Optical Sensing of Vegetation Water Content: A Synthesis Study

Ying Gao¹, Jeffrey P. Walker¹, Mahdi Allahmoradi², Alessandra Monerris¹, Dongryeol Ryu², Thomas Jackson³

¹Department of Civil Engineering, Monash University, Australia
²Department of Infrastructure Engineering, University of Melbourne, Australia
³Hydrology and Remote Sensing Lab, USDA ARS

2nd Revision submitted on 17 Oct 2014

Corresponding author:
Ying Gao
Room 156, Bld 60,
Dept. of Civil Engineering,
Monash University,
Clayton, VIC 3800
Email: ying.gao@monash.edu
Phone: +61 3 9905 4957
Abstract

Vegetation Water Content (VWC) plays an important role in parameterizing the vegetation influence on microwave soil moisture retrieval. During the past decade relationships have been developed between VWC and vegetation indices from satellite optical sensors, in order to create large-scale VWC maps based on these relationships. Among existing vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) have been most frequently used for estimating VWC. This work compiles and inter-compares a number of equations developed for VWC derivation from NDVI and NDWI using satellite data and ground samples collected from field campaigns carried out in the United States, Australia and China. Four vegetation types are considered: a) corn; b) cereal grains; c) legumes and d) grassland. While existing equations are reassessed against the entire compiled data sets, new equations are also developed based on the entire data sets. Comparing with existing equations, results show superiorities for the new equations based on statistical analysis against the entire data set. NDWI_{1640} and NDVI are found to be the preferred indices for VWC estimation based on the availability and the error statistics of the compiled data sets. It is recommended that the new equations can be applied in the future global remote sensing application for VWC map retrieval.

Keywords - Vegetation Water Content (VWC), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI)
1. Introduction

Over the past three decades it has been shown that the Vegetation Water Content (VWC) is an important variable in climatic, agricultural and forestry applications [1-4]. In passive microwave remote sensing, a vegetation canopy over the soil absorbs the emission of the soil and adds to the total radiative flux with its own emission. With an estimate of VWC, the vegetation optical depth and transmissivity can be modelled [5]. Thus VWC plays a particularly important role in soil moisture retrieval by parameterizing the effects of vegetation on the observed land surface emission.

Spatially distributed VWC information over large regions is not readily available. One approach is to use relationships with spectral reflectance measured by optical satellites with an appropriate function in order to map VWC (e.g. [4, 6-9]). These functions have been developed using relationships between the remotely sensed indices available from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors (with 16 day repeat at 30m resolution), or the MODerate resolution Imaging Spectroradiometer (MODIS) (with daily repeat at 250m resolution), together with ground-based spectral and VWC measurements.

The Normalized Difference Vegetation Index (NDVI) proposed by Rouse et al. [10] for estimating VWC is one of the most widely used indices:

\[\text{NDVI} = \frac{\text{NIR}_{860} - \text{RED}_{650}}{\text{NIR}_{860} + \text{RED}_{650}} \]

Eq. 1

where NIR is the reflectance in the near infrared channel (centred at 860 nm) and RED is the reflectance in the red band visible (VIS) channel (centred at 650 nm). A drawback of using NDVI for this application is that it saturates when vegetation coverage become dense (when leaf area index reach around 5 [4, 11]) and is no longer sensitive to changes in vegetation.
The saturation of NDVI was also observed by Chen et al. [6] for VWC > 3kg/m² for corn. Moreover, RED and NIR are located respectively in the strong chlorophyll absorption region and the high reflectance plateau of vegetation canopies, meaning that NDVI represents chlorophyll rather than water content [6, 12]. Nevertheless, Jackson et al. [4] suggested that for specific canopy types (such as grasslands) within specific regions and when supported by ground sampling, it is still possible to establish useful VWC functions based on NDVI.

