
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/279400773

Fire	severity	estimation	from	space:	A
comparison	of	active	and	passive	sensors	and
their	synergy	for	different	forest	types

ARTICLE		in		INTERNATIONAL	JOURNAL	OF	WILDLAND	FIRE	·	JUNE	2015

Impact	Factor:	2.51

3	AUTHORS,	INCLUDING:

Mihai	A.	Tanase

University	of	Melbourne

40	PUBLICATIONS			178	CITATIONS			

SEE	PROFILE

Cristina	Aponte

University	of	Melbourne

28	PUBLICATIONS			139	CITATIONS			

SEE	PROFILE

Available	from:	Mihai	A.	Tanase

Retrieved	on:	27	August	2015

http://www.researchgate.net/publication/279400773_Fire_severity_estimation_from_space_A_comparison_of_active_and_passive_sensors_and_their_synergy_for_different_forest_types?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/279400773_Fire_severity_estimation_from_space_A_comparison_of_active_and_passive_sensors_and_their_synergy_for_different_forest_types?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Mihai_Tanase2?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Mihai_Tanase2?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Melbourne?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Mihai_Tanase2?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Cristina_Aponte?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Cristina_Aponte?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Melbourne?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Cristina_Aponte?enrichId=rgreq-3408ee55-921c-46c8-947e-ae1d7d99a3d4&enrichSource=Y292ZXJQYWdlOzI3OTQwMDc3MztBUzoyNDY1NjY2NjEzOTAzMzZAMTQzNTc5NzQ4MTI4NQ%3D%3D&el=1_x_7


This paper has been accepted for future publication in International Journal of Wildland Fire. Please refer 
this work as: “M. Tanase, R. Kennedy, and C. Aponte, Fire severity estimation from space: A comparison 
of active and passive sensors and their synergy for different forest types, in press, International Journal of 
Wildland Fire“. Alternatively, lookup for the updated reference on the publisher website. Minor changes 
may occur in the published version. Formatting is not final. 
 
 

Fire severity estimation from space: A comparison of active and passive sensors and their synergy for 
different forest types 

M. A. Tanase A, R. KennedyB and C. Aponte A 

A School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, 
Richmond, Vic. 3121, Australia 
B College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, 
U.S.  

 
Abstract 

Monitoring fire effects at landscape level is viable from remote sensing platforms providing repeatable and 
consistent measurements. Previous studies have estimated fire severity using optical and synthetic aperture radar 
(SAR) sensors, but to our knowledge, none have compared their effectiveness. Our study carried out such a 
comparison by using change detection indices computed from pre- and post-fire L-band space borne SAR datasets 
to estimate fire severity for seven fires located on three continents. Such indices were related to field estimated 
fire severity through empirical models, and their estimation accuracy was compared. Empirical models based on 
the joint use of optical and radar indices were also evaluated. The results showed that, optical based indices 
provided more accurate fire severity estimates. On average, overall accuracy increased from 61% (SAR) to 76% 
(optical) for high biomass forests. For low biomass forests (i.e., above ground biomass levels below the L-band 
saturation point), radar indices provided comparable results, with overall accuracy being only slightly lower when 
compared to optical indices (69% vs. 73%). The joint use of optical and radar indices decreased the estimation 
error and reduced misclassification of unburnt forest by 9% for eucalypt and 3% for coniferous forests. 

Additional keywords: Landsat, ALOS PALSAR, L-band, radar, accuracy assessment, radar-optical synergy, CBI 

 

Introduction 

Fire is the most important disturbance agent on a global scale with about 350 million hectares of land being 
annually affected (Van Der Werf et al. 2006). However, not all areas within a fire perimeter are equally affected 
by fire, with impacts varying considerably. Depending on forest type, up to 35% of the area may remain largely 
intact (Kasischke and Hoy 2012; Kolden et al. 2012). The degree of environmental change caused by fires is often 
expressed through fire severity indices providing information on the loss of organic matter above and belowground 
(Keeley 2009). Previous studies used fire severity to predict ecosystem responses such as post-fire soil erosion and 
vegetation recovery, which in turn affect water cycles and biodiversity (Benyon and Lane 2013). Fire severity was 
also related to impacts in terms of loss of life, infrastructure damage and suppression costs (Keeley et al. 2008). 
Therefore, information on fire severity is a critical tool for evaluating post-fire effects and designing mitigation 
activities. The poor spatial representation and considerable effort when gathering ground fire severity estimates 
make remote sensing essential for landscape level assessments (Miller and Yool 2002; Landmann 2003; Boer et 
al. 2008). Remote sensing of fire severity has been accomplished using passive sensors such as the Landsat satellite 
series and  active sensors such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar - SAR 
(Miller and Thode 2007; French et al. 2008; Hoy et al. 2008; Wang and Glenn 2009; Tanase et al. 2010a; Tanase 
et al. 2011; Tanase et al. 2014; Montealegre et al. 2014 ). In addition, some studies used passive thermal sensors 
to relate fire radiative power to fire impacts (Heward et al. 2013). 

Remote sensing data are commonly used in conjunction with field assessed fire severity which is routinely carried 
out using the composite burn index - CBI (Key and Benson 2006). CBI evaluates the magnitude of fire effects 
across vegetation strata from an ecological perspective. CBI uses a hierarchical sampling design by assessing 
different factors (e.g., litter, duff and dead fuel consumption, soil and rock cover/color, colonizing vegetation, 
percentage of green/black/brown foliage, tree mortality, etc.) and vegetation strata (substrate, shrubs, understory 



and various overstory layers). Average vegetation conditions are visually examined within a 15 m radius and the 
degree of change with respect to the presumed pre-fire status is recorded for each factor in values from zero (no 
change) to three (100% change). Scored factors are averaged by strata. Strata values are subsequently used to 
produce severity scores for the understory (based on substrate, low shrubs and tall shrubs strata), overstory (based 
on one or more tree strata) and the entire plot (based on all strata). The result is a numerical value between 0 
(unburnt) and 3 (high) representing the average fire impact (i.e., severity) at a specific site or for specific vegetation 
layers. CBI or its revised versions (e.g., GeoCBI - (de Santis and Chuvieco 2009)) are frequently used for 
calibrating and validating remotely sensed products (French et al. 2008). 

