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THE INTEGRATED SQUARE-ROOT PROCESS

Daniel Dufresne, University of Montreal

Abstract

The square-root process has been used to model interest rates and stochastic volatil-
ity. This paper studies some of its properties, particularly those of the integral of the
process over time. After summarizing the properties of the square-root process, the
Laplace transform of the integral of the square-root process is derived. Three meth-
ods for the computation of the moments of this integral are given, as well as some
properties of the density of the integral. The last section studies the relationship be-
tween the Laplace transforms of a variable and of its reciprocal, a topic which arises
in the previous analysis and elsewhere. An application to the generalized inverse
Gaussian distribution is given.

Keywords: SQUARE-ROOT PROCESS; STOCHASTIC VOLATILITY; VOLATILITY
Swaps; AsSIAN OPTIONS; INTEREST RATE MODELS; GENERALIZED INVERSE
GAUSSIAN DISTRIBUTION

1. Introduction

The square-root process is the unique strong solution of the stochastic differential
equation (SDE in the sequel)

dX = (X +B)dt+yVXdW, Xo=1z>0, (1.1)

where a € R, 8> 0,7 > 0,Z > 0, and W is standard Brownian motion. Other names used
for the same process are squared Gaussian (since the square of some Gaussian processes
can be shown to satisfy (1.1) — a comment attributed to L.C.G. Rogers), Feller (because
of the early work of William Feller on the process), CIR (since Cox, Ingersoll & Ross
(1985) used (1.1) as a model for the spot interest rate, and gave the formulas for risk-free
bonds under this assumption), and Heston model (since Heston (1993) studied the pricing
of options when the squared volatility of the underlying security satisfies (1.1)).

The integral of X arises in both volatility and interest rate models. If the stock price
follows the process

dS = pSdt+vVXSdv,

where (V,W) is two-dimensional Brownian motion (possibly correlated), and X is the
solution of (1.1), then the integral
¢
Y, = / Xsds
0
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The integrated square-root process

is the cumulative variance of the stock returns up to time ¢. This integrated variance process
occurs in volatility swaps (Carr, 2001), and one can imagine other derivatives based on Y;.

The process Y; obviously arises in bond pricing, when spot interest rates follow the
CIR model. This is because the price of a risk-free zero-coupon bond maturing at time ¢
equals

Eq e Yt
where Q is a risk-neutral measure. Another example would be options based on the average
spot interest rate, for instance a call on the average of spot rates X; over [0, T], with strike

Rol
- X dt—Ro = € Yo — )T—JB'{)

The price of such an option would be the expectation of the payoff with respect to the risk
neutral measure, which requires knowledge of the distribution of Yr.

The moments and distribution of Y; may also be of interest in the statistical estimation
of the parameters o, 3,7 in (1.1).

Here is a summary of the paper. Section 2 shows that the moments of X; are solu-
tions of a sequence of ordinary differential equations, and that these moments allow the
determination of the moment generating function and of the density of the process. The
moments of X; are required in the sequel, and the technique used to obtain them is used
again in Section 3. Moreover, Section 2 yields an improvement of a result due to Dufresne
(1989), regarding the moments of a process related to Asian options and the Courtadon
interest rate model. The density of X; in (1.1) is of course well known, but the derivation
given in Section 2 is not common (the author has not seen it in the literature), and clearly
shows that the distribution of the process is the convolution of two distributions, one com-
pound Poisson/Exponential and the other gamma. (The distribution of X; has been called
“non-central chi-square,” apparently because it reduces to the distribution of the square
of non-zero normal variable when a = 0.) The better known way of finding the moment
generating function and density of X; is via the relationship with Bessel processes, and
this is also indicated in Section 2. '

Section 3 shows how the moments of the integral of the square-root process may
be obtained, either by solving linear differential equations, or more directly by a recursive
procedure; the results are apparently new. Section 4 is a derivation of the Laplace transform
of the integral of the square-root process, based on the formula for the price of a zero-
coupon bond in the CIR framework (the latter was based on results previously known in
probability theory). The Laplace transform yields a third way of calculating the moments.
Section 5 extends a result which is used in Section 4, and is of independent interest in
Probability Theory. Formulas are given which relate the Laplace transform of a random
variable U > 0 to the Laplace transform of 1/U. They extend one well-known formula
for Laplace transforms. An application to the generalized inverse Gaussian distribution is
given.

A subsequent paper will use the results of this one to compute the distribution of the
integral of the square-root process as well as option prices.
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The integrated square-root process

2. A sequence of ODEs; the moments and distribution of X,

When the square-root process (1.1) is used as a financial model, it is usually made
“mean-reverting” by letting a < 0. In the sequel no such restriction is imposed, except »
that Theorem 2.3 assumes « # 0.

The moments of X; are easy to obtain recursively, by applying Ito’s formula and then
taking epectations. A general formula for the moments of X; will now be derived. The
technique is similar to the one used in Dufresne (1989, 1990) for the integral of geometric
Brownian motion, and yields an extension of one result in Dufresne (1989) (Corollary 2.2
below). Next, the Laplace transform of the density of X; is derived, based on the moments
only. This derivation is different form the usual ones, which are either based on PDEs, or
on the relationship with Bessel processes. Our derivation is based on the assumption that
all the moments of X are finite. The moments are calculated and then summed to get the
moment generating function (MGF). Finally, the density is exhibited, and is shown to be
the convolution of a Gamma and a compound Poisson/exponential.

(N.B. The MGF of a probability measure m is the mapping

T /emm(dz).

The concept is thus the same as the Laplace transform, but a + instead of a — in front of
the argument.)

Applying Ito’s formula with f(z) = z* to (1.1), we get
dX* = (g X* + b X V)dt + yEXF~2dW, (2.1)

with 1
ar = ok, by = Bk+§72k(k—l).

Eq.(2.1) is the same as

t t .
X, = :z+/ (akX§+bkxf—1)ds+/ kX5 2 dw,.
0 0

Here we let the initial value of the process be Z > 0, and we take as given that EX™ < oo
for all n > 0. The consequence is that the Ito integral above has expected value 0. Defining

mg(t) = Eth, k = 0,1,..., we can then differentiate with respect to ¢ on each side to
obtain
m;c(t) = agmg(t) + bpmi—1(t), k>1,t>0 (2.2)
m(0) = zF, k> 0. (2.3)

Eq. (2.2) is of the same type as Eq.(18) in Dufresne (1989), and can be solved in the same
way. The main difference here is that the initial value of m(t) is not 0. ‘
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The integrated square-root process

Theorem 2.1. Let ag = 0 and suppose the numbers {ao,...,ax} are distinct. Then the
solution of (2.2), subject to (2.3) and mo(t) =1 is

k
mg(t) = deje“jt, k=0,...,K, (2.4)

where

J k k .
dxj = Zf’( H b ) H ppt j=0,...,k. (2.5)

Proof. Define a product over an empty set of indices as 1. Then formulas (2.4) and (2.5)
are correct for k = 0. For k = 1, (2.2) implies

t et — 1 b
mi(t) = m (0)e®* + ble‘“t/ e~ 8ds = FeM! + ble = 214 <b—1 + a‘c) et
0 ai ay

For j = 0 and j = 1, m;(t) is a combination of e®*, £ < j. If this claim is correct for
j=20,....k—1, then mg(t) is the solution of an inhomogeneous ordinary dlfferentlal
equatlon w1th a forcmg term equal to a combination of exponentials:

k-1
mi(t) — agmi(t) = Z Cje%t
j=0
t k-1
== my(t) = mg(0)e* + ea“t/ e~ k? Z Cje%°ds. (2.6)
0 -
j=0
Since the {ao,...,ax} are distinct, mg(t) has to be of the form

dro + dg1€™t + - - - + dgre®?