The Normalized Difference Water Index (NDWI), which utilizes the shortwave infrared (SWIR) together with NIR, has been shown to have a better correlation with leaf water content than the vegetation indices employing VIS and NIR [6, 12]. Compared to NDVI, it has been found that the saturation of this SWIR-based spectral index occurs later [6, 13]. The NDWI proposed by Gao [12] used a SWIR band centred at 1240 nm. This wavelength became available with the launch of MODIS. Previous to this the SWIR bands at 1640 nm and 2130 nm, which are available from Landsat, had been used to demonstrate that the water absorption was dominant and thus sensitive to VWC variations [4, 6]. Therefore, the following NDWI indices are also considered in this work:

\[
\text{NDWI}_{1240} = \frac{\text{NIR}_{860} - \text{SWIR}_{1240}}{\text{NIR}_{860} + \text{SWIR}_{1240}} \quad \text{Eq. 2}
\]

\[
\text{NDWI}_{1640} = \frac{\text{NIR}_{860} - \text{SWIR}_{1640}}{\text{NIR}_{860} + \text{SWIR}_{1640}} \quad \text{Eq. 3}
\]

\[
\text{NDWI}_{2130} = \frac{\text{NIR}_{860} - \text{SWIR}_{2130}}{\text{NIR}_{860} + \text{SWIR}_{2130}} \quad \text{Eq. 4}
\]

where the subscript refers to the wavelength (nm).

Although many empirical relationships between VWC and the aforementioned vegetation indices have been established for different vegetation categories and from different field campaigns around the world, there has been no study to synthesize or inter-compare the data.
and relationships derived from these different field campaigns, and to recommend a best relationship for global remote sensing applications, such as the Soil Moisture Active Passive (SMAP) satellite mission that needs a global VWC map as input for generating the soil moisture products. Currently, in order to obtain VWC information from optical sensing observations, many options are available as to which vegetation index and which model to apply based on the literature. Consequently, it is the intention of this investigation to synthesize the body of work available from literature and our own recently collected data sets into more robust models for VWC estimation. Statistical analysis is performed for both the new models and the existing models using the combined data sets, upon which a recommendation of vegetation index and model is made for both specific types of land cover and general categories.

2. Data Sources

Data from eight different studies [4, 6-9, 14-16] are analysed in this paper. These studies were chosen because 1) the vegetation indices they analysed were either NDVI or/and NDWI, which have been found to be the best for VWC estimation; and 2) the analysis was based on one or more specific land cover types and provided a vegetation type specific model to relate the index to VWC. The sources of VWC and vegetation index data provided in each study are summarized in Table 1. The data were from the following field campaigns: SMEX02 and SMEX05 in the U.S.A. [9, 15], NAFE’05 [17], NAFE’06 [18], AACES-1 and -2 [19], SMAPEX-1, -2 and -3 [20] in Australia, and the Weishan experiment [16] in China. The locations of these experiments are indicated in Fig.1.

The basic information of these field campaigns, including location, season, major crop types and ancillary data measured are summarized in Table 2. Most of the campaigns were conducted in spring or summer, except AACES-2 and SMAPEX-1, which were in winter. In
terms of crop types, the experiments in Australia had a more diverse range, including barley, wheat, corn, lucerne and grasslands. For the two campaigns in the U.S.A., SMEX02 and 05, the crop types included corn and soybean, being the only major crops in the experiment area. While all the campaigns sampled VWC, Leaf Area Index (LAI) and dry biomass, however ground-based surface reflectance was only measured in the NAFE, AACES and SMAPEX campaigns. As a result, except for Maggioni et al. [8] and Allahmoradi et al. [14] which used calculated vegetation indices from field spectrometer measurements, the rest of the studies relied on either Landsat or MODIS to provide spectral data for calculation of the vegetation indices.

Landsat 5 (TM sensor) and Landsat 7 (ETM+ sensor) have 8 frequency bands. Apart from band 6 and band 8, which have a resolution of 60 m and 15 m respectively, all other bands have a resolution of 30 m. In Eq. 1, RED and NIR correspond to band 3 (630-690 nm) and band 4 (760-900 nm), respectively. For SWIR in Eq. 2-4, band 5 (1550-1750 nm) and band 7 (2080-2350 nm) are used to cover SWIR\textsubscript{1640} and SWIR\textsubscript{2130}. SWIR\textsubscript{1240} is not available from Landsat. Moreover, because of the infrequent temporal coverage of TM and ETM+, it is difficult to rely on them for estimating VWC for most applications [4]. However data from MODIS on the Terra and Aqua satellites are available daily, and are free to access. The resolution of MODIS is 250 m for bands 1 and 2 (centred at 648 and 858 nm), and 500 m for bands 3-7 (centred at 470, 555, 1240, 1640 and 2130 nm). RED and NIR correspond to band 1 and band 2 respectively, while SWIR\textsubscript{1240}, SWIR\textsubscript{1640} and SWIR\textsubscript{2130} correspond to band 5, 6 and 7 respectively. A summary of the spectral wavelengths used by the hand spectrometers for the field campaigns considered in this study and their associated satellite bands for calculating vegetation indices is presented in Table 3. For more details on the satellite data processing please refer to the original publications listed in Table 1.
3. Methodology

