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Abstract - The only molecularly identified ghrelin receptor is the growth hormone secretagogue 

receptor, GHSR1a.  Its natural ligand, ghrelin, is an acylated peptide whose unacylated counterpart 

(UAG) is almost inactive at GHSR1a.  A truncated, non-functional, receptor, GHSR1b, derives 

from the same gene.  We have critically evaluated evidence for effects of ghrelin receptor ligands 

that are not consistent with actions at GHSR1a.  Effects of ghrelin are observed in cells or tissues 

where the expression of GHSR1a is not detectable, or after the Ghsr gene has been inactivated.  In 

several, effects of ghrelin are mimicked by UAG and ghrelin binding is competitively reduced by 

UAG.  Effects in the absence of GHSR1a and sites at which ghrelin and UAG have similar potency 

suggest the presence of novel non-specific ghrelin receptors (ghrelin receptor-like receptors).  A 

third class of receptor, the UAG receptors, at which UAG, but not ghrelin, is an agonist has been 

proposed.  None of the novel receptors, with the exception of the glycoprotein CD36, that accounts 

for ghrelin action at a limited number of sites, have been identified.  GHSR1a and GHSR1b 

combine with other G-protein coupled receptors to form heterodimers, whose pharmacologies differ 

from their components.  Thus it is feasible some ghrelin receptor-like receptors and some UAG 

receptors are heterodimers.  Effects mediated through ghrelin receptor-like or UAG receptors 

include adipocyte lipid accumulation, myoblast differentiation, osteoblast proliferation, insulin 

release, cardioprotection, coronary artery constriction, vascular endothelial cell proliferation and 

tumor cell proliferation.  The molecular identification and pharmacological characterisation of 

novel ghrelin receptors are thus important objectives.  
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Manuscript 

I. The story of ghrelin 

Two threads of history led to ghrelin, the first being the discovery of novel compounds that 

cause growth hormone release, and the second being the hypothesis that there exists a peripheral 

source of an orexigenic hormone. 

In the early 1980s, synthetic peptides that were potent as stimulants of growth hormone release 

from pituitary cells, but which did not act at the growth hormone releasing hormone receptor, were 

discovered (Bowers et al., 1984).  These were termed growth hormone secretagogues, and 

substantial effort was made to discover the growth hormone secretagogue receptor, GHSR.  This 

took until 1996, when a G protein coupled receptor (GPCR) that responded to growth hormone 

secretagogues was discovered and cloned (Howard et al., 1996).  This receptor protein had two 

natural forms, a functional 7 membrane spanning receptor, GHSR1a, and a truncated, non-

functional receptor, GHSR1b.  A natural ligand for the receptor was not found until 1999 (Kojima 

et al., 1999).  Surprisingly, this ligand, ghrelin, was extracted from the stomach.  Ghrelin, like the 

earlier discovered artificial growth hormone secretagogues, increased food intake (Nakazato et al., 

2001).  Much earlier studies had predicted the existence of a signal originating from the stomach or 

another peripheral source that promotes feeding (Cannon and Washburn, 1912; Carlson, 1913), but 

the identification of a peripheral orexigenic hormone had eluded researchers.  In the few years after 

its discovery, it was firmly established that ghrelin had physiological roles in controlling growth 

hormone release and appetite (Kojima and Kangawa, 2005; van der Lely et al., 2004).     

Ghrelin is a 28 amino acid peptide that has an 8 carbon fatty acid side chain on the serine at 

position 3, whose addition is catalysed at the precursor stage by the enzyme ghrelin O-acyl 

transferase, GOAT (Gutierrez et al., 2008).  Although by definition ghrelin has an acyl side chain 

(Kojima et al., 1999), it is sometimes referred to in publications as acyl-ghrelin.  The 28 amino acid 

peptide without the side chain is referred to in the literature as desacyl-ghrelin (commonly meaning 

ghrelin from which the side chain has been cleaved) or unacylated ghrelin (UAG).  We have used 

the abbreviation UAG to refer to this peptide.   

Experimental studies, recently reviewed in Pharmacological Reviews (Chen et al., 2009), soon 

revealed many other effects of ghrelin, effects of other products of the ghrelin gene (ghrelin, UAG, 

obestatin and des-Gln14-ghrelin), and effects of small molecule ghrelin receptor ligands, some of 

which have been tested for their therapeutic potential (Table 1).  It also emerged that not all effects 

of ghrelin, ghrelin mimetics and related compounds could be explained by actions at the unmodified 

GHSR1a, and some were independent of GHSR1a (Muccioli et al., 2007).  Several previous 



7 
 

reviews provide evidence for the existence of novel ghrelin and desacyl-ghrelin receptors (Muccioli 

et al., 2007; Seim et al., 2011; Soares and Leite-Moreira, 2008).   

 

II. Properties of GHSR1a 

A. The receptor and agonists 

The molecularly identified ghrelin receptor, GHSR1a, is a typical GPCR.  It is a family A 

receptor and a member of the ghrelin receptor group, which includes receptors for motilin (~52% 

homology with GHSR1a), neurotensin 1 and 2 (~35% homology), neuromedin receptors 1 and 2 

(~30% homology) and GPR39, with ~30% homology (Holst et al., 2004).   

 

 (Fig 1 here) 

The original discovery paper showed that ghrelin at nanomolar concentrations activated 

GHSR1a in pituicytes and in transfected CHO cells, but that GHSR1a did not respond to UAG 

(Kojima et al., 1999).  Later studies revealed a weak but full agonism and low potency displacement 

of binding by UAG at GHSR1a (Bednarek et al., 2000; Callaghan et al., 2014; Gauna et al., 2007b; 

Matsumoto et al., 2001).  A difference in potency of over 1000-fold was reported in two studies: 

UAG had an EC50 of between 1.6 and 2.4 µM, compared to an EC50 of 2-2.6 nM for ghrelin at 

GHSR1a (Callaghan et al., 2014; Gauna et al., 2007b).  In another study, the difference in potency 

was greater: 1-2 nM for ghrelin and >100 µM for UAG (Matsumoto et al., 2001).  Radioligand 

binding experiments confirm a greater than 1000 fold difference in binding efficiency: UAG 

displaced labelled ghrelin from GHSR1a with an IC50 of 10-13 µM, whereas the IC50 for ghrelin 

was 7-10 nM (Bednarek et al., 2000; Gauna et al., 2007b).  Ghrelin administered to humans 

stimulates appetite and increases circulating GH, ACTH, cortisol, prolactin and glucose (Garin et 

al., 2013).  In contrast, growth hormone release, in human, is not affected by UAG (Broglio et al., 

2004). 

Thus the potency of ghrelin at GHSR1a depends on the integrity of the octonyl side chain at 

serine 3, although other hydrophobic side chains can be substituted with retention of activity 

(Bednarek et al., 2000).  The minimum octonylated sequence for effective stimulation of the 

receptor is the N-terminal 4 amino acids of ghrelin, Gly-Ser-Ser(n-octanoyl)-Phe (Bednarek et al., 
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2000).  The EC50 of this acylated tetrapeptide was about half that of full length ghrelin and it 

produced 90% of the maximum response to ghrelin.   

It is notable that that circulating levels of ghrelin and UAG are in the range 0.1 to 0.5 nmol/L 

(Crujeiras et al., 2010; Patterson et al., 2005; St-Pierre et al., 2007; Tschöp et al., 2001), although 

higher levels (3-4 nmol/L) are measured by assays that detect bound peptide (Lambert et al., 2011; 

Patterson et al., 2005).  Thus UAG in the circulation is at a considerably lower concentration than 

that necessary to activate GHSR1a.   

The hexapeptide growth hormone secretagogues, such as hexarelin, which were the first 

synthetic GHSR1a agonists (Bowers et al., 1984) have poor bioavailability and short in vivo half 

lives.  However chemical screens soon identified potent non-peptide, small molecule agonists 

(Table 1), including the Merck compounds, L163255, L163191 (MK677) and L692429 (Barakat et 

al., 1998; Smith, 2005).  Development of agonists accelerated once the receptor was cloned, 

particularly after identification of its natural ligand, and soon numerous potent small molecule 

agonists, and some peptides with improved in vivo stability, became available (Chollet et al., 2012; 

Chollet et al., 2009).  New compounds included NN703 from NovoNordsk (Hansen et al., 1999), 

capromorelin and related pyrazolinone-piperidine dipeptides from Pfizer (Carpino et al., 2002), 

GSK892491 (Witherington et al., 2008), anamorelin (Paul et al., 2006) and ulimorelin, a 

macrocyclic distinctly different from other synthetic agonists (Hoveyda et al., 2011) (Table 1).   

Cortistatin is also a natural ligand of GHSR1a.  This peptide has close structural homology to 

somatostatin, both peptides sharing the ability to bind and activate all five somatostatin receptor 

subtypes (Tringali et al., 2012).  Because cortistatin and somatostatin display a number of different 

biological actions, specific cortistatin receptors, able to bind selectively cortistatin but not 

somatostatin, have been postulated (Dello Russo et al., 2009).  Cortistatin, but not somatostatin (or 

somatostatin fragments) displaced ghrelin from its GHSR1a binding sites in the pituitary 

(Deghenghi et al., 2001; Muccioli et al., 2001).  The role or roles of cortistatin at GHSR1a are not 

yet resolved (Córdoba-Chacón et al., 2011; Prodam et al., 2008). 