By induction, this is true for £ = 0,...,K. As a function of Z, mg(t) is a polynomial
of degree k, and the coefficient of Z* in my(t) is e?** (because Z* is the initial condition
mi(0))-

Insert (2.4) into (2.2) to obtain

k k k-1
E ajdkjeajt = E akdkj e%it 4 E brdi—_1,; 6ajt,
§=0 j=0 j=0

which implies

dj;, 0<j<k 2.7)

dy; =
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Since m;(t) is a polynomial of degree j in Z, the last equation implies that dj; is also a
polynomial of degree j in Z, which we write as

J
dkj = E dkjifz.
=0

By identifying the coefficients of Z* in (2.7), we get

b . bin
a; — a aj; — Qj41

dka‘ = djji, 0<i<j<k.

We also know that dixr = 1, since the leading coefficient of mg(t), as a polynomial in Z,
is €%t (see (2.6)). The missing constants are thus dggi, 2 = 0,...,k — 1, k > 1. All this

shows that the problem is the same for each power of Z: for any i = 0,1, ..., we have
diii = 1 (2.8a)
drj; = % l—)fak dk—1,5, i<j<k (2.8b)
» drii =0, 0<i<k. (2.8¢)

‘

(The last equality comes from the initial condition my(0) = z*.) Hence, the problem of
finding {dkjo;0 < j < k} when Z # 0 is the same as finding {dx;;0 < j < k} when Z = 0.
The latter was done in Dufresne (1989), for the special case by = k. The same arguments
work, however, for a general sequence {bx;k > 1}. The main argument is that

> 115

j=0

=0 (2.9)

.

for any distinct numbers ag,...,ar. We recall the proof given in Dufresne (1989). La-
grange’s formula for partial fractions decomposition of a rational function is

k

P(x) _ 1 P(ay)
Qz) ;, z - a; Q' (a;)’

for polynomials P and @, the latter with k + 1 distinct zeros {ay,...,ax}, the former of
degree less than or equal to k. Let

k
Q@) = [[@—a), Pl = L
j=0
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Then .
_ y—ay Q(z)
P = 2°06) G-a)Q@lay)

Letting y — z yields (2.9).
For ¢ = j = 0, we find (from (2.8a,b))

k k
1
d = bm , k>0.
#0 <n£I1 ) g Qo — e
££0

Next, di10 = —di00 = b1/(a1 — ao) (from (2.8c)), which implies

by, - - - by k koo
d = d = b , k>1.
k10 (a1 — ax) - (a1 — az) 110 (H )Hal—-ae

£=0
£#£1

To prove the result in general, represent the {dijo} on a grid, with k horizontal and j
vertical. For some integer J > 0, suppose that

k k
1 . .
dij = (Hbm>Haj_ae, kZ]a J=0,...,J -1, (210)

m=1 £=0
4

that is, assume the result holds for the lines j = 0,...,J — 1. Then, by (2.8¢) and (2.9),
(2.10) also holds for k = j = J. From this and (2.8b), we find, for k > J,

b by k k 1
k70 (ag—ax)---(ay - aJ+1) 770 (m=1 ) 4—g & T O
S

By induction, (2.10) applies for all 0 < j < k. For the coefficients of Z¢,7 > 1, the problem
is the same, except that it “starts” on line 4, so that, in the above arguments, (j, k) has to
be replaced with (j + %, k + ). O

Remark. Similar formulas hold when some of the {ao,...,ax} are identical. The only
difference is that terms of the form tfe%* make their appearance, where ¢ is an integer
which depends on the number of times the same ax appears in {ao, ...,ax}. For instance,
suppose ag = 0,a; = az # 0. The solution of (2.2) is then

b b
ma(t) = Z2e™! + by (rz + —1> tedrt — _122 (et —1).
ai ajy

The te®'! reappears in m;(t), j > 3. The solutions of the differential equations nevertheless
depend continuously on the parameters ag, a1, .. ., so that the solutions when some of them
are identical can be found by taking limits in the solutions given in the theorem. O
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As a first application of Theorem 2.1, we generalize Proposition 2 of Dufresne 51989).
Suppose {S;:} satisfies '

dSt = (nSt+C)dt+0'Stth, S() = Z. (2.11)'
Then the moments my(t) = ES¥, k = 0,1,..., satisfy Eqs.(2.3-2.4), with
ar = kn+k(k—-10%/2, b = k(. (2.12)

Corollary 2.2. If the {ax} are all distinct, the moments of the process in (2.11) are given
by (2.4), with {ax} as in (2.12) and

I ipqk—i K
z'¢ 1
dj = kY —— ] ,  §=0,...,k
' L b ?
=0 1. t—i a; Qayg
2]

Remark. The process S in (2.11) has been called the Courtadon interest rate model
(Courtadon, 1982). The moments of the spot rate are thus given by Corollary 2.2. The
limit distribution of S; as t tends to infinity (inverse Gamma if n < 02/2, co otherwise)
is derived in Dufresne (1990). In that paper, S; represents the market value of a an initial
amount Sp and of a continuous payment stream of ¢ units, all invested in a security
represented by a geometric Brownian motion. J

Theorem 2.3. Suppose o # 0. If X, satisfies (1.1), then its moments are
k
EXF = ) Oe*t,  k=0,1,...,
j=0

where

T, R(=1)RTgE (5 _
9w==23$ué-%uk—ﬁ&3? ErEk

a=1L =%
20’ ~?
o =1, (Wr = yly+1)---(y+k-1), k>1

Proof. We have

1 - o (0= [52e (o-5)
= K (;)k [%—f——{—k_l] 28

k! <12i)k(1—,)k.
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For ¢+ < 7,
P -
TI(a; —ar) = &* zH(J—f) H G-20
=i £=j+1
e#i
= (-1)FTa* (G — 0k - )
Hence

k B k" k—1 ('U)k (_1)k—]
(H g > Iite - 7(m) Soat— -

m=i+1 —z
#Jj

The MGF of X; will now be obtained by summing the moments of X;. We begin by
assuming that the following sum converges:

0 00 00k oo i k J V_1\k—jrk—i (5
S__ k —_ ajt S_ L = _S_ ajt = k( 1) U ('U)k
LN = LYt = 2w G -y @ ¢

This sum will be evaluated by summing first over k, then over j, and finally over i. This
procedure needs to be justified, as the summands are not all of the same sign. The justifi-
cation is given below. We will use the formula

o0

(-9 = Y@L, (2.14)

n=0

which is valid for c € R, |y| < 1.