A range of optical based remote sensing approaches (e.g., based on spectral reflectance, vegetation indices, 
supervised classification, decision trees, regression analysis, or spectral mixture analysis) are used to estimate fire 
effects over different biomes from boreal tundra and taigas to temperate forests, savannahs and rainforests (Lentile 
et al. 2006; French et al. 2008). The spatial resolution at which fire severity estimates are generated ranges from 
very high (<5 m) to relatively coarse (>250 m) depending on the sensor used (Viedma et al. 1997; Henry and Hope 
1998; Riaño et al. 2002; Holden et al. 2010). Nevertheless, most studies take advantage of the moderate-resolution 
Landsat satellite series as evident in the reviews of Lentile et al. (2006) and French et al. (2008). Such studies have 
used single date or bi-temporal (i.e., change detection) approaches with the latter dominating in forested landscapes 
(Van Wagtendonk et al. 2004; Cocke et al. 2005; Epting et al. 2005; Wimberly and Reilly 2007; Allen and Sorbel 
2008; Hall et al. 2008). Early research demonstrating the importance of near- and shortwave-infrared wavelengths 
(NIR and respectively SWIR) to estimate post-fire vegetation variability (López-García and Caselles 1991) 
underpinned fire severity estimation from optical sensors and allowed for the development of the normalized burn 
ratio (NBR) and its bi-temporal counterpart, the differenced NBR (dNBR), based on pre- and post-fire datasets 
(Key and Benson 2006). Empirical modeling of CBI as a function of dNBR has provided accurate fire severity 
estimates, with the reported determination coefficients usually being high (R2 > 0.7) (Van Wagtendonk et al. 2004; 
Cocke et al. 2005; Epting et al. 2005; Wimberly and Reilly 2007; Allen and Sorbel 2008; Hall et al. 2008; Tanase 
et al. 2011). However, several studies have reported signal saturation at high CBI  values (>2.5) in many 
ecosystems, with dNBR flattening out at medium to high severity levels (Van Wagtendonk et al. 2004; Key 2006; 
Wimberly and Reilly 2007; Hall et al. 2008; Tanase et al. 2011). Furthermore, some authors have reported weaker 
relationships between dNBR and CBI for boreal forests (Hoy et al. 2008; Murphy et al. 2008) or over non-forested 
sites such as woodlands, scrub and herbs or savannahs (Epting et al. 2005; Smith et al. 2005). Finally, reflectance 
based indexes often fail to produce accurate results for intermediate severity levels where multiple effects combine 
(Chuvieco et al. 2006; Tanase et al. 2011). Such limitations have been related to the NBR index itself since it 
might not optimally represent spectral displacements due to fire effects (Roy et al. 2006), its inability to discern 
between high severity sites due to variations in topography, solar elevation, or specific fuel conditions (Kasischke 
et al. 2008; Verbyla et al. 2008), saturation of spectral response at moderate to high severity levels (Verbyla et al. 
2008; Tanase et al. 2011), or the higher NBR sensitivity to canopy severity coupled with differentiated effects 
along the forest vertical  profile in many ecosystems (Allen and Sorbel 2008; Hoy et al. 2008). Additional 
limitations were related to the qualitative nature of fire severity estimates (Roy et al. 2006) and the linear averaging 
of strata scores when computing the CBI in boreal ecosystems where variations in CBI are mostly related to 
variations in the substrate layer (Kasischke et al. 2008). 

Because of such limitations, additional studies focused on burned area mapping and, to some extent, fire effects 
estimation using alternative methods based on SAR data in boreal or tropical forests (Kasischke et al. 1992; 
Bourgeau-Chavez et al. 1994; Kasischke et al. 1994; Bourgeau-Chavez et al. 1997; Rignot et al. 1999; Siegert et 
al. 1999; Siegert and Hoffmann 2000; Siegert and Nakayama 2000; Bourgeau-Chavez et al. 2002; Menges et al. 
2004). More recently, Tanase et al. (2010a; 2010b; 2010c) have related fire severity estimated through CBI field 
measurements or the dNBR to SAR data in semi-arid and boreal environments, with promising results being 
obtained from backscatter intensities and interferometric coherence. In addition, Tanase et al. (2014) demonstrated 
that fire severity could be estimated with virtually no need for field datasets using polarimetric target 
decomposition components. Such studies take advantage of information on vegetation structure contained in the 
SAR signal (Ferrazzoli et al. 1997), with radar backscatter from forests including direct scattering from crown 
elements, direct scattering  from trunk, direct scattering from ground, crown–ground scattering, and trunk–ground 
scattering (double bounce). At higher wavelengths (i.e., 23 cm L-band) the radar signal penetrates forest canopy 
and interacts with large branches, tree stems, and the forest floor (Le Toan et al. 1992). Removal of leaves and 
branches by fire and the associated water loss (i.e., dryer vegetation) result in a decreased cross-polarized (VH and 
HV polarizations) backscatter at all wavelengths. However, Tanase et al. (2010a) demonstrated that L-band 



consistently outperformed X- and C-band when estimating fire effects. Although previous studies showed 
promising results, the use of polarimetric target decomposition components is far from operational due to the 
complex SAR processing and the lack of regular acquisitions of fully polarimetric SAR data at global levels. In 
addition, radar scattering is affected by a range of conditions such as rainfall and topography which negatively 
influence the estimation accuracy of fire severity (Tanase et al. 2010a; Tanase et al. 2010c). The destruction of 
vegetation canopy makes radar measurements sensitive to the state of the underlying ground (Saich et al. 1999), 
which results in scattering dependence not only on the forest parameters but also on the surface properties. This is 
particularly relevant for co-polarized waves (HH and VV polarizations) with cross-polarized waves being less 
affected. Alternatively, change detection approaches, based on the ratio between pre- and post- fire radar datasets, 
would mathematically cancel out some of this effects (i.e., topography) – a major advantage compared to single 
date approaches where such effects had to be accounted for (Tanase et al. 2010a). Furthermore, a multi-temporal 
approach based on average pre- and respectively post-fire values has the potential to reduce radar speckle without 
the associated decrease in spatial resolution, thus improving fire severity estimation accuracy from SAR data. 

Fire severity estimation is usually carried out using one sensor type (either optical, or SAR), with an assessment 
of their synergy being largely unexplored. Furthermore, to the knowledge of the authors, no study has compared 
the accuracy of fire severity estimation from such sensors. Therefore, the aim of this study was twofold: i) to 
compare fire severity estimation accuracy from optical and SAR sensors and ii) to evaluate the synergy between 
optical and SAR sensors for fire severity estimation. These objectives were tested at several locations characterized 
by different species composition and forest structures within a change detection approach. Since remote sensing 
sensors might better reflect fire impact on the top vegetation layer the analysis was carried out at two levels, 
overstory and plot level. 