Second messengers 

GHSR1a is promiscuous in its coupling to second messengers and downstream effectors 

(Camiña, 2006; Sivertsen et al., 2013).  It was first recognised to couple to phospholipase C, 

inositol phosphate production and Ca2+ mobilisation in somatotrophs and when heterologously 

transfected into host cells (Adams et al., 1995; McKee et al., 1997).  This appears to be its primary 

G-protein coupling, through Gαq (Alexander et al., 2011; Holst et al., 2003).  Evidence of activation 

of Gαs, and thus activation of adenylate cyclase and PKA, has been reported for neurons in the 

arcuate nucleus (Kohno et al., 2003).  In these cells, the increase in cytoplasmic Ca2+ caused by 
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ghrelin was prevented by the PKA inhibitor, H89 and by blocking N-type Ca2+ channels.  Thus 

ghrelin is deduced to activate Gαs, and, via PKA, phophorylate and open N-type Ca2+ channels.  

Adenylate cyclase and PKA are also downstream from the novel ghrelin receptor in chondrocytes 

(Caminos et al., 2005).  Gαi/o coupling has been demonstrated in GTPγS assays in model systems 

(Bennett et al., 2009) as well as in isolated lipid discs (Damian et al., 2012; Mary et al., 2012).  In 

pancreatic islets, interaction of GHSR1a with the somatostatin receptor, SST5, results in coupling 

through Gαi/o (Park et al., 2012).  Activation of Gα12/13 in response to ghrelin is observed in 

transfected cells (Liu et al., 2007).   

Agonist binding to GHSR1a also causes β-arrestin recruitment and internalisation, independent 

of G-protein signalling (Damian et al., 2012; Mokrosiński et al., 2012).  There is in addition 

constitutive (ligand independent) internalisation of the receptor that is prevented by inverse agonists 

(Holst et al., 2004). 

B. Constitutive activity of GHSR1a 

GHSR1a exhibits a high level of constitutive activity, generally estimated to be 50% of the 

maximum activity induced by ghrelin.  Studies of GHSR1a reconstituted in lipid discs indicate that 

this activity is intrinsic to the receptor, rather than from its activity in a cell environment.  In lipid 

discs, in the absence of ligand, GHSR1a induced inositol triphosphate (IP3) accumulation and 

GTPγS binding, are attenuated by an inverse agonist and increased by an agonist (Damian et al., 

2012).  Thus the PLC/IP3 pathway is constitutively active.  Moreover, in intact cells where the 

receptor is constitutively active, tagged ghrelin is internalised but the internalisation ceases when 

constitutive activity is blocked with an inverse agonist (Holst et al., 2004).  However, ERK 

phosphorylation and Gαi coupling require agonist-mediated receptor activation (Sivertsen et al., 

2013). 

The physiological relevance of constitutive activity for growth hormone release is demonstrated 

by a naturally occurring mutation (Ala204Glu) that is associated with familial short stature (Pantel 

et al., 2006).  The heights of these individuals are about 3 standard deviations below unaffected 

individuals from the same family.  When the mutated receptor was investigated in transfected cells, 

it was found to have lost constitutive activity, but not responsiveness to ghrelin (Liu et al., 2007; 

Pantel et al., 2006).  However, affected family members were sometimes overweight or obese, 

indicating that loss of constitutive activity throughout life does not cause weight loss, consistent 

with ghrelin and GHSR knockout models (Wortley et al., 2004; Zigman et al., 2005).  Nevertheless, 

there is evidence that constitutive activity contributes to appetite when normal GHSR1a is present 

through life.  Intracerebroventricular application (by minipump) of an inverse agonist (a modified 

substance P, MSP, see Table 1) decreased food intake, reduced weight and lowered hypothalamic 
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NPY expression in rats (Petersen et al., 2009).  After 6 days, weight was about 5% less than in the 

controls. 

C.  Interaction sites for agonists and inverse agonists at GHSR1a 

Site-directed mutagenesis and modelling have determined that the key sites for agonist binding 

differ from the sites that determine constitutive (ligand-independent) activity, although the sites are 

close to each other (Mear et al., 2013; Mokrosiński et al., 2012; Sivertsen et al., 2013).  A number 

of modulatory sites have also been identified (Fig 2).  The discovery that a single mutation 

(Ala204Glu) in the 2nd extracellular loop (ECL2) of the human GHSR1a causes idiopathic short 

stature syndrome (Pantel et al., 2006) provided clear evidence that constitutive and ligand 

dependent activation could be separated.  When the properties of the native and mutated receptor 

were compared, it was found that both responded equally to agonists, but that constitutive activity 

was substantially diminished for the mutant (Liu et al., 2007; Pantel et al., 2006).   

A critical agonist interaction site is the glutamic acid 

residue in the extracellular part of the 3rd transmembrane 

domain (TM3).  Mutation of this residue, GluIII:09, using 

the numbering system of Schwartz (1994), to Gln 

rendered the receptor unresponsive to ghrelin and a range 

of GHSR1a agonists, but did not change ligand 

independent activity (Feighner et al., 1998; Holst et al., 

2009).  Detailed comparison of mutational effects on the 

agonism of ghrelin, GHRP-6, MK667, SM130686 (Table 

1) and L692429 have identified residues in TM3 

(including GluIII:09) and TM6 as essential to ghrelin potency, and indicate that the most important 

sites for ghrelin agonist action occur in a restricted region within the centre of the binding pocket, 

spanning TM3 and TM6 (Fig 2).  For the synthetic, non-peptide agonists, sites in the ghrelin 

binding pocket (GluIII:09, PheVI:16, ArgVI:20) are also important for their agonist potency, but 

influential interaction sites also occur in the external parts of other helices, including TM2, TM 4, 

TM5 and TM7 (Holst et al., 2009; Holst et al., 2006).  Some of these sites are important for non-

peptide agonists, such as AspII:20 whose mutation reduces MK677 potency over 1000 fold 

(Feighner et al., 1998; Holst et al., 2009), while having less influence on the potency of ghrelin.  

There are also interactions with the extracellular loops that may influence efficacy (Holst et al., 

2009; Holst et al., 2006).    

Substitutions revealed a critical role for constitutive activity of a cluster of aromatic amino 

acids in TM6 and 7 (Fig 2).  These were PheVI:16, plus the residues PheVII:06 and PheVII:09 on 

 

Fig. 2 here 
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the inner faces of the external pocket of GHSR1a, distinct from the essential interaction sites for 

agonists (Holst et al., 2004).  The close spatial proximity of these amino acids is hypothesised to 

place GHSR1a in its active conformation in the absence of agonist (Holst et al., 2004; Mokrosiński 

et al., 2012).  The level of constitutive activity can be modified up or down by manipulating the size 

and hydrophobicity of the residue in position VI:16.  It has also been suggested that the aromatic 

residue VI:16 may work as a tethered agonist located strategically at the interface between TM3, 

TM6 and TM7, locking the extracellular ends of these TM domains in a conformation that drives 

high constitutive activity of GHSR1a (Schwartz et al., 2006).  A conserved aromatic link crucial for 

high basal signaling of GHSR1a is formed by the TrpVI:13 and PheV:13 residues (Holst et al., 

2004).  Specific residues in the vicinity of this cluster have been proposed to orchestrate finely 

tuned microswitches critical for setting the activation level in absence of ligand (Holst et al., 2004; 

Valentin-Hansen et al., 2012).  Three deeply located residues, Trp276 (TrpVI:13), ValIII:16, and 

IleIII:19, also significantly impact on GHSR1a constitutive activity (Gozé et al., 2010).  Gozé et al. 

(2010) introduced the mutation TrpVI:13Ala and mutated the two surrounding amino acid residues 

in adjacent TM3, ValIII:16, and IleIII:19.  The TrpVI:13A1a mutation reduced the ligand-

independent activity but, surprisingly, the double mutation, ValIII:16Leu plus IleIII:19Met, 

increased GHSR1a ligand independent activity 2 fold, presumably by re-aligning TM3, 5, 6 and 7.    

The molecular basis for reliance of ligand-independent activity on the ECL2 site (Ala204) 

identified by Pantel (2006) has been recently investigated (Mokrosiński et al., 2012).  The study 

revealed that restricting the flexibility of ECL2, either by mutation or by ligand binding, reduces 

ligand independent signaling (Mokrosiński et al., 2012).  ECL2 links TM4 and TM5, and has a 

disulphide link to TM3 (Fig 2).  It is proposed that flexing of ECL2, in particular the propensity of 

the part of ECL2 that links TM3 and TM5 (ECL2b) to form an α–helix, is strongly influenced by 

Ala204, the mutation favouring the α–helix and restriction of the free movement of TM3 relative to 

TM5 (Mokrosiński et al., 2012).   