For fixed ¢ < j and small enough |s|, we have

jie“ftsk EN(—1)*—dak—t (9)g (v) sTui e "Jt(l_*_s_)_ﬁ_j
- . - . — = u .
Pt k' (G - )ik —j)! (v)Z (v)1 il(j —9)!
Next,
[o o] .
; (9); s?ul ~*e%?
zt — (14 s@)™ "7
2 &) 4G~
st .’IJ eazt (T))j Sj—'i,aj—ieat(j—i)

= T G 12(@)1- G-

sigteit smect \ T
—_ 1 v—1 1 _ :
2! (1+ )7 ( 1+ sﬂ)

a (14 sa)t7

131 it R
= ¢ x"e [1-sa(et-1)] 7" .
1.
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The integrated square-root process

Finally, summing over %,

EesX: = [1 — s (eat - 1)] exp [1 — szs‘f(ZZt — 1)] = #(s)” exp [As ($(s) — 1)]. (2.15)
Here
2 eat _ aa_:‘
¢(s) = —spe)™,  pe = 77 ( 5 1) A= 55(—12_—}——04)

The function ¢(s) is the MGF of an exponential distribution, with mean equal to u;.
The distribution of X; is thus the distribution of X] + X;’, where the two varlables are
independent, X; ~ Gamma(, ), and X{ is compound Poisson

N
X; = > U,
i=1

with N ~ Poisson()\;), U; ~ Exp(u.).

We now show that the sum in (2.13) converges. What we have just done is to sum the
quantities
k=i k—j=k—i ajt(=
sz (—1)*"Tu" et (v .
Cijk = .|(.__).' _.l_(.)k, 0<i<j<k <.
(g =)k - 7)H(v)s

The same steps show that

. — — eri [ o0 —v sTe™
OSiSjZSk@o el = 1= st (%4 1)] e [1 — st (e + 1)]

if 0 < |s| < 1/[u (e** + 1)]. Therefore: (1) the sum in (2.13) is convergent, (2) the order of
summation of the ¢;;x is irrelevant, and (3) the result is an analytic function of s, at least
for 0 < |s| < 1/[a(e** + 1)]. Expression (2.15) is therefore correct for s < 1/[u (e*t — 1)],
by analytic continuation.

Obviously, the limit distribution of X; as t — oo exists if, and only if, & < 0, in which
case it is Gamma(23/72, —v2/(2a)) (the compound Poisson part, which depends on the
initial condition Z, disappears in the limit). Finally, the density of X; may be obtained
by conditioning on N. To simplify the algebra, consider U = X,/u;: with probability
e~ AP /n!, the distribution of U is Gamma(? + n,1), for n = 0,1.... Hence, the density
of U is

-1
n 'v+n 1 2 o \/)\_')17—14-271
s o (B)T e S
foly) = Ze n' F('v+n) v>0} ()\t ¢ ; n!T'(v + n) >0
Y 5.2_1 —At—y
= )\_t Vo 12v/ Ay 1y 03,
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where I, is the modified Bessel function of the first kind of argument v (Lebedev, 1972,
p.108):

B s (z/2)u+2k
z) = kZ_:OF(k+1)I‘(k+V+1)’ |arg z| <, veC. (2.16)
= LS
The density of X; is thus
1 ZL'C_at ﬁgl Y 4oy _ A R
th (m) = 'L;- ( Z ) e Ae /l‘tIﬁ_l (mvmxeat> 1{x>0}. (217)

(When Z = 0 this reduces to the Gamma(, y;) density.)

The MGF and the density above may also be obtained from the relationship between -
the solution of the SDE (1.1) and Bessel processes (see Revuz & Yor, 1999, Chapter 11).
For a constant p > 0, the process X; = pX,; satisfies

X, = p:f:+/ (aXs+ﬁp)ds+7\/13/ \ X5 dW,
0 0

Letting p = 4/2, we find that

X = /(aX +ﬂds+2/ fdws,

where & = 47 /2, B = 48/+2. Now, consider the square of a J-dimensional Bessel process,
that is, the unique strong solution of

t
Zy = Z0+5t+2/ v/ ZsdBs
0

(B standard Brownian motion), and let g(¢) = (1 —e~**)/a (see Revuz & Yor, 1999, Exer-
cise (1.13), p.448). Integrating by parts, and using the time change formula for stochastic
integrals (Revuz & Yor, 1999, p.180), we find

t
eatZg(t) = e [Zo +6g(t) + 2/ Zy(s) ng(s)]
0

t t t
= Zo+a/0 e*® g(s)ds—i—é/o e"‘sdg(s)+2/0 1/e°‘sZg(s)eas/2 dBg(s).-

t
Bt = A eas/Zng(s)

is a continuous martingale with quadratic variation equal to ¢, and is thus standard Brow-
nian motion (with respect to its own filtration). Hence, the process Z; = e"‘tZg(t) satisfies

t t
Zy = Zo+/ (aZs+5)dt+2/ \/ ZsdB;.
0 0

10 16-11-2001
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The integrated square-root process

Consequently, the processes {Zy;t > 0} and {X;;¢ > 0} have the same distribution, if
- 4z ~ 4
ZO = I = 2 5 = :8 = —f
Y v

Finally, the process {X;;t > 0} has the same distribution as {3'—6"‘ 9(¢);t = 0}. The MGF
of Z, is (Revuz & Yor, 1999, p.441)

Ee??r = (1-2p7)"%%exp[pZo/(1 - 2p7)].

It can be checked that appropriate substitutions yield (2.15). In the same fashion, the
density of Z, is

1(8
1 (= B3-) —(Zo+z) /27 v Zo?
fZT(z) — Z (Z_O) e (Zo+2)/ I%_1< - )1{z>0}-

This implies that the density of X; is (for z > 0)

—at —at %('l—’_l) A7 4 —at o= —at
2ae <xe_ > exp [_ (:yg N :Ezz )a/[2(1 _ e—'at)]:| 1 (4av:me )

Y(1-e)\ = 721 —eet)
1 (zemot 3D o= Ne—a/pe ] davrzeot
AN TP -e)

which agrees with (2.17).

It is also possible to find an expression for EX? for non-integral p. One could integrate
the density times zP term by term; an alternative is the following: since

— Y ds, q,y >0, 2.18
yq T(q) / (2.18)
we have

EX;1 = L [ gt-lEemoXeg
T T O

1 /°° -1 5 Ao ($(—5)—1)
= — s p(—s)ve™ ds
0 Jo & 009

= ——Mt_qe_)\t /1 rﬁ"q_l(l - r)q_le’\'r dr (2.19)
I'(q) 0 .

= p,_q At F( ) 1 Fy (’l_) - q,7; At), 2.20
g T()

where 1 F7 is the confluent hypergeometric function

o (P)n 2"
1Fi(r,s;2) = Z el r,s,z€C, s#0,-1,

' ]
= (s)n n!