Existing equations for NDVI and NDWI are summarized in Table 4. Lucerne in Allahmoradi et al. [14] is grouped with soybean in a category referred to as legumes, due to their similar spectral behaviour. In addition to the equations, the data series of sampled VWC and calculated vegetation indices have also been digitized from their original graphs and replotted in Figs. 2-5, according to the category of vegetation type and vegetation index. The red-dotted lines indicate the newly established equation based on all the available data sets. It should be noted that the equations and data sets from Huang et al. [15] are not included in the NDVI and NDWI plots for corn and soybean, since the same SMEX02 data sets as Chen et al. [6] were used.

A recommended function is provided for the categories where multiple data sets are present (Table 4). These functions were developed based on all the available data sets for a certain category. For NDVI, exponential equations were chosen due to the notable upward trend which matches with the saturating behaviour of NDVI over the higher range of VWC. For the rest of vegetation indices, either linear or quadratic equations were provided. It should be noted that no recommended equation is given for NDVI\textsubscript{2130} for corn, because the two available studies applied the same data set but with different source of spectral data. Also, for those categories with only one data set available (NDVI\textsubscript{1240} for cereal grains and grassland, and NDVI\textsubscript{2130} for legumes), the recommended equation would be the same as the one developed from its original study.

Statistical analysis is carried out to assess the correlation and VWC retrieval performance of all equations. Since R^2 was provided with most existing equations, they are directly quoted here in Table 4. However, not all studies gave RMSE as the VWC retrieval error. Therefore RMSE is calculated here for all existing equations, based on their digitized data sets, both
against their own data sets and against the entire synthesized data sets for each vegetation
category (Table 4).

4. Data Comparisons

4.1 NDVI

It can be seen in Fig. 2a that both the data and the equations from Jackson et al. [4] and Chen
et al. [6] agree well for corn, especially in the higher VWC range (3-5 kg/m2). In comparison,
the data from Allahmoradi et al. [14] are focused on a lower range of VWC (1-2 kg/m2) and a
limited number of samples were used in its equation derivation. However, these data still fall
approximately into the range of the data from [4] and [6]. It is also clear that NDVI becomes
saturated for VWC above about 3 kg/m2, which is consistent with most previous studies (eg.
[4, 6, 12]).

For cereal grains (Fig. 2b), Allahmoradi et al. [14] had a greater number of samples,
including barley, wheat and oats. While the winter wheat data sets from Yi et al. [16] agree
with the data from [14] in the lower range of VWC (<1.5 kg/m2), the VWC of winter wheat
reached to 3-4 kg/m2 with an NDVI of 0.6-0.8, making it significantly higher compared with
[14] (0.5-2.5 kg/m2) for the same NDVI range. To explain this, [16] pointed out that there
were significant solar and zenith angular effects on the surface reflectance data from MODIS
after the wheat heading stage, meaning that NDVI would be unable to detect crop growth
during this phase. As a result, the data with high VWC values (circled by a red-dotted line in
Fig. 2b) from [16] are considered to be outliers, and not used in the subsequent analysis.

For legumes (Fig. 2c), the equations from Jackson et al. [4] and Allahmoradi et al. [14] are
similar to each other, as are the underlying data sets. For grassland (Fig. 2d), the equations
from Maggioni et al. [8] and [14] are the only ones available for estimating VWC. Although
the number of data points of [8] are very limited, they still fall into the same range as the data of [14].

4.2 NDWI$_{1240}$

For the land cover categories of corn and legumes (Fig. 3a and Fig. 3c), only two studies are available for comparison: Huang et al. [15] and Allahmoradi et al. [14]. Although their NDWI was calculated from different sources, MODIS and field spectrometer MSR-16, the equations and underlying data sets match well with each other. This is because the MSR-16 was set to match with the MODIS bands during the NAFE and SMAPEx experiments. As noted previously, [14] is the only study to have used NDWI$_{1240}$ to estimate VWC for both cereal grains and grassland (Fig. 3b and Fig. 3d). Thus until now the MODIS SWIR bands, especially at the 1240 nm recommended by Gao [12], have not been fully assessed and evaluated for estimating VWC.