Other studies showed that ligand properties can be switched from agonist to inverse agonist or 

from inverse agonist to agonist by a single amino acid or space generating substitution in the ligand 

peptide sequence depending on the residue mutated (Els et al., 2012; Holst et al., 2007).  These 

studies identified the C-terminal heptapeptide (fQwFwLL) of MSP as the sequence necessary for 

inverse agonism, the D-Phe residue being essential (Holst et al., 2006).   

III. Identification of GHSR1a and 1b expression by RT-PCR 

GHSR1a in the human, pig and rat is encoded by two exons and GHSR1b is encoded by a 

single exon (Howard et al., 1996; McKee et al., 1997).  A major issue with RT-PCR identification 

of the GHSR1a receptor transcript is that some studies have used primers that cannot distinguish 
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between the 1a and 1b isoforms or genomic DNA because the forward and reverse primer are both 

targeted to the first exon, for example Murata (2002) reported expression of GHSR1a mRNA in 

liver samples and liver cell lines using primers designed against exon 1 and not spanning the intron, 

whereas several other groups have not been able to detect GHSR1a mRNA in the same liver cell 

line or human liver samples, using primers appropriate for distinguishing 1a and 1b (Gnanapavan et 

al., 2002; Thielemans et al., 2007; Ueberberg et al., 2009).  Others have used primers that should be 

able to detect the 1a isoform over the 1b isoform as the primers select against regions in exon 2 

(Beiras-Fernandez et al., 2010; Iglesias et al., 2004).  However, as the primers do not span an intron, 

there is potential that the primers were detecting genomic DNA.  

Two studies quantitatively profiled expression of GHSR1a and 1b in human tissues using intron 

spanning primers (Gnanapavan et al., 2002; Ueberberg et al., 2009).  The Gnanapavan studies used 

tissue obtained from surgery whereas Ueberberg used Human Total RNA Master Panel II from BD 

Biosciences.  Both studies found the highest levels of GHSR1a mRNA expression in pituitary, 

consistent with its role in regulating GH function.  The only other organs in which GHSR1a 

expression has been consistently and reliably detected by these and other studies are brain, spinal 

cord, pancreas, adrenal glands and heart.  GHSR1b expression occurs in many more tissues and 

organs.  Notable amongst organs where GHSR1b but not GHSR1a was expressed are adipose 

tissue, breast, liver, skeletal muscle and prostate (Gnanapavan et al., 2002; Ueberberg et al., 2009).  

As detailed below, in each of these tissues that lack GHSR1a, ghrelin has effects on cell functions. 

IV.  Heteromeric receptors 

Several functional receptors, consisting of GHSR1a or GHSR1b in combination with another 

GPCRs have been identified (Jiang et al., 2006; Kern et al., 2012; Park et al., 2012; Rediger et al., 

2011; Schellekens et al., 2013; Takahashi et al., 2006).  Heterodimerisation with GHSR can change 

G-protein coupling (Park et al., 2012), can change agonist potency (Schellekens et al., 2013) and 

can create a receptor with pharmacology different to its component GPCRs (Takahashi et al., 2006).  

Experiments with pancreatic islet cells demonstrate change in G-protein coupling.  In normal 

pancreas, GHSR1a and the somatostatin receptor, SST5, are expressed together, and ghrelin inhibits 

insulin secretion.  In contrast, ghrelin stimulated insulin secretion from pancreas-derived cells that 

did not express SST5, but when these cells where transfected with Sst5, insulin secretion was 

inhibited by ghrelin (Park et al., 2012).  The authors present evidence that the excitation is through 

Gαq. and that inhibition is via the GHSR1a/SST5 heterodimer, coupled through Gαi/o (Park et al., 

2012).  Taking clues from lung cancers, in which expression of the peptide neuromedin U (NMU) 

and of the GHSR1b and neurotensin 1 receptors are increased, the GHSR1b/ neurotensin 1 receptor 
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combination was investigated.  Quite surprisingly, this heterodimer functions as a NMU receptor 

(Takahashi et al., 2006).   

The dopamine D2 receptor (DRD2)/ GHSR1a heterodimer occurs in hypothalamic neurons 

(Kern et al., 2012).  In wild type mice, but not in Ghsr null mice, the dopamine agonist, 

cabergoline, inhibited feeding, indicating that the combination with GHSR1a was necessary for 

DRD2 activation.  The selective GHSR1a antagonist, JMV2959 (Table 1), blocked the anorectic 

effect of cabergoline, suggesting that by binding to GHSR1a, JMV2959 changes the conformation 

and responsiveness of the coupled DRD2 receptor.  Dopamine D1 receptors also form heterodimers 

with GHSR1a (Jiang et al., 2006; Schellekens et al., 2013) 

A heterodimer between GHSR1a and the melanocortin3 receptor, MC3R, has been identified.  

Melanocortin signalling is enhanced 2-fold at this heterodimer, and the enhancement is reduced if a 

constitutively inactive GHSR1a mutant (A204E; see Section above: Interaction sites for agonists 

and inverse agonists at GHSR1a) forms the heterodimer, or if substance P, which is hypothesised 

to act as a GHSR1a inverse agonist, is added (Rediger et al., 2011).   

The 5HT2C receptor occurs in several isoforms that are produced by RNA editing, which 

modifies the second intracellular loop and alters signalling properties.  The unedited form, 5HT2CR-

INI has the highest constitutive activity.  This isoform dimerises with GHSR1a to form a receptor 

that responds to both 5HT and ghrelin (Schellekens et al., 2013).  The heterodimer was less 

responsive to ghrelin and the ghrelin receptor agonist, MK677 (Table 1) than homomeric GHSR1a.  

Responsiveness was restored by a 5HT2C antagonist.  GHSR1a/D1 and GHSR1a/MC3 heteromeric 

receptors also exhibited lowered responses to GHSR1a agonists (Schellekens et al., 2013).  An 

inverse agonist of the GHSR1a receptor increased responsiveness of the GHSR1a/5HT2CR-INI 

heterodimer to 5HT2C agonism.   

When GHSR1b was co-expressed with GHSR1a in HEK293 cells, the signal transduction 

capacity of GHSR1a was attenuated, suggesting that GHSR1b may interact with GHSR1a (Chan 

and Cheng, 2004).  Heterodimerisation was demonstrated in lipid rafts incorporating GHSR1a and 

GHSR1b (Mary et al., 2013).  In these rafts, GHSR1b exerted a dominant negative inhibition of 

GHSR1a signaling. 

V.  Evidence for novel receptors: ghrelin receptor-like receptors and unacylated 

ghrelin receptors  

We have grouped the evidence for the existence of ghrelin receptor-like receptors by the cell 

types and organs where the evidence has been found.  The most convincing evidence is from cells 

or tissues in which there is no detectable expression of GHSR1a, or from experiments in which 

responses were observed after knockout of Ghsr.  Some of the evidence comes from experiments in 
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which ghrelin and UAG have parallel effects at similar concentrations, remembering that ghrelin is 

over 1000 times more potent than UAG at GHSR1a.  The most convincing of these experiments are 

those in which competition for binding has been demonstrated, suggesting that the same receptor, a 

ghrelin receptor-like receptor, is responsible for effects of ghrelin and UAG in these tissues.   

Some ligands that stimulate GHSR1a also act at sites where ghrelin is not an agonist.  The sites 

include the UAG receptors.  A UAG receptor is a receptor for UAG and related compounds at 

which ghrelin is a much poorer agonist or not an agonist at all.  In some cases, mimicry between 

ghrelin and other ligands in a particular tissue could be because both GHSR1a and UAG receptors 

are present.   

A. Adipose tissue 

Overview:  Published data indicate that proliferation, differentiation, lipid accumulation and 

glycerol handling by pre-adipocytes and adipocytes are mediated by receptors that do not 

discriminate between ghrelin and UAG and by UAG-selective receptors.  On the other hand, 

inflammation of adipose tissue involves GHSR1a expressed by macrophages and possibly also 

adipocytes, whereas UAG agonists are anti-inflammatory.  GHSR1a may also have a role in 

thermogenesis in brown fat (Lin et al., 2011).  It is feasible that agonists of UAG receptors could 

assist in maintaining fat stores in lean subjects and in reducing peaks in circulating free fatty acids, 

for example after meals (Benso et al., 2012; Kos et al., 2009) as well as reducing inflammation in 

fat stores, such as occurs in metabolic disease (Delhanty et al., 2013). 

Gnanapavan (2002) has reported that GHSR1a mRNA is not expressed in human adipose tissue 

although low levels of GHSR1b mRNA were present.  On the other hand, in a study using intron-

spanning primers, GHSR1a expression was found in rat adipose tissue (Choi et al., 2003).  While 

GHSR1a expression in white and brown adipose tissues is below the detectable level in young mice, 

GHSR1a expression was readily detectable in visceral white fat and interscapular brown fat of old 

mice (Lin et al., 2011).  This may be contributed to by GHSR1a expression in inflammatory cells in 

fat from old mice (Ma et al., 2013).  It would be desirable to use in situ hybridisation histochemistry 

to determine the precise cellular sites of expression of Ghsr1a in adipose tissues of old animals. 