11 16-11-2001
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Here we have used the integral representation (9.11.1), p.266 of Lebedev (1972) for the
confluent hypergeometric function. The above calculation is seen to be correct for 0 < g <
7, while EX; ? is infinite for ¢ < ¥ (this is because the integral in (2.19) tends to infinity
as ¢ 1 ©). Since EX; ? is an analytic function of ¢, and (2.20) is analytic for Re(—q) > ~%,
we get the following result.

LS

I'(@+p)
I'(9)

This formula may be reconciled with the one in Theorem 2.3 by appealing to the
identity (Lebedev, 1972, p.267)

lFl(’f',S;Z) = Clel(S—'I',S;—Z), 57'40,_]»

Theorem 2.4. EX? = pPe™ 1F1(V + p, U5 At), p > —28/4%.

If p = k, a non-negative integer, then E X} may be expressed as a series which terminates:

L HEDEIa o),

i

(G — )k — 5)(@):

EXF = im ARk 5
k i N
= ;(—1) ((;)]‘;)i(v)k u;!At ki
- §;< o :Z( )eaet(‘”k_i—e
) ;( & o é CEE T
.
> e

T
j=0 1=0

3. Moments of the integrated square-root process

In this section, two techniques are given for the calculation of the moments of the
integral of the square-root process {Y;}.

Suppose X is the solution of SDE (1.1), and define
t .
Y = / Xods,  Mj(t) = EY)XF,
0

for non-negative integers j, k; Mj is finite for all ¢ > 0, since Y; has finite moments of
all order (since the Laplace transform of Y; exists in a neighbourhood of the origin, see
Section 4). Applying Ito’s formula, we get

d(Y/ XF) = XFd(Y])+Y{ d(X})
= JY7TIXE a4+ Y (ap XE + b XE)dt + yRY X AW,

12 16-11-2001



The integrated square-root process

Since EX? < oo for all positive p, it follows that

E/Ot (vkl{gxf‘%)zds <

for all j,k € N, and so
i
E / YEYIXE R aw, = o.
0

This implies

d .
i Mik(t) = axMjn(t) + beMjp-1 () + IM;-1,k41(2)- (3.1)

These are linear ordinary differential equations with constant coefficients, and their solu- -
tions are straightforward (though tedious to obtain by hand). In order to find Mjo(t), it is
necessary to calculate M;_; 1 (t), M;_22(t), and so on. If we represent the { M} on a grid,
with j horizontal and k vertical, M} is obtained after solving the differential equations on
the diagonals Mg ;, ..., M; for ¢ < j. The following result is proved by suitably adapting
the arguments used in Section 2. .

Theorem 3.1. Suppose a # 0, and that X satisfies (1.1). Then, for j, k € N,

Jj+k
Mir(t) = > Mjem(t)e™, (3.2)
m=0 -

where Mrm (t) is a polynomial in t with degree

deg Mjkm <

. . < <
{j if 0<m<k (3.3)

j+k-m if k+1<m<j+k

Proof. We proceed by induction on j and then on k. The theorem is correct for j = 0
and all £ > 0 by Theorem 2.3. Suppose (3.2)-(3.3) are correct for j =0,...,J — 1 and all
k > 0, for some J > 1. Based on this assumption, the solution of (3.1) is

t
Mye = ™ Myi(0) + et / e~ R 1 (s)ds, (3.4)
0 .
where
Rye(t) = beMyg—_1(t) + IMj_1 k+1(t)
Jtk—1
= D BeMigo1m(®) + Mot pr1,m (8™ + TMy_t g1, 4k ()™ +.
m=0

We show that this implies that (3.2)-(3.3) hold for j = J,k = 0. Since ag = by = M5o(0) =
0, (3.4) reduces to

J t
Mo(t) = JZ/ Mj_11m(s)e*™*ds. (3.5)
m=0v0 ) ‘

13 16-11-2001
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Consider the terms corresponding to m = 1,...,J in the sum above. Recall that am =
am # 0 and that, for any constant A # 0,

t
/ eAss™ds
0

is the sum of a constant and of a polynomial of degree n times e“t. Hence

¢
/ Mjy_11,m(s)e**ds
0

is the sum of a constant and of a polynomial of the same degree as M. J—1,1,m times e%m?t,

Since ag = 0, he first term on the right hand side of (3.5) is seen to be a polynomial
of degree equal to one plus the degree of M J—1,1,0-

The above considerations imply that
J
MJo(t) = Z M_]om(t)eamt,

where the functions M., (t) are polynomials in ¢. Moreover, the induction assumption
says in particular that

J-1 if 0<m<1

deg My_1,1,m(t) < {J—m if 2<m<J

and, consequently, what we have just seen also means that

J if m=0

deg M jom < {J._m if 1<m<J.

Keeping J fixed, make another induction assumption: (3.2)-(3.3) hold for j=J and
k=0,...,K—1, for some K > 1. The proof will be finished once we show that (3 2)-(3.3)
hold for i=J and k = K as well. By the induction assumptions and (3.4),

J+K-1
MJK(t) = { Z /[bkMJK lm(s)+JMJ 1K+1m(8)]€(am aK)st
¢ (3.6)
* / IMjy 1,k 11,71K(s)elsI+K—eK)s dS} .
0

By the same reasoning as before, we see that My is of the form

J+K
t
Mk (t) Z Mjykm(t)e**,
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The integrated square-root process

where M jxm(t) is a polynomial. In (3.6), the terms of the sum inside the curly brackets
with m # K reduce to

constant + polynomial x e{¢m—ax)t

- The degree of the polynomial is the same as that of

biMjk—1,m(s) + IMj_1 k+1,m(s), -
that is, no larger than
max[min(J,J + K —1 —m),min(J —1,J+ K —m)] = min(J,J+ K —m). (3.7)
The same applies to the term following the sum, which corresponds to m = J 4+ K. For

the term m = K inside the curly brackets, the integral reduces to a polynomial of degree
no larger than

1+ max[deg(MJ’K_l,K),deg(MJ_l’K+1,K) = l4+max(J—1,J — 1) = J (3.8)

All these integrals are then multiplied by e®,*  so that (3.7) becomes the degree of M ;i
for m # K, and (3.8) becomes the degree of Mk k. This ends the proof. O

A general simplified formula for the polynomials Mk, has not been found, but they
can be calculated recursively, as the next theorem shows.