4.3 NDWI$_{1640}$

The most frequently used index for VWC estimation is NDWI$_{1640}$. It is also the preferred index for estimating VWC, mainly because SWIR bands are sensitive to changes in water content of plant canopies, and SWIR$_{1640}$ has been available on Landsat for many years. For corn (Fig. 4a), all studies obtained NDWI$_{1640}$ from Landsat except for Allahmoradi et al. [14]. However, Chen et al. [6] applied both Landsat and MODIS data to calculate NDWI$_{1640}$ and compared the two sets of data. Although only the Landsat data sets are included here (Fig. 4a), the analysis in [6] showed that the data sets derived from MODIS were similar to those derived from Landsat, but with a small shift. This shift could be due to that the centre wavelength of Landsat Band 5 being slightly higher than MODIS Band 6, which were used to calculate SWIR$_{1640}$. It can be seen in Fig. 4a, that all equations and data sets match well.
The data sets for legumes (Fig. 4c) and grassland (Fig. 4d) also have a good agreement. For cereal grains (Fig. 4b), similar winter wheat outliers as those of the NDVI analysis can be observed. This is consistent with the previous discussion that the outliers could be due to the angular effects at late growth stage during the experiment period.

4.4 NDWI$_{2130}$

The NDWI$_{2130}$ index has not received as much attention in the literature as NDWI$_{1640}$. However, it is also a valuable index in estimating VWC since it is available from both Landsat and MODIS. In Fig. 5a, both the VWC field data of Chen et al. [6] and Huang et al. [15] are from SMEX02 while the NDWI$_{2130}$ were derived from MODIS and Landsat respectively. This graph confirms the phenomenon noted in [6]: that the data sets derived from MODIS are consistent with those derived from Landsat, but with a small shift (approximately 0.1-0.4 for NDWI) towards the left. This means that MODIS-derived NDWI is generally larger than the Landsat-derived value for the same type of vegetation in the same area. This is due to the larger centre wavelength of Landsat (Landsat Band 7 compared with MODIS Band 7 for calculating SWIR$_{2130}$).

For the remaining categories, a separate calculation of NDWI$_{2130}$ was performed using field data from the AACES campaigns because NDWI$_{2130}$ was not considered in Allahmoradi et al. [14]. This is the only experiment that has NDWI$_{2130}$ data available. For cereal grains (Fig. 5b) there were not enough data from AACES to establish an equation for barley and wheat. Similarly, for the studies conducted by Maggioni et al. [8] and Yi et al. [16], a limited number of samples were presented, although they still provided equations. However, it is suggested that the newly established equation based on the combined data sets from [8] and [16] should still be used with caution. Conversely, there are enough samples from AACES to
establish a relationship for grassland (Fig. 5d), with several samples from [8] also falling in
the similar range.

5. Results and Discussion

The performance statistics of all equations, including R^2 and RMSE are listed in Table 4.
Comparing the two RMSE values of the existing equations, the RMSE for the original data
sets and RMSE for the combined data sets, it can be seen that the latter is generally much
larger. This means that each of these equations may be representative for a specific data set at
a specific location, but fail to capture well the conditions of other areas. Therefore the
proposed new equations, with smaller error against the combined data sets, are expected to be
more robust when used for VWC estimation globally, as required by satellite soil moisture
missions.