1. Lipid accumulation: 

Both ghrelin and UAG stimulate lipoprotein lipase levels and cause lipid accumulation in rat 

and human visceral adipocytes and rat bone marrow adipocytes (Kos et al., 2009; Rodríguez et al., 

2009; Thompson et al., 2004).  Ghrelin and UAG had similar potencies, with thresholds for 

increasing lipoprotein lipase levels of about 1-10 nM in human adipocytes (Kos et al., 2009). 

Labeled ghrelin binding in rat epididymal adipose tissue was displaced by ghrelin, UAG, MK0677 

and hexarelin.  All 4 agents inhibited β adrenergic agonist mediated lipolysis (Muccioli et al., 
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2004).  Investigation of the second messenger pathway showed that both ghrelin and UAG blocked 

isoproterenol induced cAMP accumulation, via activation of PI3 kinase γ/AKT and 

phospodiesterase 3B (Baragli et al., 2011).  PI3 kinase γ, also known as a class IB PI3 kinase, is 

reported to be strictly GPCR activated (Andrews et al., 2007).  Ghrelin and UAG were also 

similarly potent in bone marrow, but their actions were not reduced by the GHSR1a antagonist, 

L163255 (Table 1) (Thompson et al., 2004).  In human adipocytes, this effect was blocked by the 

Y1 receptor blocker, BIBP3226, suggesting that ghrelin and UAG may act indirectly, by releasing a 

peptide of the pancreatic peptide, peptide YY, neuropeptide Y family (Kos et al., 2009).  In human 

volunteers, a 16 h infusion of UAG (1 µg/kg/h) reduced plasma free fatty acid levels (Benso et al., 

2012). 

On the other hand, UAG, but not ghrelin, at concentrations of 10-100 nM, suppressed glycerol 

secretion and reduced the expression of glycerol-releasing hormone sensitive lipase, an effect not 

prevented by the Y1 antagonist, BIBP3226 (Kos et al., 2009).  Similarly, release of glycerol and 

non-esterified fatty acids was reduced by UAG (10-100 pM), but not ghrelin, in differentiated 

adipose 3T3-L1 cells (Miegueu et al., 2011).  The stimulation of fatty acid uptake in an adipose cell 

line (3T3-L1) was inhibited by the antagonist, (D-Lys3)-GHRP-6, a lipid raft disruptor, PI3 kinase 

and phospholipase C blockade (Miegueu et al., 2011).  As indicated below, in the section on bone, 

(D-Lys3)-GHRP-6 appears to be an antagonist of ghrelin receptor-like receptors that respond to 

both ghrelin and UAG, as well as being a GHSR1a antagonist.   

2. Adipose tissue inflammation:   

Adipose tissues tend to become inflamed with age, an effect that is exacerbated by a high fat diet.  

Macrophages that infiltrate the fat express GHSR1a; the adipose inflammation caused by high fat 

diets is attenuated in Ghsr null mice, and numbers of pro-inflammatory macrophages in intra-

abdominal fat and liver steatosis are both reduced (Ma et al., 2013).  Inflammation in white fat 

caused by high fat diets in mice is reduced by UAG and the UAG mimetic, AZP531 (Table 1) 

(Delhanty et al., 2013).  Thus GHSR1a and an UAG receptor may regulate opposing inflammatory 

reactions in fat deposits. 

B. Skeletal muscle/ myoblasts 

Overview:  Ghrelin and UAG, through ghrelin receptor-like receptors, reduce skeletal muscle 

atrophy and enhance muscle repair.  Identifying selective GRLR agonists is a priority, because such 

agonists may have therapeutic utility in treating muscle wasting and injury. 

Studies in skeletal muscle and skeletal muscle derived myoblasts that do not express Ghsr, and 

in Ghsr knockout animals, indicate that ghrelin and UAG have parallel metabolic and tissue 

protective effects that cannot be through GHSR1a (Reano et al., 2014).   
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Both UAG and ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells 

through what appears to be the same receptor (Filigheddu et al., 2007) and both forms of ghrelin 

inhibit skeletal muscle atrophy.  Ghrelin and UAG were approximately equipotent, with EC50s of 

about 1 nM, in stimulating differentiation of myoblasts in culture (Filigheddu et al., 2007).  Neither 

motilin nor the ghrelin C-terminal fragment, ghrelin (9-28), were effective.  No GHSR1a expression 

could be detected in undifferentiated or differentiated myoblasts, using intron spanning primers 

(Filigheddu et al., 2007).  The IC50 values for the displacement of labeled ghrelin from myoblasts 

were 1.20 ± 0.09 nM for ghrelin and 1.32 ± 0.08 nM for UAG.  In another study it was found that 

both ghrelin and UAG (100 µg/kg, twice daily) reduced fasting-induced skeletal muscle wasting in 

Ghsr knockout mice (Porporato et al., 2013).  Both the acylated and unacylated forms of ghrelin 

reduced dexamethasone-induced skeletal muscle atrophy.  In mice, muscle cell damage, including 

cell apoptosis, caused by doxorubicin, was abrogated by both ghrelin and UAG, given 12 hours 

later as a single injection, then by repeated doses, twice daily, over 4 days (Yu et al., 2014).  In 

another study, UAG reduced muscle protein loss in rats with burn injury to the skin (Sheriff et al., 

2012).   

In addition to its positive effects on muscle cell differentiation and its inhibition of muscle 

atrophy, ghrelin stimulates glucose uptake by myoblasts.  In the mouse myoblast cell line, C2C12, 

which does not express Ghsr (Filigheddu et al., 2007; Gershon and Vale, 2014), ghrelin stimulated 

glucose uptake with an EC50 of about 10 nM (Gershon and Vale, 2014).  Surprisingly, the effect of 

ghrelin was inhibited by the corticotrophin releasing factor receptor2 (CRFR2) antagonist anti-

sauvagine (Gershon and Vale, 2014).  Both ghrelin and UAG, effective at 1 nM, increased CRFR2 

expression in the muscle cells.  

Skeletal muscle is repaired following ischemic damage by recruitment of resident stem cells 

(satellite cells) that form myoblasts that are necessary for muscle regeneration.  It has been found 

that UAG, but not ghrelin, facilitated the division of satellite cells and their involvement in the 

repair process (Togliatto et al., 2013).  The enhanced repair was associated with the increased 

expression of superoxide dismutase-2 (SOD-2) in satellite cells.    

C. Bone 

Overview:  Ghrelin and UAG stimulate osteoblast activity and compounds that act on the GRLR, 

common to ghrelin and UAG, in bone may be effective in combating age-associated bone loss. 

GHSR1b mRNA, but not GHSR1a, occurs in human bone and osteoblasts, and both ghrelin and 

UAG stimulate osteoblast proliferation (Delhanty et al., 2006).  Peak responses occurred at 1 and 10 

nM for ghrelin and UAG, respectively.  Proliferation was reduced by inhibition of ERK or PI3 

kinase (Delhanty et al., 2006).  In another study, which showed that Ghsr expression was 
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undetectable in bone cells and cell lines from rat and mouse, ghrelin was also shown to increase 

mitogenic activity in osteoblasts (Costa et al., 2011).  Ghrelin also increased the bone-resorbing 

activity of rat osteoclasts (Costa et al., 2011).  The proliferative effect of ghrelin on rat osteoblast 

cell lines was prevented by the antagonist (D-Lys3)-GHRP-6 (Kim et al., 2005), but this antagonist 

does not appear to be specific for GHSR1a, as these cell lines do not express Ghsr.  Ghrelin and 

UAG (1 nM) both reduced reactive oxygen species production and protected cells of the murine 

osteoblast cell line, MC3T3-E1, from peroxidase-induced oxidative injury (Dieci et al., 2014).  

There was no effect of the potent GHSR1a agonist, macimorelin (EP1572; (van der Lely et al., 

2004)) and the effect was also not antagonised by (D-Lys3)-GHRP-6. 

D. Chondrocytes 

Human and mouse chondrocytes respond to ghrelin, but do not express GHSR1a (Caminos et 

al., 2005).  Binding studies revealed high affinity (Kd = 3.8 nM) and lower affinity binding (Kd = 

130 µM) sites (Caminos et al., 2005).  Ghrelin increased cAMP with a threshold effect at about 1 

nM.  Ghrelin decreased chondrocyte metabolic activity and decreased basal and insulin stimulated 

fatty acid uptake.  Whether chondrocytes respond to UAG was not tested.   

E. Pancreatic islets 

Overview:  Published evidence points to expression of GHSR1a, GRLR and UAG receptors in the 

pancreas.  GHSR1a is expressed by pancreatic β cells, where ghrelin inhibits insulin secretion (see 

section IV, Heteromeric receptors) , and ghrelin, also through its GHSR1a -dependent action 

leading to increased release of insulin-like growth factor, is diabetogenic (Vestergaard et al., 2008).  