Study area and field datasets 

The existence of field and contemporary radar data conditioned this study. Seven fires located on three continents 
(North America, Australia and Europe) were selected to represent a wide range of forest types (i.e., species and 
structures). At all locations fires affected both understory and overstory layers. 

Australia  

In Australia, the Kinglake fire complex affected approximately 285,200 ha encompassing three forest types. Since 
each forest type has potentially different responses to fire they were analyzed separately. Kinglake fire burned 
during the austral summer between February and March 2009. The area is dominated by mixed eucalyptus forests. 
According to the Department of Environment and Primary Industries (DEPI), Victoria, these forests are 
categorized within three main types: i) wet forest dominated by Eucalyptus regnans, ii) damp forests dominated 
by mixed eucalyptus species such as E. obliqua and E. radiata and, iii) forby forests dominated by E. obliqua, E. 
radiata and E. cypellocarpa (Cheal 2010). The average above ground biomass (AGB), diameter at breast height 
(DBH), height (H) and the maximum height for each forest types is provided in Table 1. Fedrigo et al. (2014) 
provided the values for the wet forest while for the remaining forest types information from unpublished field 
datasets was used. Within two months after the fire DEPI teams collected field estimates of severity using 30 m 
radius plots and a specific field protocol which provided information on the percentage of green, black and brown 
tree canopy for two vegetation strata through ocular estimations, tree height and char height (from clinometers), 
leaf fall cover, percentage of bare soil, the presence of epicormic growth, post-fire vegetation growth and plot 
slope and aspect. Using DEPI’s field data we computed CBI-like scores for the two vegetation strata and a CBI-
like score for the substrate. CBI at plot level was subsequently computed as the average score of these three strata. 
In total, 376 field plots were available for the analysis, 45 for the wet forest, 146 for the damp forest and 185 for 
the forby forest. Although DEPI collected information for over 700 plots we only used the plots located in the 
western part of the Kinglake fire perimeter. Such a selection was conditioned by the availability of L-band SAR 
data acquired under dry environmental conditions, the combination providing the highest sensitivity to fire severity 
(Tanase et al. 2010a).  

United States 

In the US, three fires located in California (Iron Complex affecting approximately 46,000 ha), Oregon (Rooster 
Rock affecting approximately 2,550 ha) and Washington (Columbia River Road affecting approximately 9,050 
ha) were selected for this study. Iron Complex and Columbia River Road fires burnt in June and respectively 
August 2008 while Rooster Rock fire burnt in August 2010. In California, the forest affected by fire was dominated 
by a mix of softwood and hardwood western species. According to U.S. Forest Service Forest Inventory and 



Analysis (FIA) database, over 80% of the trees sampled within the fire perimeter belonged to Pseudotsuga 
menziesii (25%), Arbutus sp. (13%) or Quercus chrysolepis (44%) species. In Oregon, the forest affected by fire 
was dominated by Pinus ponderosa, Pinus contorta and Pseudotsuga menziesii which represented about 60% of 
the trees in the FIA database, with other coniferous species representing additional 20% of the trees. In Washington 
State, the fire affected forest was also dominated by Pinus ponderosa, Pinus contorta, and Pseudotsuga menziesii 
which represented about 65% of the trees in the FIA database with other coniferous species representing additional 
15% of the trees. Although the main species present within the fire perimeter at Rooster Rock and Columbia River 
Road were mostly the same we considered the two forests as different types due to the lower biomass level and 
the shorter, thinner trees present within the fire perimeter at Columbia River Road. FIA database provided 
information on forest type characteristics (plots sampled before fires) as shown in Table 1 (Miles 2014). Field 
estimates of fire severity were collected by the FIRE SEVerity (FIRESEV) teams within 10 to 15 months following 
the fires in 11 m radius plots. FIRESEV database includes information on plot location, tree species and canopy 
characteristics, CBI values for each strata as well as a composite CBI value for the entire plot and field photographs 
(Sikkink et al. 2013). The data was collected using a modified CBI field protocol (Dillon  et al. 2011). For this 
study we have used the CBI values for the plot level (computed based on the overall average of all strata except 
for the minimum branch diameter) as well as the CBI values for the tallest tree strata available at each sampled 
location (computed for all elements except for the minimum branch diameter) considered as the top overstory layer 
having the most influence on the optical sensor reflectance and respectively radar backscatter. In addition to the 
FIRESEV plots, we have selected a series of random plots outside each fire perimeter to characterize unburnt 
forests. In total 52 plots were analyzed for the Iron Complex fire, 34 for the Rooster Rock fire and 36 for the 
Columbia River Road fire. 

Europe 

In Europe, three fires located in northeastern Spain were analyzed (Zuera, Aliaga and Los Olmos). The Zuera fire 
burned 2,200 ha in August 2008 while, the Aliaga and Los Olmos fires burned 9,000 and respectively 500 ha in 
July 2009. Since the main tree species present at each fire location was the same (i.e., Pinus halepensis) we 
considered a single forest type (i.e., Mediterranean pine forest) as being representative for all fires and extracted 
its characteristics (Table 1) from the third Spanish Forest National Inventory (FNI). Tanase et al. (2011) assessed 
fire severity in all these fires within two months after burn using the original CBI field protocol (Key and Benson 
2006) on 15m radius plots located in areas of homogeneous forest structure and fire effects. The vegetation layers 
consisted of substrate, herbs and low shrubs less than 1 m tall, shrubs and trees up to 5 m tall (understory), and 
intermediate trees up to 20 m tall (overstory). In total, 44 plots were assessed at Aliaga fire, 32 at Los Olmos fire 
and 118 at the Zuera fire (Tanase et al. 2011). 

The field protocols used in US (FIRESEV) and Australia (DEPI) differed with respect to the original CBI protocol 
(Key and Benson 2006) used by Tanase et al. (2011) at the European sites.  In Australia, field operators did not 
record information on canopy mortality for the overstory strata, the understory strata comprised not only sub 
canopy trees bus also shrubs while for the substrate information on fuel consumption was absent. Therefore, 
although CBI scores computed for the tallest tree strata comprising the overstory layer is largely similar with what 
would have been obtained using the standard CBI field protocol (i.e., canopy mortality is largely incorporated by 
assessing the percentage of green, black and scorched canopy), for the remaining strata and therefore plot level 
CBI values might differ significantly when compared to the standard protocol. In the US, FIRESEV teams recorded 
most of the parameters defined by Key and Benson (2006) although their assessment might have been slightly 
different. Some parameters such as the percentage of torched and scorched canopy were recorded as one (i.e., 
Black/Brown) while new parameters were added (i.e., diameter of smallest branch left). Therefore small 
differences in the CBI scores for each strata when compared to the original CBI scores are likely. However, the 
qualitative nature of field severity estimation would most probably result in larger score differences when 
compared to using slightly different field protocols. Overall, one should remember the different field sampling 
when comparing results across study areas particularly at plot level and for the Australian forests. 