Theorem 3.2. If we let

AG+k—m)
Mjkm(t) = Z Mjkmntn,
n=0
Rjkmn - bij,k—l,m,n +ij—1,k+1,m,n;
then
IN(G+k—m)
(n+ 1)
Mjkmn = = Y [a(k_m)ii_nn_i_lekmi, k#m (3.9)
i=n ’
1 .
Mikkn = ~Rjkin-1, n=1...,j (3.10)
j+k
Mjkwo = — Z Mjkmo, 21 (3.11)
=0
m#k .
Mokmo = Okm YV (k,m) (see Theorem 2.8) (3.12)
Mokmn = 0, n>1. (3.13)
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Proof. By Theorem 3.1, the derivative on the left hand side of Eq.(3.1) equals

d j+k J Jj+k J
T 22 2 Mikmat™ = 3 €Y [amMikmn + (0 + DM b g™
m=0 n=0 '

m=0 n=0

Here, in order to simplify the notation, we have added some M;km,, which are necessarily
0, since n > min(j, j + £ — m). The right hand side of (3.1) may be written as

Jj+k J
> e Y [akMykmn + beMjk-1,mm + IM5 1 kg 1,mnlt"
m=0 n=0
Hence,
1
Mj,k,m,n-l—l = n+1 [(ak - am)Mjkmn + Rjk:mn] . (314)

If k = m, then this is (3.10). If k # m, it can be verified that (3.9) is the solution of (3.14) |
that satisfies the condition '

M;xmi4inG+k-m) = 0

which must hold by Theorem 3.1). Eq.(3.11) results from M;;(0) = 0 for any j > 1, while
j
(3.12)-(3.13) follow from Theorem 2.3. O

Eqgs.(3.9)-(3.12) are easy to program, and give the explicit formulas for any moment
of Y; much faster than solving the differential equations (3.1). The recursion must pro-
ceed through the values (j, k) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0), and so on, up to the
highest required moment EY,” = Mjq(t). Observe that those formulas only need to be
generated symbolically once. The first three moments of Y; are:

_ . _
EYt=—£—£——ﬁ+eta(£+%)
(7 «

22 oz 2 .2 2 973 932 2 2 52

Evz = & 4 B _ I 5By +t( 8 | 20 _ﬂ7)+tﬂ

T o2 ol J_A a3 204 o? + % ad o?
+eta[_ 2z° 43  26° L 287 +t(_ 220 26> 23y° 2ﬁ72>]
a? 1% ot ot o? al a? %
2 2 T 2 2
Ey3 — 3 33’8 3z6°  B% | 33*% | 21364 | 1587 33yt 118
t T o8 at ab ob ot 2a5 2a8 o’ ab
3228 6zB2 3B6%  6zZ6y% 218242 3844
+t(— iy Y S 2 57 - '5y )
a o o o o o
37 2 3 3 3 2.2 t3 3
(22 i) "oy
to [3553 N 9z23 N 9z32 N 36° 3z 330y 214%4° _3zy* | 1504*
te % ot a’ ab at 2a° 2a8 2a° 2a6
62268 12z6%2 683 673242 9xBy%  36%y% 3zt 9844\
+t( ol + ot +a5 + ol + ot o5 ot T ab
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The integrated square-root process

— n2 3 = 2 2.2 ol 3 4
+t2<3x5 L 38° 62y L6877 33t By )]

o3 ot o3 ot ol ot
sl 3T 9Z°8 9382 38° 322y 336y | 96%4° | 3zy' | 3BY!
te [_ a3 ot o5 b ot + 2a° 2ab + o’ ab
+t( B 3z°6 625° 36° 6%2+2 ~ 152672 3 153242 3 627 3574)}
ol ot ad ad ot 2ab ot ad
n esm(_m‘_z + 3:iiﬁ + 35:?2 4 ﬁ_z + 3:%2;y2 N 9:1‘:,8;)/2 n 3,3222 + 3:’vf): n ,8’7:)‘
o « o a « 2c 2a 2cx 2«

4. Laplace transform, inverse moments and density of Y;

In this section and the next one, the symbol O (“big oh”) has the following meaning:

we write

g(s) = O(h(s)) as s—

if |g(s)/h(s)| remains bounded as s — oco. In words, g(s) is big oh of h(s) as s tends to
infinity if |g(s)| is no larger than some constant times |h(s)| when s is large. We write

g(s) = o(h(s)) as s—o0
(“g(s) is little oh of h(s) as s — 0”) if

. g(s) _
Jm e =

Another symbol used below is “~”, meaning “asymptotically equal to”: we write g(s) ~
Y

h(s) if
lim —’@ = 1l
Finally, “” is now the imaginary unit of the complex numbers (that is, 2 =-1).

Since the Laplace transform of the integral of the squared Bessel process may be
derived explicitly (see Revuz & Yor, 1999, p.445), it is not surprising that the Laplace
transform of the square-root process also has an explicit expression. A quick way to find
E exp(—sY;) is to suitably modify the CIR formula for the price of a zero-coupon bond
(Cox et al., 1985). Suppose the short rate follows a process of type (1.1); the bond price
is known to be the expectation of the exponential of minus the integral of the short rate.
Multiplying the spot rate by a positive number yields another process which also satisfies
(1.1), but with different parameters. Rewriting the bond price formula for this new process

immediately yields the Laplace transform of Y;. The details follow.
Suppose X is the solution of (1.1), let s > 0, and define

Xt = SXt, X() = T = S$I.

17
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The integrated square-root process

t t
%, = 5+/ (aXu+ﬁ)du+/ 3y K dWW,
0 0

where ,5 = s amd ¥ = «y4/s. The formula for the price of a zero-coupon bond maturing
in ¢ years is (Cox et al., 1985)

Then

. ~
Ee Yt = Ee_fo Xudu

2 /aT T DT/ ]
(Va2 + 232 — a)(eV*+27*t _ 1) +2/a? + 272
2( Va?+232¢ _ 1) :l

" (V@ - )/ 1) 2 a1 0

28

N
1=

<2
N

X exp |—

- e /2 " 2sinh(Pt/2)
= [coSh(Pt/2) & sinh Pt/Z)} [ P cosh(Pt/2) — & smh(Pt/Q)] , (4.1)

where P = P(5) = \/a? + 272s.

The Laplace transform of Y; is finite in a neighborhood of the origin. This is seen by
noting that

cosh(Pt/2), %sinh(Pt/Z)
are both analytic functions of P, and that their difference does not vanish at P(0) = |o/,
for any values of the parameters «, 3, considered, and for any ¢ > 0. Consequently, (1)
all the moments of Y; are finite, and (2) they are given by the familiar formula
dk

EYF = (~1)" S pEem
The Laplace transform gives a third method of calculating the moments of Y;. The author
has compared the computation times for the moments of Y; up to order 6 using Mathe-
matica; the recursive method of Section 3 does a lot better than the others, especially for
higher moments. As an example, on what is now a rather slow machine (Macintosh 3400
180 Mhz), Mathematica took 377 seconds to find the general symbolic formula for the
6th moment by differentiating the Laplace transform, and a bit more to find the general
formulas for moments of order 1 to 6 by solving differential equations (3.1). The recursive
method produced all 6 moments in a little more than 8 seconds. A program recursively
calculating just the numerical values of the moments (rather than the general symbolic
formulas) would of course execute much faster, especially in C.

, keN.

s=0

The next theorem concerns the moments and MGF of 1/Y;.