However, through GRLR and UAG receptors in the islets, ghrelin and UAG increase glucose 

tolerance and insulin release.  They also increase β cell survival and proliferation.  Compounds 

selective for non-GHSR1a receptors in the islets may have the potential to be anti-diabetogenic. 

It is well established that ghrelin, acting through GHSR1a, inhibits insulin secretion (Broglio et 

al., 2001; Dezaki et al., 2007; Tong et al., 2010).  Ghsr null mice demonstrate a lower fasting blood 

glucose and increased insulin sensitivity relative to wild type littermates when fed a high fat diet 

(Lin et al., 2011; Qi et al., 2011).  However, ghrelin has other effects that cannot be explained by 

actions at GHSR1a.  

Both ghrelin and UAG increase cell survival and inhibit apoptosis of pancreatic β-cells induced 

by serum starvation or inflammatory mediators, with similar potencies (Granata et al., 2007).  

Investigation of the pancreatic β-cell line, HIT-T15, and human pancreatic β-cells, points to the 

presence of receptor that bind ghrelin, UAG, UAG fragments and modified UAG fragments, 

notably cyclised ghrelin6-13 (AZP531; Table 1).  The sequence of AZP531 is distinct from the 

sequence necessary for activation of GHSR1a, which is ghrelin1-4 (Bednarek et al., 2000).  
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Moreover, neither GHSR1a mRNA nor protein was detected in HIT-T15 cells (Granata et al., 

2007).  Labeled ghrelin bound to the cells and was displaced by ghrelin (IC50 = 3.8 ± 0.6 nM), UAG 

(IC50 = 2.3 ± 0.4 nM) and hexarelin (IC50 = 20.8 ± 2.3 nM).  Scatchard analysis indicated the 

presence of a single binding site with similar affinity for ghrelin and UAG.  Ghrelin and UAG both 

caused proliferation of HIT-T15 and human pancreatic β-cells (Granata et al., 2007; Granata et al., 

2012).  NF449, a Gαs protein-coupled receptor antagonist completely blocked ghrelin and UAG-

induced cell proliferation, whereas pretreatment with pertussis toxin was ineffective.  Consistent 

with Gαs coupling, ghrelin and UAG both caused accumulation of cAMP and activation of 

PI3kinase/AKT and ERK1/2 (Granata et al., 2012).   

AZP531, which has no effect at GHSR1a, administered by a subcutaneous osmotic minipump  

prevented glucose intolerance and insulin resistance that was induced by 2 or 4 weeks of high fat 

diet in mice (Delhanty et al., 2013).  AZP531 and UAG also reduced the body weight gain and fat 

mass increase caused by the high fat diet, without altering energy intake.  Part of the insulin 

resistance induced by high fat may be hepatic, as AZP531 prevented the HFD-induced suppression 

of hepatic insulin receptor substrate 1 (Irs1) gene expression (Delhanty et al., 2013).  AZP531, 

given intravenously, increases blood pressure in the anaesthetised rat, whereas ghrelin has a 

hypotensive effect (Callaghan et al., 2014).   

UAG, in contrast to ghrelin, stimulates insulin release.  Exogenous UAG (3-30 nmol kg−1) 

enhanced insulin secretion in i.v. glucose challenged sedated rats, and ghrelin (30 nmol kg−1) 

reversed the effect of UAG (Gauna et al., 2007a).  Infusion of UAG in human volunteers (1.0 

mg/kg/h for16 h), compared to saline infusion, improved glucose clearance and enhanced insulin 

release in response to meals taken during the infusion (Benso et al., 2012).  Free fatty acid levels 

were also decreased, suggesting increased uptake or decreased lipolysis.  Consistent with this 

observation, again in human volunteers, infusion of ghrelin inhibited insulin release, an effect that 

was antagonised by UAG (1.0 µg/kg i.v. bolus) (Broglio et al., 2004).  Another study found that co-

administration of ghrelin and UAG as a single i.v. bolus injection causes a significant decrease in 

insulin concentration in non-diabetic subjects suffering from morbid obesity (Kiewiet et al., 2009). 

However another group employing 4 µg/kg UAG in human volunteers did not observe any 

counterbalancing between the effect of ghrelin on blood glucose by UAG (Tong et al 2014).  The 

glucose concentration did not change in the first hour after combined administration, suggesting an 

improvement in insulin sensitivity. 
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F. Heart, cardioprotection and ionotropic effects 

1. Cardioprotection:   

Overview:  Ghrelin protects the heart against isoproterenol-induced injury (Chang et al., 2004b), 

ischemia-reperfusion injury (Chang et al., 2004a; Zhang et al., 2009) and reduces damage due to 

myocardial infarct (Locatelli et al., 1999; Soeki et al., 2008).  Evidence that is reviewed below 

indicates that there are several receptor types in the heart, including GRLR for ghrelin and UAG, 

UAG receptors and GHSR1a.  Cardioprotection appears to be mediated, primarily, through non-

selective receptors for ghrelin and UAG (GRLRs) on cardiomyocytes.  Receptors on endothelial 

cells (Section H below) may also contribute to cardiac protection and repair.   

When compared directly, ghrelin and UAG have similar potencies in protecting the 

myocardium against drug-induced injury, inhibition of cardiomyocyte apoptosis and inhibition of 

cardiac endothelial cell death (Baldanzi et al., 2002; Pei et al., 2014).   

The use of cardiomyocyte cell lines has partially clarified the mode of action of ghrelin and 

UAG in cardioprotection.  The cancer therapeutic, doxorubicin, exhibits cardiotoxicity and causes 

death of rat-derived H9c2 cardiomyocytes, an effect that is inhibited by both ghrelin and UAG 

(Baldanzi et al., 2002).  Although H9c2 cardiomyocytes do not express Ghsr1a, ghrelin and UAG 

recognize a common high affinity binding site (Kd = 4 nM) on these cells.  Two other agonists, 

MK677 and hexarelin, recognized the common ghrelin and UAG binding sites.  The affinity of 

ghrelin binding sites on H9c2 cardiomyocytes was about 10-fold lower than the affinity at GHSR1a 

in pituitary and hypothalamic membranes (Baldanzi et al., 2002).  Ghrelin also protects H9c2 cells 

from H2O2 induced apoptosis (Zhang et al., 2011).  Binding experiments on ventricular membranes 

from guinea-pigs found that ghrelin, UAG and hexarelin recognized a common high-affinity (Kd 

0.51± 0.06 nM) binding site (Bedendi et al., 2003).  Ghrelin binding to rat cardiomyocytes revealed 

a single binding site, with a Kd of 0.25 nM (Chang et al., 2004a).  

In vivo studies confirm that UAG is cardioprotective (Pei et al., 2014).  Mice in which cardiac 

function was compromised by doxorubicin were given UAG (100 µg/kg, i.p., twice daily for 4 

days).  Decreases in ventricular fractional shortening, increased fibrosis and apoptosis caused by 

doxorubicin were reversed by UAG.  Cardiac protection by hexarelin, in vivo, after ischemia and 

reperfusion was observed in hypophysectomised rats, and is thus not an indirect effect of GH 

release by ghrelin receptor agonists (Locatelli et al., 1999).  

In vivo effects (D-Lys3)-GHRP-6 (Pei et al., 2014) differ from those observed in vitro 

(Baldanzi et al., 2002); the prevention of doxorubicin-induced myocardial fibrosis and apoptosis by 

UAG was not antagonised by (D-Lys3)-GHRP-6 applied in vivo (Pei et al., 2014), whereas this 

compound reversed UAG effects on cardiomyocytes in vitro (Baldanzi et al., 2002).  Another study 
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that provides contrasting data on cardioprotection is that of Frascarelli (2003).  It was reported that 

neither the potent GHSR1a agonist, MK667 (Table 1) nor UAG was cardioprotective, whereas 

ghrelin and hexarelin were cardioprotective in perfused rat hearts subjected to ischemia/reperfusion 

injury.   

Other experiments have identified cardiac binding sites that do not recognise ghrelin.  One site 

in rat cardiac membranes was identified as CD36, a glycoprotein that is expressed in adipose tissue, 

platelets, monocytes/ macrophages, dendritic cells, and microvascular endothelium.  Hexarelin 

binding to CD36 was displaced by hexarelin-related peptides, including the antagonist (D-Lys3)-

GHRP-6, but not by ghrelin (Demers et al., 2004).  The functional effects of hexarelin binding to 

CD36 of cardiomyocytes have not been reported.   

A recent binding study (Lear et al., 2010) using a murine cardiomyocyte line, HL-1, and 

isolated mouse and rat cardiomyocytes, has identified two binding sites for UAG, with Kds of 0.65 

and 47 nM, that were not effectively displaced by ghrelin, ghrelin 9-28 or motilin.  Displacement of 

labelled UAG with cold UAG yielded IC50 values of 4 and 400 nM (Lear et al., 2010).  In the HL-1 

cells, UAG increased medium-chain fatty acid uptake, whereas ghrelin did not modify fatty acid 

uptake. 