Remote sensing data 

For this study, the optical index selected for the analysis was the widely used dNBR computed from Landsat TM 
pre- and post-fire images. Data acquired by the Advanced Land Observing Satellite (ALOS) Phased Array type L-
band Synthetic Aperture Radar (PALSAR) were used to derive the radar burn ratio (RBR), the ratio between the 
power of post- and pre-fire images for the cross-polarized (i.e., HV polarization) channel. Cross-polarized L-band 
data was selected since previous studies demonstrated its higher sensitivity to fire effects when compared to X- 



and C-band (Tanase et al. 2010a). RBR shows the magnitude of change in the radar signal and should be linearly 
related to the decrease (due to fire consumption) of vegetation scattering elements. 

Landsat data 

Two Landsat TM scenes were obtained from the U.S. Geological Survey (USGS) EarthExplorer 
(http://earthexplorer.usgs.gov) as higher level data products (i.e., surface reflectance) for each fire (Table 2). 
Except for Zuera, Landsat data were processed by USGS through the Level 1 Product Generation System (LPGS) 
and the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) which applies Moderate 
Resolution Imaging Spectroradiometer (MODIS) atmospheric correction routines to Level-1 Landsat data (Masek 
et al. 2006). The result is a Universal Transverse Mercator (UTM) Landsat surface reflectance product in 
GEOTIFF format at 30 m spatial resolution. For the Zuera fire the Landsat TM scenes were not available in the 
USGS database and were obtained through the Spanish Remote Sensing National Plan (PNT). These two Landsat 
scenes were geometrically rectified to the UTM projection using a linear polynomial model and incorporating 
information of the local topography within a previous study (Tanase et al. 2011). Ground control points were used 
to register each scene to high resolution orthophotos from the Spanish National Aerial Ortophoto Program (PNOA) 
with a root mean squared error (RMSE) of less than one pixel. The images underwent radiometric corrections to 
compensate for variation in sensor radiometric response, sun angle, sun azimuth, and topography using the 
Atmospheric/Topographic Correction for Mountainous Terrain package (ATCOR® 3) implemented in ERDAS 
Imagine software. Atmospherically corrected images are needed for quantitative retrieval of land surface 
information since haze, clouds and shadows limit the effectiveness of remote sensing measurements (Chavez 1988; 
Liang et al. 2002). 

The change detection approach conditioned satellite image selection due to the need of images with similar forest 
phenology (Key and Benson 2006). Such requirements are more stringent for deciduous vegetation due to 
senescence and for high latitudes due to the large variations in sun angle which may significantly bias fire severity 
estimation (Verbyla et al. 2008). We have minimized such effects by: i) using Landsat data acquired within less 
than a month at Columbia River Road (i.e., the site located at the highest latitude), ii) using data acquired within 
maximum two months for European sites which are located at lower latitudes and dominated by evergreen 
coniferous forests (i.e., less affected by changes in phenology or sun angle), and iii) by using data acquired roughly 
within the same month for the remaining sites (Table 2).  

SAR data 

For this study, between six and ten ALOS PALSAR fine beam dual (FBD) datasets acquired up to three years 
before and after the fire event were used for each fire (Table 3). The RBR for the cross-polarized channel (RBRHV) 
was computed pixel wise as the average post-fire backscatter divided by the average pre-fire backscatter, except 
for Rooster Rock and Kinglake fires. For these fires, only one post-fire image was available or was acquired under 
dry conditions, and thus RBR was computed as the single date post-fire backscatter divided by the pre-fire average 
backscatter. Note that by using ratios the effect of topography on the radar signal is cancelled out and topographic 
normalization is not necessary. 

For undisturbed forests, multi-temporal backscatter averages provide more accurate values by filtering out small 
temporal variations due to changing environmental conditions since forest structure is largely stable. In disturbed 
forests the backscatter signal is affected not only by the remaining vegetation (fire-impact dependent), but also by 
the forest recovery process (recruitment and regrowth). In coniferous species post-fire regrowth is slow. In 
Mediterranean pine forests seedlings reached only 15-20cm 39 months after fire (Thanos et al. 1996) while in 
temperate coniferous forests saplings reached 81cm 11 years after fire (Turner et al. 2004). Since L-band 
backscatter is mostly influenced by large vegetation components such as branches and trunks (Le Toan et al. 1992), 
low vegetation has a limited influence on the post-fire radar signal during the first years particularly since even at 
high fire severities most trees are left standing. For the Victorian Mountain ash (E. regnans) forests, the reported 
growth rates are much higher with sapling reaching 2-5 m in height after 3 years (Van Der Meer et al. 1999). 
However, for intermediate and low severity levels the unburnt vegetation is likely to mask the effects of 
recruitment and regrowth over the first years. Therefore, while a three year gap is unlikely to significantly affect 
post-fire backscatter values in slow growing forests the post-fire acquisition gap of radar datasets may need to be 
limited in faster growing forests (i.e., eucalypt) to avoid mixing the two concurring effects, namely fire impact and 
forest recovery. 

http://earthexplorer.usgs.gov/


Previous research showed that rainfall has a significant effect on the radar signal in fire affected areas, with 
increased backscatter being attributed to decreased attenuation, strong trunk–ground interactions, and changes in 
soil moisture (Bourgeau-Chavez et al. 1994; Kasischke et al. 1994; Kasischke et al. 2011). Therefore, in this study 
preference was given to post-fire SAR datasets acquired under dry conditions to eliminate one of the most 
important source in backscatter variability (i.e., rainfall) which was previously associated to decreased sensitivity 
to fire severity (Tanase et al. 2010a). The SAR acquisition dates together with the environmental conditions at 
acquisition (i.e., precipitations and accumulated precipitations) are presented in Table 3. For the Kinglake fire 
most of the data sets were acquired under wet conditions with only one post-fire dataset (marked as dry date – dd) 
being acquired under dry conditions. For the remaining fires the SAR datasets were largely acquired under dry 
conditions. 