Theorem 4.1. (a) EY] is finite for allr € R, and

EY, ? = -——/ s971E exp(—sY;)ds, g > 0.
0
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The integrated square-root process
p © -1
(b) E exp <?> = 1+ \/ﬁ/ s~ 2I1(2¢/ps)Ee Yt ds forall p>0.
t 0
1
This is finite if, and only if, 0 <p < poe] (Bt + :‘1':)2.

(c)Eexp(p/()t—)%;ds> = oo for all p> (ﬁ+ )2.

Proof. By (2.14),
2
P = /25 1+§9‘7—2—8 = W2s[1+0(s7)].

From this, we can find the asymptotic behaviour of the first factor in (4.1):

2
—at/2 ] ;g

N
o

%

cosh(Pt/2) — § sinh(Pt/2) - 2%6—0[%/72 [(1 B 1%) ™% + (1 + %) e—Pt/2] h

n
1=

N}

- st (12 (142) 7]

~ Q%ge—aﬁt/'ﬁ—ﬂt\/ﬁm

as s tends to infinity. Now turn to the second factor:

sz 2sinh(Pt/2) _ 2s% 1
P cosh(Pt/2) — % sinh(Pt/2) Vo2 + 242 coth(Pt/2) — ﬁ

N

3

V2s% a? \ "~ 1
- v 1_‘_2')/25 14e-Pt o a? \~3
1-e-Pt — /25 (1 + 2'723)
- o — L
14+0(e=Pt) — 5= + 0 (57
V2%
= - 1+0(s7? {1 ]
22 o () [t 040 (57

o -

= V2 —a—f+(’)(s_%).
g v

From these expressions we get

Ee sYt ~ 2§gexp{ —(Bt + )( +£—;>} as s — oo. (4.2)

y
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The integrated square-root process

By this asymptotic identity and (2.18), EY, 7 is finite if, and only if, the integral
28 V2
277 7 0D )/ exp{—f(ﬂtm)} ds,
I'(q

is finite, which is true for all ¢ > 0. This proves part (a) of the theorem.
Now turn to part (b). For p > 0,

Eexp(ﬁ) = i::p_'
_ / Zr( n+1)Eexp(—sYt)ds

B 2\/_/2)1+2k
_1+/ \/72I‘k+1 k+2)Eexp(—sYt)ds

= 1+ /0 \/511(2\/1%) E exp(—sY:)ds

(see the definition of the modified Bessel function I, in (2. 16))

It remains to be seen for what p > 0 the above mtegral is finite. The 1n1:egrand is
continuous in s, and bounded near the origin. It is known that

el‘

I(z) ~ ,
(@) Vorz
(Lebedev, 1972, p.123). Combining this with (4.2), we find that

\/211(2\/15) E pr(—-sYt) ~ Cs™3* exp {\/% [\/51; - %(ﬁt + j)] }

T — 00 : (4.3)

as s — oo (here C > 0 depends on p but not on s). The function on the right is integrable
over [1,00) if, and only if, '

1 =\2
p < W(,Bt‘l-x) .

To prove (c), note that by the Cauchy-Schwarz inequality

2

t t t
dr -
dT] < / —/ X, dr,
[/0 o X+ Jo
t 2
0 X;
/X,.dT
0

and thus

20 16-11-2001
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The result follows from (b). . O

By contrast, it is easy to see that the density of X; behaves like z°~! as z | 0, with ‘
o = 2B8/7? (see (2.17) and Theorem 2.4), and thus EX? < oo for p > —¥ only, whatever
the initial condition Z > 0, and, consequently, E exp(q/X;) = oo for any ¢ > 0. Thus, the
density of Y; tends to 0 much quicker than that of X, as the argument tends to 0. This is a
little unexpected, especially since Yy = 0 with probability one, irrespective of Xg = Z. An
intuitive explanation is that Y; is close to 0 if X is close to 0 for “many” s between 0 and
t, which is less likely than X being close to 0 for one particular s; integration is therefore
a “smoothing” operation in this case. This relates to Theorem 4.2 below, which says that
the density of Y; is “infinitely flat” at the origin (that is, all its derivatives vanish).

Part (c) of the theorem is related to absence of arbitrage and changes of measures in
the financial model

dS = pSdt+VXSdv,

where X satisfies (1.1) and (V, W) is two-dimensional Brownian motion (possibly corre-
lated). If one attempts the usual Girsanov change of measure to make {e~"*S;} a martin-
gale, then one has the problem of checking that the stochastic exponential of minus the
integral of the market price of risk

w—r

VX

has expectation equal to one (Which would make it a martingale, see Karatzas & Shreve
(1998), p.12). A sufficient condition for this to hold is Novikov’s condition

1 [ (u=r)
Eexp <§A —XS——dS < 0.

Theorem 4.1 shows that Novikov’s condition fails if

(e-rf 2 5 (p+2)

(but does not say that the condition holds otherwise).
Observe that, by Theorem 2.4, E(1/X,) = oo for all s > 0 if 28/4% < 1, which implies

t
EAzdS:w,

and thus Ee” fo ds/Xs — oo for all p > 0. More generally, since EX; ¢ = oo for all ¢ > 2ﬂ/72,
it is plausible that not all moments of f(f Xisds are finite (though the author has not been

pfot ds/Xs

able to prove this), which would then imply Ee = oo for all p > 0, for any 3,7 |

and t > 0.
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Theorem 4.2. Suppose t > 0 and let g;(-) be the density of Y; with respect to Lebesgue
measure on R. Then gi(x) ezists and is a continuous, uniformly bounded function of
z € R. The same applies to (d"/dx™)g:(x), for any n > 1.

Proof. Apply the following well-known property of characteristic functions (see Theorem -
3 and Lemma 2 in Feller (1971), pp.509 and 512): Suppose a r.v. U satisfies

(X) .
/ |Ee®U¢Md¢ < oo

for some n > 1; then the distribution of U has a density which is everywhere continuous
and uniformly bounded, and the nth derivative of this density is also everywhere continuous
and uniformly bounded.

The characteristic function of Y; is

$(Q) = Ee = Ee~

s=—1(
2p
_ e—at/2 )
cosh(Zt/2) — 4 sinh(Zt/2)

iz 2sinh(Zt/2) |
=P [7 cosh(Zt/2) — & sinh(Zt/2)] ,

where Z = Z(¢) = v/0o? — 2v2(i. First, consider ¥({) as ( — oo. We have (see (2.14))

011048 = -0 )

2/ a? \F —%)k.
= ~(1—34
"1 -0VEY (57
- 0
as ¢ — oo. This implies

eZt/2 67(1—1')\/&/2

cosh(Zt/2) — %sinh(Zt/2) ~ %ev(l—i)\/&/g

Moreover,
iz 2sinh(Zt/2) . 2(Z 1
Z cosh(Zt/2) — £sinh(Zt/2) =~ Z coth(Zt/2) — &
_ (C149)3C (1_ a? )‘% 1
N ¥ 2v2(1 14e—Zt a? )—%

I—e—2¢ y (1 T O242(h
v(1-4)4/¢ viG
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_ (F1+9eve -1 —
_ (F1+92vC -1 oo
_ - (1+0(™h) <1+ ~1—)VC +o )>