2. Inotropic effects:   

Studies on the inotropic effects of ghrelin and UAG have showed that they both reduced guinea pig 

papillary muscle mechanical tension in a dose dependent manner, their action depended on NO 

synthesis as well as on endocardial endothelium integrity (Bedendi et al., 2003).  The negative 

inotropic effect of ghrelin on papillary muscle has been studied in rat where it was also found to be 

an action independent of GHSR1a (Soares et al., 2006).  In contrast to the endothelium mediated, 

GHSR1a independent, negative inotropic effects of ghrelin and UAG, ghrelin also has positive 

inotropic effects on isolated rat ventricular myocytes (Sun et al., 2010).  This effect of ghrelin is 

GHSR1a dependent, involves augmented L type Ca2+ channel currents and was blocked by (D-

Lys3)-GHRP-6. 

G. Heart, Coronary artery constriction 

Ghrelin, 0.1 and 1 nM, increased arterial resistance in the isolated perfused rat heart and 1 nM 

constricted isolated coronary artery segments (Pemberton et al., 2004).  These effects were blocked 

by the L-type Ca2+ channel antagonist, diltiazem, and by the PKC inhibitor bisindolylmaleimide.  

Both GHRP6 and hexarelin constricted rat coronary arteries (Xu et al., 2003).  In anaesthetised pigs, 

direct infusion of ghrelin also caused coronary artery constriction (Grossini et al., 2007).  The effect 

was prevented by the antagonist of β-adrenoceptors, butoxamine.  It was suggested that ghrelin 

blocks a tonic β2-adrenergic receptor-mediated vasodilatation.  Radiolabelled ghrelin binds to 



21 
 

human coronary arteries with a Kd of 0.2 nM and binding is competed off with hexarelin 

(Katugampola et al., 2001).  Binding was reported to be on the smooth muscle (Katugampola et al., 

2001).   

In mice, hexarelin caused coronary vasoconstriction that was lacking in CD36 knockout 

animals (Bodart et al., 2002).  Moreover, coronary arteries of spontaneous hypertensive rats, which 

are CD36 deficient, were substantially less responsive to hexarelin, compared to normotensive rats.  

In a GHSR1a reporter mouse, no evidence of GHSR1a expression was found in coronary arteries 

(Callaghan et al., 2012).   

H. Endothelial cells: nitric oxide (NO) production, proliferation and angiogenesis 

Overview:  Protective effects of ghrelin and UAG against endothelial cell damage caused by serum 

starvation, oxidative stress or hyperglycaemia through as yet unidentified receptors have been 

reported.  There is some evidence that the actions of UAG are through activation of endothelial 

NOS (eNOS).  This effect could possibly be targeted to assist tissue revascularisation or to attenuate 

endothelial cell damage in diabetes. 

Protective effects were first reported in porcine aortic endothelial cells stressed by serum 

starvation (Baldanzi et al., 2002).  Apoptosis was reduced by about 80% with either ghrelin or UAG 

(1 µM).  It was later reported that UAG, but not ghrelin, attenuated circulating endothelial 

progenitor cell damage in diabetic patients (Togliatto et al., 2010).  In these experiments, patients 

were given UAG (3 µg/kg/h) or ghrelin (1 µg/kg/h) as an intravenous infusion for 12 h, and blood 

samples were collected to isolate endothelial progenitor cells and circulating angiogenic cells.  

UAG infusion doubled the number of viable cells, whereas ghrelin (at 1/3 the dose) had no effect.  

The cells were capable of de novo vessel formation, which was enhanced by UAG.  Similar 

observations were made on cells from obese mice.  Fluorescent-tagged UAG bound to endothelial 

progenitor cells and circulating angiogenic cells.  It was displaced by unlabeled UAG, but not by 

ghrelin.  In experiments on mouse cells, from wild-type and eNOS knockouts, it was shown that the 

actions of UAG were dependent on rescue of eNOS activity (Togliatto et al., 2010).  Several other 

studies have also shown that ghrelin activates eNOS, including in endothelial cells from human 

umbilical vein (Xu et al., 2008) and bovine, human (Iantorno et al., 2007), rat (Shimizu et al., 2003) 

and mouse (Xu et al., 2008) aortic endothelial cells.  However, effects of UAG were not tested in 

these studies.  In contrast, Shimada et al (2014) have confirmed that UAG protects human vascular 

endothelial cells, but comparison with ghrelin was not made.  The activation of eNOS is caused 

through Akt and AMP kinase mediated phosphorylation (Xu et al., 2008).  The effects in bovine 

aortic endothelial cells were inhibited by knockdown of Ghsr1a by treatment with siRNA (Iantorno 

et al., 2007), suggesting that GHSR1a is involved in this species. 
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There is evidence that actions on the capillary endothelium within human pancreatic islets 

contributes to islet protective effects of both ghrelin and UAG (Favaro et al., 2012).  Treatment with 

3 ghrelin gene products, ghrelin, UAG and obestatin, reduced NO and inflammatory cytokine 

release from the endothelium.  Competitive binding data suggested that obestatin, but not ghrelin or 

UAG, exerted its effects through binding to the GLP-1 receptor.  Ghrelin and UAG increased 

survival and significantly inhibited glucose-induced apoptosis of the endothelial cells, through 

increased cAMP and activation of PI3K/Akt, ERK1/2 phosphorylation.  

I. Liver 

The literature is consistent in failing to detect GHSR1a in liver.  GHSR1b, but not 1a, 

expression was detected in human liver (Gnanapavan et al., 2002; Ueberberg et al., 2009) and 

GHSR1a could not be detected in the liver of mouse (Lim et al., 2013) or rat (Moreno et al., 2010).  

GHSR1a expression was low to undetectable in pig hepatocytes, whereas the authors found high 

levels of expression in the pancreas (Gauna et al., 2005).  Western blot analysis failed to reveal 

GHSR1a protein in the mouse liver (McGirr et al., 2011), although the sensitivity is such that small 

amounts of protein would probably remain undetected.   

Despite the absence of GHSR1a, ghrelin (100 nM) stimulates glucose production in isolated 

porcine liver cells whereas they do not respond to the potent GHSR1a agonist, hexarelin (Gauna et 

al., 2005).  Similarly, hexarelin did not alter glucose levels in human (Broglio et al., 2004).  Effects 

on liver are also observed in Ghsr null mice, in which UAG changes the hepatic expression of genes 

involved in cell death, growth and proliferation (Delhanty et al., 2010).   

Hepatic insulin sensitivity is decreased in obesity, an effect that is associated with decreased 

expression of insulin receptor substrate 1 (IRS-1).  In mice, a high fat diet decreased Irs1 gene 

expression, which was prevented by infusing the mice with UAG or the UAG receptor agonist, 

AZP531 (Delhanty et al., 2013).  Consistent with effects on insulin/ glucose pathways in liver, in 

Ghsr knockout mice, UAG increased the hepatic expression of Lcn2 and Nox4, genes that are linked 

to insulin sensitivity (Delhanty et al., 2010). 

J. Tumor cells 

Overview:  Receptors for ghrelin, UAG and related ligands are present in several tumor types, and 

in cancer cell lines derived from tumors (Chopin et al., 2012).  This includes cancers of breast 

(Cassoni et al., 2004; Jeffery et al., 2005), the gastroenteropancreatic system (Leontiou et al., 2007; 

Nikolopoulos et al., 2010), liver (Murata et al., 2002), pituitary (Korbonits et al., 2001) and prostate 

(Jeffery et al., 2002; Lanfranco et al., 2008) in all of which ghrelin influences cancer cell 

proliferation.  However, both proliferative and anti-proliferative effects are observed and no useful 

therapeutic agents based on this pharmacology have emerged.   
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Cassoni (2001) used displacement of (125I)Tyr-Ala-hexarelin to characterise ghrelin receptor-

like receptors in breast tumour tissue and breast cancer cell lines.  Ghrelin and UAG displaced 

hexarelin binding with IC50s of 190 and 800 nM.  By contrast, UAG is over 1000 times less potent 

than ghrelin at GHSR1a (see above).  Unrelated peptides did not displace hexarelin from the tumor 

cells.  Binding to these ghrelin receptor-like receptors was found in well-differentiated carcinomas 

of the breast and in several breast cancer-derived cell lines, including the commonly used MCF7 

and MDA-MB-231 lines.  Two laboratories have shown that neither line exhibits detectable 

GHSR1a gene expression (Cassoni et al., 2001; Jeffery et al., 2005), whereas GHSR1b gene 

expression is readily detected (Gahete et al., 2011; Jeffery et al., 2005).  It is possible that the 

ghrelin receptor-like receptors of breast cancers are heterodimers of the non-functional GHSR1b 

with another GPCR (see earlier section: Heteromeric receptors). 

