s) = View(agt, s′)

∧K(agt, s′′, s)→ K(agt, s′′, s′)

The definition of Knows(agt, φ, v) is thus equivalent to:

Knows(agt, φ, v) ≡ ¬∃s : View(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)

∨ ∃s : View(agt, s) = v ∧ root(s) = S0 ∧ Legal(s) ∧Knows(agt, φ, s)

70

We thus need to find a single witness situation rather than examining all
situations with that view. We proceed by induction over views. For the ε case,
S0 serves as an appropriate witness since it is always legal, View(agt, S0) = ε
and root(S0) = S0. Applying the regression rule for Knows(agt, φ, S0) gives
us the same expression as applying the regression rule for Knows(agt, φ, ε).
So if R(Knows(agt, φ, ε)) holds then so does Knows(agt, φ, S0). Using S0

as a witness we conclude that Knows(agt, φ, ε) iff R(Knows(agt, φ, ε)) as
desired.

For the inductive o · v case we split on whether there is any situation
having that view. Suppose there is no such situation, then the definition
of Knows(agt, φ, o · v) is trivially satisfied and the agent must know all
statements. We need to show that the regression of Knows(agt, φ, o · v) is
always entailed by the domain in this case. The regressed expression is:

Knows(agt,∀c : Obs(agt, c) = o ∧ Poss(c)→ R(P(φ,PbU(agt)), c), v)

If there is no situation having view v, then there is also no situation
having view o · v, and the above is entailed by the inductive hypothesis in
this case.

Alternately, suppose there is a situation s having view v but no legal
situation having view o · v. Then all situations s′ that have view equal to
v must satisfy ¬∃c : Obs(agt, c, s′) = o ∧ Poss(c, s′), otherwise we could
construct a situation with view o · v. Since these situations s′ are the only
ones that can be K-related to s, the antecedent in the above implication is
falsified at all such situations, and the regressed expression is equivalent to
Knows(agt,>, v) which is trivially entailed.

Finally, suppose there is a legal situation do(c, s) having view o·v. We can
assume without loss of generality that Obs(agt, c, s) = o and View(agt, s) =
v. Regressing Knows(agt, φ, do(c, s)) in this case will produce:

R(Knows(agt, φ, do(c, s)) = ∃o′ : Obs(agt, c, s) = o′

∧ [o′ = ∅ → Knows(agt, φ, s)]

∧ [o′ 6= ∅ → Knows(agt,∀c′ : Obs(agt, c′) = o′

∧ Poss(c′)→ R(P(φ,PbU(agt)), c′), s)]

We have that Obs(agt, c, s) = o and o 6= ∅, so this is equivalent to:

Knows(agt,∀c′ : Obs(agt, c′) = o ∧ Poss(c′)→ R(P(φ,PbU(agt)), c′), s)

71

Since this matches the form of R(Knows(agt, φ, o · v)), and we have that
the view of s is v, this will be entailed by the domain precisely when the
regression of Knows(agt, φ, o · v) is entailed by the domain.

Thus if there is no legal situation with view v then R(Knows(agt, φ, v)),
is always entailed, while if there is such a situation s thenR(Knows(agt, φ, v))
is equivalent to R(Knows(agt, φ, s)). The regression rules over observations
are thus equivalences as desired.

72

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Kelly, RF; Pearce, AR

Title:

Asynchronous knowledge with hidden actions in the situation calculus

Date:

2015-04-01

Citation:

Kelly, R. F. & Pearce, A. R. (2015). Asynchronous knowledge with hidden actions in the

situation calculus. ARTIFICIAL INTELLIGENCE, 221, pp.1-35.

https://doi.org/10.1016/j.artint.2014.12.005.

Persistent Link:

http://hdl.handle.net/11343/54840