All ALOS PALSAR datasets were received in single look complex (SLC) format. For this study, the SLC data 
acquired from the same path and frame at each location were co-registered using as master the first image of the 
data series and a cross-correlation algorithm (i.e., intensity tracking). After co-registration each image was multi-
looked in range (4) and azimuth (20) to obtain a ground pixel spacing around 60 m. SAR intensity was transformed 
to the radar backscatter coefficient (σ◦) after applying absolute calibration factors (Shimada et al. 2009). The final 
step was orthorectification to Universal Transverse Mercator (UTM) projection using a lookup table based on 
digital elevation models (DEM) and the orbital information of the SAR data and resampling to 30 m spatial 
resolution (Wegmüller et al. 2002). For the Australian fire the 30 m spacing Shuttle Radar Topography Mission 
(SRTM) digital elevation model (DEM) was used. The SRTM DEM was enhanced at Geoscience Australia by 
removing artifacts and noise present in the original SRTM data (Gallant et al. 2011). For the Spanish study area a 
20 m DEM obtained from the regional government of Aragón was used while a 30 m DEM from the US National 
Elevation Dataset (NED) was used for the US fires (http://ned.usgs.gov).  

Methods 

Field data and remotely sensed indices are commonly related through empirical models when estimating fire 
severity (French et al. 2008). To select an appropriate model form, we first studied the relationships between CBI 
and remote sensing indices (i.e., dNBR and RBRHV) using scatter plots. Subsequently, empirical models were 
developed to estimate fire severity at plot (CBI plot) and overstory (CBI overstory) levels. The models related CBI 
to remote sensing indices extracted for the pixel coordinates corresponding to the center of each field plot. The 
selection of linear models to represent the CBI-RBR relationship (Eq.1) was based on scatterplot analysis as 
explained in the next section. Since both field and remote sensing measurements are subject to errors we used 
reduced major axis regression when relating CBI and RBR (Quinn and Keough 2002). Past studies showed that 
non-linear models might be needed to fully capture the dNBR-CBI relationship (French et al. 2008). Such non-
linear relationships are well documented, with two model forms usually being parameterized for fire severity 
estimation, i.e., second order polynomial or saturated growth (Wimberly and Reilly 2007; Hall et al. 2008). Since 
previous studies showed relatively small differences between these two model forms with respect to the estimation 
error (Tanase et al. 2011) the former model form was preferred (Eq.2) due to its simplicity when adding new 
independent variables (i.e., RBRHV) for fire severity estimation from multiple sensors.  The joint use of RBRHV 
and dNBR was studied using an additive model (Eq.3) that combined the two functional terms to preserve the 
underlying relationship between each variable and the CBI (Burnham and Anderson 2002). Modelling was carried 
out for each individual fire as well as by pooling the datasets for coniferous (i.e., Aliaga, Los Olmos, Columbia 
River Road, Rooster Rock and Zuera) and eucalypt (i.e., Damp, Forby, and Wet) dominated forests. The pooled 
analysis was carried out to ascertain the loss in accuracy when using a single empirical model over wide areas to 
estimate fire severity.  

CBI = a + b*RBRHV     (1) 

CBI = a +b*dNBR + c*dNBR2    (2) 

CBI = a +b*dNBR + c*dNBR2 + d*RBRHV  (3) 

where: CBI –fire severity at plot or overstory level; 

 RBRHV – Radar Burn Ratio (HV polarization); 

 dNBR – differenced Normalized Burn Ratio; 

 a, b, c, d – model coefficients. 



Cross-validation techniques are often used to compare the performance of different predictive models (Hall et al. 
2008; Tanase et al. 2011). Due to the reduced number of field samples for most fires, cross-validation was based 
on leave-one-out method. Through an iterative process each sample was removed from the training dataset when 
calibrating the regression model and subsequently its difference with the modeled value was computed. These 
differences were used to compute the root mean squared error (RMSE) as the root of the average squared difference 
between the observed and the predicted values obtained during the iterative process. The correlation between 
predicted and observed values (r) was also computed based on the set aside samples and their predicted value (i.e., 
from the particular model iteration). In addition, the coefficient of determination (R2) computed using all available 
samples was used as to assess the fit.  The performance of each model was also tested using the Bayesian 
information criterion (BIC). Models with lower BIC values provide a better prediction of the characteristic of 
interest (Schwarz 1978). 

To test the classification accuracy of the derived thematic maps the continuous we reclassified the CBI interval 
into four classes: unburnt (CBI=0), low severity (0<CBI≤1), medium severity (1<CBI≤2), and high severity 
(CBI>2). Due to the variety of needs and interpretations it is difficult to specify a single, all-purpose measure of 
classification accuracy (Foody 2002). In addition, different measures are sensitive to different features and may 
lead to conflicting results, and therefore no one measure is universally accepted (Stehman 1997). Some of the 
widely used accuracy metrics are based on confusion matrices with numerous studies using the percentage of cases 
correctly allocated (i.e., overall accuracy). In this study, the overall accuracy was used to assess the agreement 
between observed and predicted fire severity. Additionally, the percentage of misclassified plots was computed. 
A plot was considered misclassified when its predicted severity disagreed with the observed severity by more than 
one class with (i.e., plots falling into adjacent severity classes were not considered a serious deviation from truth). 

Results 

For RBRHV we observed linear relationships with fire severity for both plot and overstory levels with a polynomial 
model form providing only negligible increase of the coefficient of determination and leaving estimation error 
practically identical (Fig. 2, upper panels). For dNBR a non-linear relationship with fire severity was observed for 
both severity levels (Fig.2, lower panels) as expected. Modeling results (i.e., fit and error metrics) are provided in 
Table 4 for each individual fire and cumulatively for the main forest types (coniferous and eucalypt). Selected fit 
(R2 and r) and error metrics (RMSE and overall accuracy) are displayed graphically for an easier interpretation in 
Fig 3. From Table 4 and Fig. 3 it is evident that, fire severity estimation was more accurate when using optical 
based indices when compared to radar based indices at both plot (Fig. 3a) and overstory (Fig. 3b) levels. Over all 
fires, dNBR based RMSE was on average 0.2 (i.e., about 7% of the CBI range) lower when compared to RBRHV. 
However, modeling results varied among forest types depending on their above ground biomass levels. The 
greatest differences in fit and error metrics between dNBR and RBRHV were observed for the forest types with 
above ground biomass values considerably higher than the L-band saturation limit of approximately 100 t ha-1 