_ (-1 +,:)j\/z B %_253 +O(C—%)

Putting all this together, we find

(Q)| ~ CreVe

as { — 0o, where C1,C2 > 0 do not depend on (. Hence

| woerac < o
for any n > 0. The integral from —oo to 0 is handled similarly: as { — —o0,

Z(() —v(1+4)v—¢ — 0,
oZt2 e'y(l+i)\/——_Ct/2

cosh(Zt/2) — %sinh(Zt/z) ~ %e"/(l+i)\/*_€t/2

iCT 2sinh(Zt/2) . (1+dzv/-( oz -l
7 osh(Zt)2) — Ssmb(Z2) 4 om0
(O] ~ Coe™0V=<. O

5. Relationships between the Laplace transforms of U and 1/U

The formula in Theorem 4.1 (b) applies for any random variable U > 0. The same
proof leads to the identity

EeP/U — 1+/ \/gI1(2\/ﬁ)Eexp(—sU)ds, p=>0 (5.1)
0

(both sides are simultaneously finite or infinite, by Fubini’s Theorem). Formula (5.1)
strangely resembles a known relationship for Laplace transforms (Oberhettinger & Badii,
1973, p.4): ’

S

/000 e PR TIf(tT)dE = /0°° (5)% 5(2y/5%) [/0°° e—stf(t)dt] ds.  u> 1. (5.2)'
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Here, J, is the ordinary Bessel function of order v (Lebedev, 1972, p.102),

1)k(z/2)u+2k
Ju(2) ZI‘(k+1F(k+u+1) |arg z| < 7, veC.

Let us rephrase (5.2) in probabilistic terms, by considering that f(-) is the density of a
random variable U > 0:

8

oo 5 |
EyTrie = / (5) J,(2vps)Ee™Vds,  v> -1 (5.3)
0

(Oberhettinger & Badii do not specifiy for which p this holds, but this is clarified in the
theorem below.) Observe that ¥ = —1 is not allowed here, so that (5.3) does not apply
to Ee~?/U. We now derive some more general formulas, which have (5.1) and (5.3) as
particular cases.

Theorem 5.1. Supposep>0,r € R and U > 0 a.s.

(a) If v > —1, then

14

EUT—vlep/U :/ <f)21,,(2\/p_s)EUTe_3Uds.
0 b '

Both sides may be infinite.
(b) If v < —1, then

r—v-1_p/U _ Eﬁ r—v—-n-—1
EUTle/V = Y SEU
0<n<-v—-1
+/°o s %I @vps) - > PP eprems gs.e
0 D VP nil'(n+v+1) ev ‘_8’

0<n<—-v—1

Both sides may be infinite. If, moreover, —v — 1 € N, then

r—v— pn r—v—m-— *® S % T —8
EUTvle/V = Y —EU 1+/0 (5) I_,(2/ps)EUTe %V ds.

0<n<~v—-1
(c) Ifv>—1, EU" < 00, EU™™¥"1 < 00, then

o 1\ %
EUr—vle /U = / (;3) J,(2/Ps)EUTe™*Y ds.
0

Both sides are finite, and the integral on the right may be improper (that is, it may not
converge absolutely) if v < —1/2.
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(d) Ifv < -1, EU™ < o0, EU™ "1 < 00, then

_m\n
EUr—u—le—p/U — Z ( p) EUr——V—-n—l
n!
0<n<—v-—-1
<[ (s)® ()5
+/ [ (—) Ju(24/ps) — }EU’"e_SU ds.
1\ Vs Osn;u_l nT(n+v+1)

Both sides are finite, and the integral on the right may be improper. If, moreover, —v—1 €
N, then

EUT—U—le—p/U — Z (n') EyT—vT- 1+( l)u/o <£) .]_y(z\/p_S)EUTB_SUdS.

0<n<—-v-1

Proof. (a) Because all the terms in the following series are positive, the equalities hold
whether the resulting expressions are finite or infinite:

EUT—V—lep/U — Z_-p_EUT‘—II—n—l

Zf)) 1,(2/p5) EUTe™*V ds.

(b) The first formula results from

n n+u

r—v—1_p/U _ E T—V—n— 1 r_—sU
EU™ e > LEU / > n'F(V_HH_l)EU e~V ds.

0<n<—-v-1 n>-v—1

The second one then follows from (Lebedev, 1972, p.110)

1
I'(—m)

= 0, I_n(2) = In(z), meN.

(c) Let U, = max(U, €) for € > 0 (whence Ug = U). For € > 0, 1/U. is bounded below by
0, and above by 1/¢, whence

EUTU " teP/Ve < oo,
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Therefore the series below converge absolutely, and so it is permitted to reverse the order
of summation, integration and expectation at will:

0o [ X ¢ _\n n+v
EUTU; e PV = / Z( p') > EU e V< ds
o \\z¢ nf Tlv+n+1)

_ /Ooo (5> : J,(2/B5)EUT e~V ds. &5.4) |

Now —v -1 <0, so
0<UT UV e PV < CUT

where C = sup,.,z“T1e™P* < 0o, and UT is integrable by assumption. Thus
EUT Uve—l/—le—p/Ue N EUr—u—le—p/U
as € — 0+. Next, turn to the right hand side of (5.4).

Case 1: v > —%

The asymptotic expression (Lebedev, 1972, p.122)

J(z) = (%) ’ cos(z— (2v+1)F) + O(z=3/?) as T — 0o

implies that there is C' > 0 such that

1

|J(z)] <Cz772, z > 0.

Therefore

v

2
<§> J,(2/p5)EU e~

Now v > —% implies ¥ + 3 > 0, and so

3

/ s5"1EUTe™Uds = EUT" 71D (¥ 4 3).
0

This is finite, because r —v -1 <r— % — % < r, and it is assumed that both EU" and
EUT¥~! are finite. Finally, the right hand side of (5.4) converges to

® /g 5
/ <—) J,(24/ps)EUTe %Y ds
0 p
as € — 0+, by dominated convergence.
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Case 2: v € (—1,—1) The above arguments break down if v < —1, because then

L_o2< 1
' 2 4 T 14 .

The problem can be solved either by assuming that EU r—§-% < 0o or else as follows.