Proliferation of the estrogen-dependent breast cancer cell line, MCF7, is inhibited by ghrelin 

(Cassoni et al., 2001).  It is notable that ghrelin does not have an effect in the absence of estrogen 

(Jeffery et al., 2005).  Consistent with an inhibitory role of ghrelin in breast cancers, ghrelin 

expression is significantly correlated to low histological grade, estrogen receptor positivity, small 

tumor size and low proliferation of human breast tumors (Grönberg et al., 2008).  In contrast, 

ghrelin at concentrations of 10 and 100 nM significantly increased proliferation of the estrogen-

independent breast cancer cell line, MDA-MB-231 (Jeffery et al., 2005).  Another product of the 

ghrelin gene, in1-ghrelin (in which intron 1 is translated) also increases proliferation (Gahete et al., 

2011).  Because most breast cancers express the ghrelin precursor gene and the acylating enzyme, 

GOAT (Gahete et al., 2011; Grönberg et al., 2011; Grönberg et al., 2008), it is a reasonable 

hypothesis that ghrelin or other ghrelin gene products modulate breast cancer growth, the literature 

indicating that growth is reduced in estrogen-dependent breast cancers and increased in aggressive 

estrogen-independent breast cancers.   

In prostate carcinomas, there is absence of both GHSR1a and GHSR1b expression, although 

GHSR1b expression occurs in 50% of benign prostate hyperplasias (Cassoni et al., 2004).  Ghrelin 

had a dose dependent proliferative effect on the prostate cell line, LNCaP, with a threshold of about 

0.1 nM, and a peak response with 10 nM ghrelin (Yeh et al., 2005).  Both ghrelin and UAG, at 10-

100 pM, increased proliferation of the PC-3 cell line (Cassoni et al., 2004).  However, neither 

GHSR1a nor GHSR1b expression was found in the LNCaP or PC-3 cell lines (Cassoni et al., 2004).  

In the human prostate cell lines, DU-145 and PC-3, and cells from prostate carcinomas, both ghrelin 

and UAG displaced labeled (Tyr 4) ghrelin (Cassoni et al., 2004).  Unlike the other prostate cancer 

cell lines, DU-145 does express GHSR1a (Cassoni et al., 2004) and agonists of GHSR1a inhibit 

proliferation (Pellegrino et al., 2013).  The displacement of label with UAG suggests that this cell 

line may express a ghrelin receptor-like receptor. 
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K. Appetite 

Overview: Consistence evidence indicates that the orexigenic effects of ghrelin released from 

gastric ghrelin stores are mediated through GHSR1a.  However, a number of studies indicate that 

actions at both GRLR and UAG receptors, most likely in the hypothalamus, can influence appetite.  

Whether non-GHSR1a have physiological roles in control of food intake has not been determined. 

Comparison of the effects of the GHSR1a ligand, BIM28163, on GH release and appetite also 

revealed the presence of a novel GRLRs (Halem et al., 2005).  BIM-28163 bound to GHSR1a and 

blocked ghrelin’s action at the GHSR1a receptor in transfected cells and it also blocked ghrelin’s 

stimulatory effect on GH secretion (Halem et al., 2005).  In contrast, BIM28163 and ghrelin both 

stimulated food intake and in the dorso-medial hypothalamus and c-Fos, a marker of activated 

neurons, was induced by both ghrelin and BIM-28163 (Halem et al., 2005).  This suggests that 

some of the receptors through which ghrelin stimulates appetite are different from GHSR1a.  

Consistent with the effect of ghrelin on appetite being mediated through a receptor other than 

GHSR1a, the GHSR1a antagonist, GSK1614343, does not block ghrelin-induced feeding 

(Costantini et al., 2011). 

Intracerebroventricular (icv) UAG, but not ghrelin, increases food intake in rats, wild type and 

Ghsr knockout mice, suggesting that there are ghrelin receptor-like receptors in central appetite 

controlling circuits (Toshinai et al., 2006).  In fasted wild type male mice of the ddy strain, icv or ip 

UAG (~3 nmol) was reported to decrease food intake (Asakawa et al., 2005), however other studies 

found no effect of icv UAG (7.5 nmol) in fasted male C57Bl6 mice (Neary et al., 2006) or fasted 

ddy mice (Toshinai et al., 2006).  Peripherally applied ghrelin, but not UAG, increases feeding, and 

Ghsr knockout prevents the orexigenic effect of peripherally administered ghrelin (Sun et al., 2004; 

Toshinai et al., 2006).  In humans, food intake was decreased after UAG infusion compared with 

ghrelin or ghrelin plus UAG infusions, but was not different from saline control (Tong et al 2014). 

L. Other evidence suggesting novel receptors  

Some other reports that suggest novel receptors are briefly summarised below.  In each case 

these are isolated reports, and in some cases sites and/or mechanisms of effect are unknown.    

UAG mimics ghrelin’s action in the nucleus tractus solitarius, where injection of either 

compound lowers blood pressure with almost equal potency (Tsubota et al., 2005).  Icv UAG (0.1 

and 0.5 nmolar solutions) reduced the temperature of the dorsal body surface and increased tail 

temperature, suggesting that a blood flow redistribution was elicited by UAG (Inoue et al., 2013).  

Icv ghrelin mimicked UAG.  However, the effect of ghrelin, but not that of UAG was blocked by 

the antagonist, (D-Lys3)-GHRP-6 (Inoue et al., 2013).  Ip injection of UAG (0.03 and 0.1 mg/kg 
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body weight) caused similar, but less potent effects.  Both icv and ip UAG induced cFos expression 

in neurons of the median pre-optic area, a region known to regulate body temperature.   

There are several reports of UAG attenuating effects of ghrelin, for example reducing the 

appetite stimulatory effects of ghrelin (Inhoff et al., 2008) and reducing its effect on colorectal 

propulsion (Hirayama et al., 2010) and having opposite effects on insulin secretion (see above).  A 

transgenic mouse overexpressing UAG at levels 10-44 fold greater than in control mice exhibits a 

small phenotype with a shorter nose to anus length and lower body weights (Ariyasu et al 2005).  

It is reported that nanomolar concentrations of UAG, hexarelin, and EP80317 counteract the 

stimulation of IL-1β and IL-6 synthesis in microglial cells by the Alzheimer disease associated β–

amyloid protein (Bulgarelli et al., 2009).  Ghrelin was ineffective.  Expression GHSR1a was 

undetectable in the microglial cells.   

VI. Conclusions 

The only molecularly defined receptor for ghrelin, GHSR1a, is important for many of its 

actions, but this receptor has very low affinity for UAG, too low for circulating UAG to be a 

hormone that acts at GHSR1a.  However, there is clear evidence of cell and organ responses to low, 

generally nanomolar, concentrations of UAG, both at sites where ghrelin is also an agonist and at 

sites where UAG alone has agonist effects.  Thus, we postulate that there are two families of ghrelin 

receptors that are yet to be identified at a molecular level: receptors at which ghrelin and UAG are 

both potent agonists (ghrelin receptor-like receptors) and receptors at which UAG, but not ghrelin, 

is a potent agonist (UAG receptors).  GRLRs are expressed by adipocytes, myoblasts, osteoblasts, 

cardiac muscle cells, pancreatic islet cells (which also express GHSR1a), coronary arteries, vascular 

endothelial cells and cancer cells (breast and prostate).  UAG receptors are expressed by 

hepatocytes and pancreatic beta cells. 

It is necessary to determine the molecular natures of the GRLRs that have been reported in 

many cells types that are essential to human health.  Until this is done, there will remain uncertainty 

about whether the effects at what appear to be non-specific ghrelin receptors or unacylated ghrelin 

receptors are truly at unique receptors.  In the case of the UAG receptors, clinical trials are already 

underway, using a ghrelin analogue whose molecular site of action is still unknown.  No agonist 

other than UAG has yet been convincingly demonstrated to act at GRLRs, but not ghrelin receptors.  

Further development of selective ligands will be problematic until the receptors are isolated.  It is 

notable that receptors for ghrelin on pancreatic islet cells are heterodimers of GHSR1a and the 

somatostatin receptor, SST5.  Further exploration of heteromeric GPCRs may uncover other 

physiologically important GRLRs. 
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Tables 

Table 1:  Ghrelin receptor ligands 

Compound Properties, 
characterisation Relevant pharmacological studies, studies in human References 

Agonists 
This is a selection of many hundreds of agonists in the patent literature.  Except for AZP531 they were developed as GHSR1a 
agonists.  We concentrate on those that have been trialed in human and/or are judged to be useful for biological testing and 
receptor characterisation. 
Anamorelin 
(RC1291; 
ONO7643)  

Metabolically stable 
modified tripeptide.  
Orally active 
 

Therapy for the treatment of cancer cachexia.  Anamorelin increases GH, IGF-1, 
IGFBP-3, appetite and body weight in human.  

(Garcia et al., 2013; 
Garcia and Polvino, 
2009), (Paul et al., 
2006), (Garcia and 
Polvino, 2007) 

AZP531 Cyclic ghrelin (and des-
acyl ghrelin) 6-13.  Not 
an agonist at GHSR1a 

Selective agonist for the UAG receptor.  Phase 1 clinical trial, commenced July 2013 
to provide data on AZP531 actions on metabolic dysfunction, particularly on 
hyperglycemia. (Alizé Pharma).  Anticipated use in type 2 Diabetes. 