Comparing the R^2 and RMSE of different indices for each type of land cover, the most
suitable index for estimating VWC was identified for that specific land cover. As can be seen
in Table 4, the recommended equation for NDWI$_{1640}$ performs the best in estimating VWC
for corn, providing the highest R^2 (0.87) and the lowest RMSE (0.51 kg/m2). NDVI also
works well for corn based on the large range of available data sets and the relatively high
correlation (R^2=0.8). In the case of cereal grains, the recommended equation for NDWI$_{2130}$
performs the best in terms of R^2 (0.84), although the retrieval error is slightly higher than
other indices (RMSE=0.55 kg/m2 compared with 0.4~0.5 kg/m2 for other indices). For
legumes, NDWI$_{1240}$ and NDWI$_{1640}$ performed much better than the other two indices, both
with an R^2 of 0.76 and a RMSE of around 0.2 kg/m2. While for grassland NDVI worked the
best according to its highest R^2 (0.52 compared with 0.2~0.4 for other indices), although all
indices had a similar retrieval accuracy (RMSE≈0.3 kg/m2).
Disregarding the vegetation types, the new equations for NDVI and NDWI\textsubscript{1640} are considered to be best for VWC estimation in general at the current stage. This is because: 1) the amount of historical data for these two indices are larger and therefore allow a more reliable equation to be established; and 2) performance statistics show a better correlation for NDVI and NDWI\textsubscript{1640} in general. There are at least three studies for NDVI for each land cover type, and as many as six studies for NDWI\textsubscript{1640}, while for NDWI\textsubscript{1240} and NDWI\textsubscript{2130} there are only one or two studies available. Amongst these, there is a preference for using NDVI, as the R2 for all the NDVI equations are above 0.5, even for the highly scattered grassland data, while for NDWI\textsubscript{1640} the R2 ranges from 0.57 to as high as 0.87, but is only 0.2 for grassland. Moreover, since NDVI is readily available from MODIS satellite, it is more convenient for VWC retrieval than NDWI\textsubscript{1640}. Nevertheless, it should be noted that the model performance might vary over time or throughout the growing season of the crops. However, there are insufficient data sets to demonstrate this. Therefore long-term experiments are needed to address this issue.

An important consideration is the impact of VWC error on soil moisture retrieval accuracy. According to the analysis in Parinussa et al. [21], the higher the vegetation optical depth is, the greater the influence on soil moisture retrieval error. As vegetation optical depth can be linearly related to VWC through a vegetation parameter ‘b’ (the slope of the regression line for VWC versus vegetation optical depth) [5], thus a higher VWC can also result in a higher soil moisture retrieval error. Combining the results of Jackson et al. [5] and Parinussa et al. [21], it can be inferred that for vegetation such as corn, which can reach a VWC of as high as 4-5 kg/m3 during its mature stage, a VWC error of 0.5 kg/m3 will lead to a change of approximately 0.2 m3/m3 for soil moisture retrieval accuracy for C-band, X-band, or Ku-band microwave instruments. However, for vegetation water content less than 1.5 kg/m3 such as legumes and grassland, a 0.5 kg/m2 VWC error has almost no influence on the error of soil...
moisture retrieval. Therefore, for soil moisture related remote sensing applications special
attention needs to be paid for vegetation types such as corn and cereal grains, especially as
they approach maturity. An example VWC map from MODIS-derived NDVI and the
recommended equations from this paper is given in Fig. 6 for the SMAPEx-3 campaign. The
VWC equations are applied on the basis of a Landsat derived landcover map, which is
strongly reflected in the VWC distribution across the study site.

6. Conclusion

This study combined and inter-compared all available data sets and developed equations for
estimating VWC from NDVI, NDWI_{1240}, NDWI_{1640} and NDWI_{2130}, based upon land cover
type. Analyses led to several conclusions:

1) There were marked similarities among the data sets and equations developed from
most field campaigns for each type of vegetation, but some significant differences
exist, especially for cereal grains.

2) According to the performance statistics and the number of data sets available,
NDWI_{1640} and NDVI are the two preferred vegetation indices for VWC estimation.
Despite that NDVI is theoretically less suitable for estimating VWC when compared
with the NDWI, it still provided a reliable estimate for VWC. Moreover, NDVI maps
are readily available from the MODIS satellite, making operational implementation a
relatively simple task.

3) The MODIS SWIR bands, especially at 1240 nm wavelength, have not been fully
utilized for estimating VWC. More studies with larger number of VWC samplings are
still needed, especially for cereal grains and grassland, to further evaluate the
relationship between NDWI_{1240} and VWC.
Additionally, this synthesis study recommended a new set of equations for VWC estimation of four different vegetation types (corn, cereal grains, legumes and grassland), which will be more reliable than the equations developed from single data sets. These equations can be directly applied to satellite data in order to obtain VWC information for soil moisture retrieval or other climatic and agricultural applications.