(Dobson et al. 1992). On average, across those forests (Kinglake and Iron Complex fires), the estimation accuracy 
(RMSE) using RBRHV was about 0.3 points lower (i.e., 10% of the CBI range) when compared to dNBR (Table 
4) with the maximum difference (0.5 points) being recorded for the mixed species forest (Iron Complex fire). For 
high biomass forests, the overall accuracy was 17% lower for RBRHV when compared to dNBR. For coniferous 
forests (i.e., AGB values below the L-band saturation limit), the overall difference between radar and optical based 
estimates was less accentuated with RMSE and overall accuracy being on average 0.16 and respectively 6% lower 
when compared to dNBR. Comparing BIC values for dNBR and RBRHV models showed small (<5) differences 
for some individual fires (Rooster Rock, Columbia River Road and Zuera) and for the pooled coniferous data 
suggesting similar predictive powers. For the remaining fires and pooled eucalypt data BIC values were much 
smaller when using dNBR. The overall accuracy for the pooled datasets was above 70% for both overstory and 
plot levels (Table 4) with the lowest omission and commission errors being observed for the high severity class 
(Table 5). For the remaining classes, omission and omission errors although frequent, were mostly restricted to 
one class differences. 

When comparing fire severity estimation for plot and overstory levels for the same remote sensing index the overall 
accuracy as well as model fit metrics (R2 and r), were usually higher for the overstory level. This was expected 
since both sensor types are mostly influenced by the upper canopy layer whose severity is not always linked to the 
understory/substrate fire severity (i.e., the estimation accuracy is reduced by including strata which have a reduced 
influence on the optical or radar measurements). Comparing dNBR with the joint use of optical and radar indices 
(dNBR and RBRHV) indicated better results for the latter (Fig. 3c and Fig. 3d). On average, for all forest types the 



joint use of both sensors increased model fit (R2) by 0.04 and reduced RMSE by 0.04 while maintaining the same 
overall accuracy when compared to only using dNBR (Table 4). Notice that for some fires (i.e., Los Olmos, 
Rooster Rock and Columbia River Road) the RMSE decreased by about 0.1 when jointly using dNBR and RBRHV. 
Such improved fit metrics translated into fewer misclassification errors when differentiating forests not affected 
by fires (Fig.4). BIC values also showed that for about 70% of the cases the joint use of optical and radar data 
provided better predictions when compared to using only optical data. 

Discussion 

Fire severity estimation based on methods using pre-determined thresholds (e.g., Monitoring Trends in Burn 
Severity (Eidenshink et al. 2007)) do not always perform adequately, particularly for ecotypes with few ground 
observations (French et al. 2008; Kolden et al. 2012; Boschetti et al. 2015). Therefore, in this study empirical 
modeling was used to model fire severity based on reference field data. The results indicated that overall, SAR 
sensors provide estimation accuracies largely comparable to optical sensors when used in forests with biomass 
below SAR saturation. The accuracy of RBRHV was significantly reduced in forests with high aboveground 
biomass. SAR signal is directly influenced by forest structure, and so the analysis of pre-post fire datasets can 
inform of fire severity as it reflects changes in structure associated to fire. In the particular case of L-band 
wavelength, a large part of the scattering comes from branches and trunks (McDonald et al. 1990; Le Toan et al. 
1992). However, even the most severe fires will often consume just tree leaves and branches, leaving dead stems 
standing on site. This means that differences in total scattering when compared to pre-fire levels (i.e., the degree 
of change) may not vary much across severity classes as scattering from tree trunks may largely replace scattering 
from branches particularly for high biomass forests. L-band saturation limit (i.e., 100 t ha-1) compromised the 
strength of the relationship between the SAR signal and biomass in such forests, thus hindering an accurate 
estimation of changes in SAR scattering. For forests with AGB levels below this threshold (i.e., coniferous forest), 
the results were largely comparable with those obtained from the optical based indices. Therefore, it is expected 
that SAR sensors with longer wavelengths and thus higher saturation limits (e.g., P-band from the future 
BIOMASS mission) would provide more accurate results in forests with high levels of biomass. It is also important 
to note that field reference data were collected using an index (i.e., CBI) specifically designed with optical datasets 
in mind which largely assesses fire severity from a ‘color’ perspective:  percentage of green, black or brown 
vegetation. Since SAR data are sensitive to the amount of vegetation elements consumed by fire, there is potential 
in improving the relationship between RBR and fire severity by collecting information on branch/stems 
consumption within existing or new field protocols. Nevertheless, the need for multiple pre- and post-fire datasets, 
the inherent complexity of SAR data processing/analysis and potential data costs make RBR valuable mostly for 
specific conditions (e.g., persistent cloud cover, high solar elevation angles, etc.) where optical sensors are less 
sensitive. The higher estimation accuracies obtained from optical based indices, particularly for forests with large 
AGB values, free data access to the extensive Landsat archive, compatible future missions, simpler processing and 
lower data needs, make the use of dNBR a simpler proposition for estimating fire severity when cloud cover or 
solar elevation are not an issue.  

The joint use of optical and radar based indices improved the estimation accuracy for most fires as shown by the 
lower BIC values. Particularly, SAR data provided useful information for a more accurate classification of areas 
not affected by fires or affected with low severity. Misclassification errors of unburnt areas decreased by about 
3% and 7% for coniferous and respectively eucalypt forests (average values for plot and overstory). Such areas 
have a significant ecological importance by providing refugia and seed sources for forest regeneration (Kolden et 
al. 2012). The results also showed a higher accuracy when estimating overstory severity compared to plot severity. 
Increasing fire severity translates into additional vegetation elements being altered and/or consumed, which 
constitutes the basis of remote sensing sensors sensitivity to fire effects. Such effects are comparable over forest 
types, and the use of pre- and post-fire datasets provides a means to derive changes caused by fires with respect to 
local pre-fire vegetation conditions. Changes in forest canopy conditions directly influence reflectance or 
scattering while the influence of a changing understory depends on forest canopy cover and sensor since optical 
sensors will not see through a closed canopy and radar waves penetrate forest canopies only to a certain extent, 
wavelength depending. Therefore, remote sensing indices are likely to produce stronger relationships for the 
overstory layer, particularly when fire effects over various forest strata are not correlated. While optical indices 
were more accurately related to plot fire severity, RBR values computed from future P-band sensors like 
BIOMASS should be more closely related to the understory fire effects due to the higher wave penetration. This 
might considerably increase fire severity estimation accuracy at plot level and might provide stronger relationships 



between RBR and understory fire effects, which is particularly important when estimating the effects of low 
intensity fires such as prescribed burning. 