(Julien et al., 2012) 

Capromorelin 
(CP424391) 

Pyrazolinone-piperidine 
dipeptide.  Centrally 
penetrant.  Orally active. 

Being tested for treatment of frailty (Phase 2) and GERD (Phase 1) (RaQualia 
Pharma Inc) 
Shown to increase lean body mass   Originally produced by Pfizer, now licensed to 
RaQualia.    

 (Pan et al., 2001), 
(White et al., 2009) 

GSK894490 
(Compound 24) 

Non-peptide.  Orally 
active 

Readily cross the blood/brain barrier and elicits pro-cognitive effects in recognition 
and spatial learning and memory tests 

(Witherington et al., 
2008), (Atcha et al., 
2009) 

CP464709 Non-peptide Centrally penetrant agonist with long half life (Carpino et al., 2002) 

GHRP-6 His-D-Trp-Ala-Trp-D-
Phe-Lys-NH2.   

The first effective and commonly used GHS.  Short in vivo half life.  Stimulates GH 
secretion in vivo.  EC50 1.5 nM.  

(Bowers et al., 1984) 
(Raun et al., 1998) 

Hexarelin  His-2-methyl-D-Trp-Ala-
Trp-D-Phe-Lys-NH2. 
Methylated analogue of 
GHRP-6 

One of the most commonly experimentally used GHSR1a agonists.  Increases GH 
release and muscle mass.  Popular with body builders.  EC50 2 nM in pituitary cells. 

(Ghigo et al., 1994)  

Ibutamoren  
(MK677, 
L163191) 

Non-peptide, substituted 
spiropiperidine 
sulfonamide. Orally active 
as mesylate 

Effective agonists of GHSR1a.  MK677, GHRP-6 and L692585 have about 50% 
greater efficacy than ghrelin and have been termed super agonists.  Ibutamoren 
increases GH, and IGF-I, and IGFBP-3 levels.  
In postmenopausal women shown to have a positive effect on bone mineral 
density.  Used off-prescription by body builders.   

(Codner et al., 2001), 
(Murphy et al., 2001) 
(Nass et al., 2008) 
. 
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Ipamorelin Synthetic pentapeptide 
(Aib-His-D-2-Nal-D-Phe-
Lys-NH2), originally from 
Novo Nordisk  

Being tested for post-operative ileus – phase 2b (Helsinn Pharma) 
Demonstrated to significantly increase the cumulative fecal pellet output, food 
intake, and body weight gain in rodent model of post-operative ileus. 
 

(Raun et al., 1998), 
(Venkova et al., 
2009) 

L163255 Spiropiperidine.  Orally 
active.   

Oral dose of 1 µg/kg increased GH release in pig.  IGF-I also elevated. 
Shown to increase retroperitoneal and perirenal white adipose tissue mass without 
having any significant influence on inguinal or epididymal fat. 
 

(Chang et al., 1996), 
(Davies et al., 2009) 

Macimorelin 
acetate 
(AEZS130) 
(ARD07) 
(EP01572) 

Synthetic small molecule.  
Orally active as acetate.  

Phase 1 studies completed and phase 2 studies underway to use macimorelin as a 
treatment of cachexia,  
Phase 3 studies of a diagnostic test for growth hormone deficiencies in adults have 
been completed.  (Aeterna Zentaris) 

(Guerlavais et al., 
2003), (MacLean et 
al., 2009)  

RM131 
(BIM28131) 

Pentapeptide, formerly 
called BIM-28131  
 

Tested for diabetic gastroparesis in women  
Currently in Phase 2 clinical trials for diabetic gastroparesis and GI functional 
disorders. (Rhythm Pharmaceticals) 

(DeBoer et al., 
2008), (Shin et al., 
2013) 

SM130686 Oxindole derivative. 
Orally active.  

Partial agonist.  EC50 = 3.0 nM.  From Sumitomo Chemical Co (Nagamine et al., 
2001) 

Tabimorelin 
(NN703) 

Modified peptide 
Orally active  

Tested in adults with GH deficiency.  Therapeutic effects on growth-hormone 
deficient adults were limited. 

(Hansen et al., 
1999), (Svensson et 
al., 2003) 

Ulimorelin 
(TZP101) 

macrocyclic 
peptidomimetic  

Ki=16 nM, EC50=29 nM .  Long half life in human, 13 h (Lasseter et al., 2008).  
Tests in patients with gastroparesis showed minor improvement.  
Phase 3 trial for post-operative ileus demonstrated compound safety, but ulimorelin 
showed no advantage compared to placebo.  It is reported to have low potency to 
release growth hormone (Fraser et al., 2008) 

(Hoveyda et al., 
2011), (Shaw et al., 
2013) 
 

Antagonists 
Many antagonists of GHSR1a have been synthesised, but few have gone forward to clinical trial and most of the compounds are 
not readily available.  Compounds from Abbott, Bayer, Elixir, Merck, Tranzyme and Zentaris have been reviewed (Zhao et al., 
2008) 
(D-Lys3)-GHRP-
6 

Hexapeptide, His-D-Trp-
D-Lys-Trp-D-Phe-Lys-
NH2 

Originally described by Cheng 1989, this is one of the most commonly used 
antagonists in cell based and animal studies.  IC50, 900 nM.  However, it also 
displaces agonists such as hexarelin from CD36 (IC50 6 μM) and it is an antagonist 
of ghrelin action at GRLRs of osteoblasts (Kim et al., 2005). 

(Cheng et al., 1989) 
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YIL781 Piperidine-substituted 
quinazolinone derivative.  
Orally active. 

Competitive antagonist with pKB of 7.54 in IP accumulation assay.  Centrally 
penetrant and centrally effective antagonist in rat in vivo.  Available commercially for 
experimental use.  

(Esler et al., 2007), 
(Perdona et al., 
2011), (Callaghan et 
al.) 

AEZS123 
(JMV2959) 

Non-peptide with 
trisubstituted 1,2,4-
triazole structure 

IC50, 32 nM and a Kb of 19 nM.  No agonist action.  Related antagonists are 
described by Moulin (2008). 
 
 

(Salomé et al., 2009) 

GSK1614343 
(Compound 
18ad2 in 
Sabbatini 2010). 

Carbohydrazide dipeptide 
trifluoromethyl derivative 
 

Competitive antagonist with pKB of 8.03 in IP accumulation assay.   Not able to 
antagonize ghrelin-induced food consumption in rat, but unexpectedly stimulated 
food intake and body weight gain in both rats and dogs, a profile associated with 
decreased ghrelin plasma levels.  

(Sabbatini et al., 
2010), (Costantini et 
al., 2011), (Perdona 
et al., 2011),  

Inverse Agonists acting at GHSR1a 

Modified 
Substance P 
(MSP)  

Peptide 
EC50 = 5.2 nM 
 

Modified substance P, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, is a low-potency 
antagonist but a high-potency full inverse agonist.  A range of related substance P 
derivatives also had inverse agonist properties. 

(Holst et al., 2006) 

Substance P 
derivative, 
KwFwLL  

Hexapeptide 
EC50 = 36 ± 8 nM 
 

A series of derivatives of MSP have been synthesised, leading to Lys-D-Trp-Phe-D-
Trp-Leu-Leu-NH2, which has little remaining resemblance to substance P and is an 
inverse agonist with no residual antagonist (or agonist) activity.  

 

(Holst et al., 2007) 

10n (Pfizer) Spiro-azetidino-piperidine One of the first in a series of Spiro-azetidino-piperidine derivatives developed at 
Pfizer.  pKi versus ghrelin 8.13 ± 0.21.  

(Kung et al., 2012) 
 

12a (Pfizer) Spiro-azetidino-
piperidine-triazole 

pKi versus ghrelin 7 nM. (McClure et al., 2013) 

PF5190457 Spiro-azetidino-piperidine Orally active.  pKi versus ghrelin 8.36.  Increases glucose-stimulated insulin 
secretion in human isolated pancreatic islets.  The compound has a predicted 
human absorption of 86% and half-life of 6.3 h. 

(Bhattacharya et al., 
2014) 
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Figure Legends 

 

Fig 1.  The ghrelin receptor family.  Schematic phylogenetic tree of the ghrelin receptor family 

indicating the relationships of the receptors.  For alternative naming of the receptors, see Alexander 

(2011).    

 

Fig 2.  Key sites for agonist activation and constitutive activity of GHSR1a.  The diagram 

represents the receptor seen from its external surface, with transmembrane domains indicated by 1-

7.  In dark blue are binding surfaces for ghrelin and in light blue other sites involved in agonist 

interactions, especially interactions of non-peptide agonists.  The red area defines a pocket bordered 

by aromatic amino acids that determines constitutive activity.  The extracellular loop 2 (ECL2) is 

linked through a disulphide to TM3.  Mutation of the Ala (A) in this loop to Glu changes ECL2 

conformation and reduces constitutive activity.   
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