Acknowledgement

The authors would like to acknowledge all the researchers who have previously worked on VWC and VI relationships, including those involved in the field campaigns listed in this paper. The authors would also like to acknowledge research funding from the Australian Research Council (DP0556941, DP0557543, DP0879212 and DP0984586) which supported NAFE’05 and 06, AACES1-2 and SMAPEx1-3 field experiments. Special thanks are also given to the Faculty of Engineering, Monash University for providing a postgraduate scholarship for Ying Gao.

References

Fig. 1. Locations of the field campaigns compiled in this study.
Fig. 2. Data sets and models for VWC estimation using NDVI.
Fig. 3. Data sets and models for VWC estimation using NDWI_{1240}.
Fig. 4. Data sets and models for VWC estimation using NDWI$_{1640}$.
Fig. 5. Data sets and models for VWC estimation using NDWI$_{2130}$.
Fig. 6. Example VWC map (Kg/m2) from SMAPEx-3 for September 23, 2011, retrieved from a combination of MODIS-derived NDVI and a Landsat-derived land classification map.
Table 1. Summary of literature used for this study, including the source of VWC, spectral data and derived vegetation indices.

<table>
<thead>
<tr>
<th>Publication by author names</th>
<th>Year</th>
<th>Data Source</th>
<th>VWC</th>
<th>NDVI</th>
<th>NDWI\textsubscript{1240}</th>
<th>NDWI\textsubscript{1640}</th>
<th>NDWI\textsubscript{2130}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Jackson et al.</td>
<td>2004</td>
<td>SMEX02 (interpolated)</td>
<td>Landsat TM/ETM+</td>
<td>-</td>
<td>Landsat TM/ETM+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D. Y. Chen et al.</td>
<td>2005</td>
<td>SMEX02</td>
<td>Landsat TM/ETM+, Terra-MODIS</td>
<td>-</td>
<td>Landsat TM/ETM+, Terra-MODIS</td>
<td>Terra-MODIS</td>
<td></td>
</tr>
<tr>
<td>V. Maggioni et al.</td>
<td>2006</td>
<td>NAFE'05</td>
<td>100BX Radiometer</td>
<td>-</td>
<td>Aqua-MODIS</td>
<td>MODIS</td>
<td></td>
</tr>
<tr>
<td>Y. H. Yi et al.</td>
<td>2007</td>
<td>Weishan Experiment</td>
<td>Terra, Aqua-MODIS</td>
<td>-</td>
<td>Terra, Aqua-MODIS</td>
<td>Terra, Aqua-MODIS</td>
<td></td>
</tr>
<tr>
<td>M. T. Yilmaz et al.</td>
<td>2008</td>
<td>SMEX05</td>
<td>-</td>
<td>-</td>
<td>Landsat TM, AWiFS, ASTER</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>J. Huang et al.</td>
<td>2009</td>
<td>SMEX02</td>
<td>Landsat TM/ETM+</td>
<td>MODIS</td>
<td>Landsat TM/ETM+</td>
<td>Landsat TM/ETM+</td>
<td></td>
</tr>
<tr>
<td>M. H. Cosh et al.</td>
<td>2010</td>
<td>NAFE'06</td>
<td>-</td>
<td>-</td>
<td>Landsat TM</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M. Allahmoradi et al.</td>
<td>2013</td>
<td>NAFE'06</td>
<td>CROPSCAN Multi-Spectral Radiometer (MSR-16)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AACES-1, -2</td>
<td>ASD Field Spectrometer (FieldSpec 3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMAPEx-1, -2, -3</td>
<td>CROPSCAN Multi-Spectral Radiometer (MSR-16)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary of campaign information.