Conclusions 

This study analyzed the benefit of using passive (optical) or active (radar) remote sensing sensors as well as their 
synergy for fire severity estimation. While a radar based index showed largely comparable estimation accuracies 
when compared to optical based indices for forests with biomass levels below the L-band saturation point, for high 
biomass forests optical indices provided considerably better results. Nevertheless, future P-band space borne SAR 
sensors should allow for improved estimation accuracy in high biomass forests. The joint use of radar and optical 
based indices allowed for marginal increases in the estimation accuracy and reduced misclassification errors for 
unburnt areas. While the use of optical based indices is certainly a simpler proposition for fire severity estimation 
in most environments, radar based indices have the advantage of not depending on cloud cover and sun elevation 
angle which makes them relevant in certain environments such as tropical or boreal. However, the user needs to 
consider SAR saturation with increasing biomass when selecting the adequate radar wavelength.  
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Fig. 1. Location of the studied fires together with the CBI field plots overlaid on pre-fire Landsat TM images 



 

Fig. 2. Example of the relationships between remote sensing indices and field estimated fire severity at plot and 
overstory levels (Aliaga fire). Linear (dotted line) and quadratic (line) models were fitted to data. RBRHV - Radar 
Burn Ratio (HV polarization), dNBR - differenced Normalized Burn Ratio and CBI - Composite Burn Index.  
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Fig. 3. Comparison of fire severity estimation error (RMSE), overall accuracy (OA, scaled by 1/100) and model 
goodness of fit (R2 and r) for all nine fires. Left column show values for plot level severity while right column 
shows values for overstory severity. Upper row shows dNBR vs. RBRHV. Bottom row shows dNBR vs. dNBR and 
RBRHV. The higher the value the better (hollow markers) the lower the value the better (filled markers). R2 – model 
coefficient of determination, r – correlation between observed and predicted values, RMSE – Root Mean Squared 
Error, RBRHV - Radar Burn Ratio (HV polarization), dNBR - differenced Normalized Burn Ratio, LTM – Landsat 
TM, SAR- Synthetic Aperture Radar. 
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Fig. 4. Distribution of classification results for CBI plot (left column) and CBI overstory (right column). LTM – 
Landsat TM, SAR- Synthetic Aperture Radar. Pooled results for all fires. 
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Table 1 Forest type characteristics. AGB - Above Ground Biomass, DBH - Diameter at Breast Height. 
 AGB 

(t ha -1) 
Mean  
DBH (cm) 

Mean (Max) 
height (m) 

Forest type 

Kinglake: wet forest 500 40 20 (54) Eucalyptus 
Kinglake: damp forest 400 30 17 (32) Eucalyptus 
Kinglake: forby forest 280 35 20 (32) Eucalyptus 
Iron Complex 266 18-67* 9-33* (64) Mixed   
Rooster Rock 84 20-42* 13-27* (67) Coniferous  
Columbia River Rd. 69 14-34* 11-20* (46) Coniferous 
Aliaga, Los Olmos, Teruel 37 20 8 (20) Coniferous 

 * species dependent  

Table 2 Landsat TM images used to compute the optical index at each fire location 
Fire Pre-fire Post-fire Fire Pre-fire Post-fire 
Aliaga, Los Olmos 
Path 199 Row 032 

2009.06.22 2009.09.26 Iron Complex 
Path 045 Row 032 

2007.07.28 2009.07.17 

Zuera 
Path 199 Row 031 

2008.07.21 2008.08.22 Rooster Rock 
Path 045 Row 029 

2010.07.20 2011.07.23 

Kinglake 
 Path 092 Row 086 

2008.03.01 2009.04.21 Columbia River Rd 
Path 045 Row 026 

2008.07.28 2008.08.15 

 
Table 3 Radar datasets available for each fire location. The cumulative precipitation (mm) three days prior to 
acquisition is given as the average for the closest meteorological stations. In parenthesis precipitation (mm) 
recorded for the radar acquisition date is provided.  Post-fire data sets are shown in italics. The fire date is shown 
in parenthesis. 

Fire name, Fire date and 
SAR acquisition mode  

Acquisition 
date 

Cumulative 
precipitations  

Fire name, Fire date and 
SAR acquisition mode 

Acquisition 
date 

Cumulative 
precipitations  

Aliaga and Los Olmos 
(2009.07.21-29) 
Fine Beam Dual 

Path 665 
Frame 800 

2007.06.30 0.1 (0.0) 

Zuera 
(2008.08.06-16) 
Fine Beam Dual 

Path 665 
Frame 830 

 

2007.06.30 0.0 (0.0) 
2007.08.15 2.4 (0.0) 2007.08.15 0.7 (0.0) 
2007.09.30 2.9 (0.0) 2007.09.30 1.1 (0.0) 
2008.05.17 21.5 (1.6) 2008.05.17 13.9 (1.8) 
2008.07.02 9.2 (0.0) 2008.07.02 0.0 (0.0) 
2009.08.20 0.0 (0.0) 2009.08.20 0.0 (0.0) 
2009.10.05 0.0 (0.0) 2009.10.05 0.0 (0.0) 
2010.05.23 0.0 (0.0) 2010.05.23 0.0 (0.0) 
2010.07.08 0.4 (0.4) 2010.07.08 0.0 (0.0) 

Iron Complex 
(2008.06.21) 

Fine Beam Dual 
Path 223 

Frame 800 
 

2007.06.14 0.0 (0.0)  
Rooster Rock 
(2010.08.02) 

Fine Beam Dual 
Path 218 

Frame 870 

2007.06.21 5.0 (N/A) 
2007.09.14 0.0 (0.0) 2007.08.06 5.0 (0.0) 
2008.05.01 0.6 (0.0) 2008.06.23 1.3 (1.3) 
2008.06.16 0.0 (0.0) 2009.06.26 1.3 (1.3) 
2009.06.19 0.0 (0.0) 2010.06.29 N/A (N/A) 
2010.05.07 0.2 (0.0) 2010.09.29 1.3 (0.0) 

Columbia River Road 
(2008.08.07) 

Fine Beam Dual 
Path 214 

Frame 950 
 

2007.06.11 0.3 (0.0)  
 

Kinglake 
(2009.02.07-03.14) 