<table>
<thead>
<tr>
<th>Experiment [Source]</th>
<th>Location</th>
<th>Season</th>
<th>Major crop types</th>
<th>Available ancillary data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEX 02, 05 [9, 14]</td>
<td>Walnut Creek watershed, Iowa, USA</td>
<td>Summer</td>
<td>Corn, soybean</td>
<td>VWC, LAI, dry biomass</td>
</tr>
<tr>
<td>NAFE’05 [17]</td>
<td>Goulburn River catchment, NSW, Australia</td>
<td>Spring</td>
<td>Barley, wheat, corn, canola</td>
<td>VWC, LAI, vegetation height, surface reflectance</td>
</tr>
<tr>
<td>NAFE’06 [16]</td>
<td>Kyeamba/ Yenda, NSW, Australia</td>
<td>Spring</td>
<td>Winter wheat</td>
<td>VWC, LAI, dry biomass</td>
</tr>
<tr>
<td>Weishan [15]</td>
<td>Weishan Irrigation Zone, China</td>
<td>Summer and Winter respectively</td>
<td>Barley, wheat, corn, canola</td>
<td>VWC, LAI, dry biomass, surface reflectance</td>
</tr>
<tr>
<td>AACES 1, 2 [18]</td>
<td>Murrumbidgee catchment, NSW, Australia</td>
<td>Winter, Summer, and Spring respectively</td>
<td>Barley, wheat, corn, canola, lucerne</td>
<td></td>
</tr>
<tr>
<td>SMAEx-1, -2, -3</td>
<td>Yanco, NSW, Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Summary of spectral bands from field spectrometers used in the field campaigns of this paper, and current satellites that can be used for calculating the vegetation indices.

<table>
<thead>
<tr>
<th>Field Spectrometer or Satellite</th>
<th>Wavelength (nm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100BX</td>
<td>RED<sub>650</sub></td>
<td>630-690</td>
<td>NIR<sub>860</sub></td>
<td>760-900</td>
<td>SWIR<sub>1240</sub></td>
<td>1234-1246</td>
</tr>
<tr>
<td>FieldSpec 3</td>
<td>Band 3</td>
<td>630-670</td>
<td>Band 4</td>
<td>820-880</td>
<td>NA</td>
<td>1234-1246</td>
</tr>
<tr>
<td>MSR-16</td>
<td>Band 1</td>
<td>630-670</td>
<td>Band 2</td>
<td>820-880</td>
<td>NA</td>
<td>1234-1246</td>
</tr>
<tr>
<td>Landsat TM/ETM+</td>
<td>Band 3</td>
<td>630-690</td>
<td>Band 4</td>
<td>760-900</td>
<td>NA</td>
<td>1234-1246</td>
</tr>
<tr>
<td>MODIS</td>
<td>Band 1</td>
<td>620-670</td>
<td>Band 2</td>
<td>841-876</td>
<td>Band 5</td>
<td>1230-1250</td>
</tr>
<tr>
<td></td>
<td>Band 7</td>
<td>2080-2350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Equations for estimating VWC (‘y’) using the respective vegetation index (‘x’) according to individual studies in literature. Also shown is the recommended equation for each vegetation category where more than a single data set exists. Performance statistics are also provided.

<table>
<thead>
<tr>
<th>Study</th>
<th>Equations and Statistics</th>
<th>NDVI</th>
<th>RMSE - org. data</th>
<th>R² - org. data</th>
<th>RMSE - all data</th>
<th>NDWI</th>
<th>RMSE - org. data</th>
<th>R² - org. data</th>
<th>RMSE - all data</th>
<th>NDWI</th>
<th>RMSE - org. data</th>
<th>R² - org. data</th>
<th>RMSE - all data</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Jackson</td>
<td>y=192.64x+417.46x/347.96x+138.93x +150.7x=2.82</td>
<td>0.05</td>
<td>0.99</td>
<td>0.89</td>
<td>-</td>
<td>-</td>
<td>1.92x+0.05</td>
<td>0.98</td>
<td>0.61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. Y. Chen</td>
<td>y=23.35x+75.71x/3.346x+15.24x +0.83x=0.77</td>
<td>0.62</td>
<td>0.72</td>
<td>0.73</td>
<td>-</td>
<td>-</td>
<td>7.88x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. T. Yilmaz</td>
<td>y=0.88x+0.88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.88x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. Huang</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. H. Cosh</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. Allahmoradi</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Y. H. Yi</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V. Maggioni</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. T. Yilmaz</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. H. Cosh</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. Allahmoradi</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J. Huang</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. H. Cosh</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. Allahmoradi</td>
<td>y=0.93x+0.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.93x+0.58</td>
<td>0.84</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

** Literature that used interpolated data.
*** No data sets were presented in the original paper.
Author/s:
Gao, Y; Walker, JP; Allahmoradi, M; Monerris, A; Ryu, D; Jackson, TJ

Title:
Optical Sensing of Vegetation Water Content: A Synthesis Study

Date:
2015-04-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/55370

File Description:
Submitted version