Fine Beam Dual 
Path 382 

Frame 6420 
 

2007.07.19 35.3 (9.9) 
2007.07.27 0.0 (0.0) 2007.09.03 5.8 (1.8) 
2008.07.29 0.0 (0.0) 2007.10.19 3.6 (0) 
2008.09.13 0.8 (0.0) 2008.09.05 7 (1.5) 
2009.08.01 4.0 (0.0) 2008.10.21 0.3 (0.3) 
2010.08.04 7.3 (0.6) 2009.07.24 16.7 (1.4) 
2010.09.19 15.7 (9.9) 2009.09.08 15.2 (2) 
2010.11.04 5.6 (1.7) 2009.10.24dd 17.1 (11.6) 
  2010.09.11 0.9 (0.1) 
  2010.10.27 27.8 (6.1) 

dd - dry date post-fire image used in the analysis 
 



 
Table 4 Indicators of fire severity retrieval accuracy from radar backscatter intensity, optical indices and joint use of radar and optical indices (R&O) for 
each individual fire and pooled by forest types. R2 – model coefficient of determination, r – correlation between observed and predicted values, RMSE – 
Root Mean Squared Error, BIC –Bayesian Information Criterion, RBRHV - Radar Burn Ratio (HV polarization), and dNBR - differenced Normalized Burn 
Ratio. 

 R2 * RMSE r bias Overall accuracy BIC Number 
 RBR dNBR R&O RBR dNBR R&O RBR dNBR R&O RBR dNBR R&O RBR dNBR R&O RBR dNBR R&O of samples 

Plot 
Aliaga 0.56 0.76 0.76 0.77 0.58 0.60 0.76 0.85 0.84 0.00 0.00 0.00 0.55 0.61 0.64 110 87 91 44 
Iron Complex 0.06 0.74 0.75 0.98 0.52 0.52 0.51 0.85 0.84 -0.01 0.00 0.00 0.35 0.54 0.54 153 90 92 52 
Kinglake: wet 0.30 0.64 0.64 0.66 0.48 0.48 0.64 0.78 0.79 0.00 0.00 0.00 0.67 0.77 0.78 305 214 217 45 
Kinglake: damp 0.39 0.65 0.66 0.73 0.56 0.55 0.69 0.80 0.80 0.00 0.00 0.00 0.59 0.72 0.69 421 326 324 146 
Kinglake: forby 0.58 0.72 0.78 0.56 0.49 0.44 0.77 0.81 0.85 0.00 0.01 0.01 0.62 0.80 0.76 84 69 62 185 
Los Olmos 0.55 0.85 0.90 0.66 0.40 0.35 0.74 0.90 0.92 0.00 0.00 0.00 0.69 0.84 0.84 69 38 30 32 
Rooster Rock 0.58 0.82 0.88 0.69 0.46 0.41 0.77 0.89 0.91 0.00 0.00 0.01 0.65 0.79 0.71 78 52 43 34 
Columbia River Rd. 0.61 0.64 0.75 0.65 0.63 0.55 0.79 0.77 0.83 0.00 0.00 0.01 0.61 0.47 0.61 78 79 69 36 
Zuera 0.86 0.86 0.92 0.39 0.39 0.31 0.93 0.92 0.95 0.00 0.00 0.00 0.81 0.76 0.82 120 125 70 118 
All coniferous 0.60 0.77 0.80 0.66 0.50 0.47 0.80 0.87 0.89 0.00 0.00 0.00 0.66 0.72 0.72 125 121 103 264 
All eucalyptus 0.40 0.66 0.67 0.69 0.51 0.51 0.70 0.81 0.82 0.00 0.00 0.00 0.62 0.74 0.74 175 164 154 376 

Overstory 
Aliaga 0.80 0.90 0.90 0.55 0.39 0.41 0.89 0.94 0.94 0.00 0.00 0.00 0.73 0.77 0.75 81 53 56 44 
Iron Complex 0.36 0.81 0.81 1.06 0.59 0.60 0.66 0.89 0.88 0.00 0.00 -0.01 0.40 0.73 0.73 162 102 106 52 
Kinglake: wet 0.54 0.84 0.85 0.64 0.38 0.37 0.77 0.91 0.92 0.00 0.00 0.00 0.62 0.72 0.72 295 144 143 45 
Kinglake: damp 0.58 0.85 0.87 0.69 0.41 0.40 0.79 0.92 0.93 0.00 0.00 0.00 0.64 0.75 0.78 402 210 200 146 
Kinglake: forby 0.63 0.89 0.91 0.58 0.35 0.32 0.80 0.93 0.94 0.00 0.00 0.01 0.56 0.82 0.80 87 35 30 185 
Los Olmos 0.68 0.84 0.93 0.65 0.45 0.33 0.82 0.90 0.95 0.00 0.00 0.01 0.72 0.72 0.78 68 49 29 32 
Rooster Rock 0.57 0.60 0.71 0.81 0.81 0.71 0.77 0.74 0.81 0.00 0.00 0.01 0.65 0.76 0.68 91 92 84 34 
Columbia River Rd. 0.59 0.65 0.74 0.85 0.79 0.70 0.78 0.78 0.83 0.01 0.00 0.01 0.58 0.56 0.56 97 95 87 36 
Zuera 0.78 0.86 0.89 0.53 0.42 0.38 0.89 0.93 0.94 0.00 0.00 0.00 0.77 0.81 0.81 197 143 120 118 
All coniferous 0.62 0.77 0.80 0.72 0.56 0.53 0.81 0.88 0.89 0.00 0.00 0.00 0.63 0.71 0.70 148 148 132 264 
All eucalyptus 0.59 0.86 0.87 0.67 0.39 0.38 0.79 0.93 0.93 0.00 0.00 0.00 0.63 0.73 0.73 137 92 74 376 
*all models were statistically significant (p<0.05) 
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Table 5 Confusion matrices for coniferous and eucalypt forests (pooled data). Fire severity estimated using the additive model (Eq3.) for the overstory layer. 

   Coniferous forests  Eucalypt forests 
 Observed   Unburnt Low Medium High Total  Unburnt Low Medium High Total 

Pr
ed

ic
te

d 

Unburnt  10 27 2 0 39  8 31 4 0 43 
Low  0 9 16 3 28  5 56 12 0 73 
Medium  0 7 23 9 39  0 12 19 8 39 
High  0 1 13 144 158  0 0 28 193 221 
Total  10 44 54 156 264  13 99 63 201 376 

              
 User`s accuracy  0.26 0.32 0.59 0.91   0.19 0.77 0.49 0.87  
 Producer`s accuracy  1.00 0.20 0.43 0.92   0.62 0.57 0.30 0.96  
 Overall accuracy      0.70      0.73 

 