Write the integral on the right hand side of (5.4) as fo + f , - It is immediately seen

/01 <§> J,(2y/p5)EU"e —sUeds—>/ () L (2/p5)EUT eV ds

as € — 0+, by dominated convergence. For the second integral, consider separately each
term on the right of

that

Ju(24/ps) = Cas™ % cos (2v/P5 — (2v + 1)Z) + R(s) as s — 0o

where C > 0 and R(s) = O(s~ ). Since ¥ — 2 < —1, the integral

o /g ¥
/ (—) R(s)EUTe %Y ds
1 p

converges absolutely for € > 0, and so convergence as ¢ — 0+ to

o /g ¥
/ (-) R(s)EUTe %V ds
1 y

follows at once. The only remaining problem is to show that

/ s5~1co (2\/_—(21/+1) ) E EUTe Ve ds
0

converges to the same expression with € = 0, as € — 0+. Perform the change of variable
u = 2,/P8, s = u?/(4p), to obtain

=

0o .2\ 5~
2/ <u_) ucos(u— (2v+ 1)) EUTe~ % Ue/(49) gy
2./ 4p

o0
= Cs / urts cos(u — (2v + 1)%) EUre—u2Ue/(4p) du
2

VP
—_ v+1 _ r —u?Uc/(4p)
03{ zsin(u — (2v +1)§)EU e u 2\/_}
—Cs / sin(u — (2v + 1)3)d [u"+% EUTe v Ue/ <4p>] . (5.5)
2vp
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Now u**% tends to 0 as u tends to 0o, so the expression inside the curly brackets reduces

to

1, n —w2U.
—u¥*2 sin(u — (20 + 1) T)EUTe v Ue/(4P) u=2,/p’

which poses no problem. The integral in (5.5) converges absolutely, since

lim u”“'%EU’"e_“zUE/(‘l”) = 0.
U—0

To prove that it converges to
o0 1 2
/ sin(u — 2v+1)%)d [u”+7 EU e~ U/(4p)] ’
2vp

apply the Helly-Bray Theorem (Logve, 1977, p.184; Kolmogorov & Fomine, 1975, p.370).
The functions
F.(u) = urt2 EUTe"“te/(‘lp), e>0

‘are of bounded variation on R, and {F; e > 0} converge completely (Loeve, 1977, p.180)
to Fy as € — 0+. Since g(u) = sin(u — (2v + 1)) is bounded, we conclude that

oo o
/ gdF, — / gdFy as € — 0+.
2vp 2vp

(d) Proceed as in (b) and (c) to get
EUTU; ¥t er/ Ve
— Z (_p) EUTUe—u—n—l

n!
0<n<—v—1

= |(s5)* (cp)s™+ Cw
+/ (—-) J,(24/ps) — EU e *Yeds
0 D (2v/ps) ogng—:u—l nil'(v+n+1)

for any € > 0. The first sum poses no problem. Split the integral into fol + [ 1°°. The former
tends to the right limit by dominated convergence. To prove convergence of [, 1°°, consider
each term of the integrand separately. The first one converges to :

/ (;) J,(2y/p5)EU" e~V ds
1

by the arguments given in Case 2 of (c). Each of the other terms gives rise to an absolutely
convergent integral, since n + v < —1, and dominated convergence does the rest.

Finally, in the special case —v — 1 € N, the sum inside the integral vanishes (as in’
(b)), and one applies (Lebedev, 1972, p.103) :

J_n(z) = (=D)"a(z), n=1,2,... o
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Theorem 4.1(b) results from letting v = —1 in Theorem 5.1(b). This theorem has
the following consequences, which relate the existence of EU¥~1eP/V | which is itself
determined by the behaviour of the distribution of U near the origin, to the behaviour of
Ee~ %V near infinity.

Corollary 5.2. Suppose p >0, v €R and U > 0 a.s.
(o) If EUTY~1eP/U < 00, then

liminf s5 3 e2VPSEe~U = 0.
§—00
(b) If v > —1 and if, for some ¢ > 0, Ee™V = (’)(s”%“%"ee'2\/p_s) as s — 0o,

then EU¥"1eP/U < oo. The same holds for v < —1, with the additional assumption
EU-V"! < 0.

Proof. (a) First suppose v > —1, and let = 0 in Theorem 5.1(a). If the integral converges,
then necessarily the integrand must have a limit inferior equal to 0. By (4.3),

liminf s21,(2/ps)Ee Y = Climinf s5 -7 2VPSEe sV,
§—00 §—00

where C' > 0 is a constant. For v < —1, let 7 = 0 in Theorem 5.1(b). If the left hand side of
the first formula is finite, then the integral on the other side must be finite. The situation
is seen to be the same as when v > —1, once it is observed that

oo
/ s"YEeUds < oo
1

for any n < v + 1.

(b) Suppose v > —1. The assumptions imply that there is a constant C such that

EU-V1eP/VU = U / ](—>%IV(2\/1§)EUTe—sUds

< / <£> v(2¢/ps)EU"e SUds-{-C/ s2I (2/Ps) s~ 45 <e™2VP3 gg
0 .
s

_ /01 (5) 1,(2/p3) EUTe sUds+c/ e~2VPST, (2\/_)3 1-e g

The result follows from (4.3). If v < —1 and, moreover, EU *~! < oo, then

EU™" " lcoo VO0<n<—v—1,

oo
/ s"TYEe U ds < o Vo<n<-v-1,
1
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and o
/ 57 I,(2y/ps)Ee ™V ds < oo.
1
This implies EU~*~1eP/V < 00, by Theorem 5.1(b). O

Example. Macdonald’s function is defined in terms of the modified Bessel function as
follows (Lebedev, 1972):

ml_,(2) - L(2)
2 sin(vw)
K,(z) = I}i_g%K,,(z), n € Z.

K, (z) = , largz|<w, v¢Z,

It also has the integral expression

1 v [
K, (2) = -2-(2) /O emt=(z/4t)—v=1 gy |arg(z)|<%.

Clearly K_,(z) = K,(z). The generalized inverse Gaussian distribution with parameters
a>0,8> 0,y € R has density

[0

flz) = (5) : mxv—l exp {—% (a:c + g) } 10,00 ().

The notation for this distribution is GIG(a, £,7). It is immediate that U ~ GIG(a, £,7)
implies (1/U) ~ GIG(8, a, —7). Moreover, a simple calculation shows that

cprev _ 0T Ky /@I ) o o
© T a2 K, (vVab) “)> 3

Theorem 5.1(c) then says that

* $ : a3 pE Kyir(v/(a + 25)8) s
[ () e Gi2F  K,(aB)
B3 E" Kitv—r—y(V/ (B + 2p)a)

B TEE KD

or, equivalently,

[7(2) navmm Sl

(a+2s)%"

IB_ y+r 14+v—r—vy
2

= 51 ap) =T Krrvr o (VB )0). - (56)
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By performing the change of variable z = 2,/ps/b, and setting

2a°p
asz-’ ﬂz—bT’ p=7+r,

it can be seen that (5.6) is equivalent to the formula (Lebedev, 1972, p. 134)

oo 2 2 v 2 2
/ Kulo/a® £ 4%) 7y it gy = W (__fb
0

(22 + y?)r/2 a# y

p—v—1 '
) K (V@ + B).(5.7)

An extension of this result is obtained by applying part (d) of Theorem 5.1 to the same
distribution GIG(a, 3,~). With the same change of variable and substitutions, we get

Rl EAD ey - Y SR g
0

(22 + y2)»/2 o<ne 1 nl'(n+v+1) |
p—rv—1 -
b (VI J— b L g\
T ( y Ky—v-1(yva® +5%) = g1 > i\ T3, ) Ku-v-n-1(ay).
0<n<-v-1 i

The Appendix shows another way of deriving the same formula.

6. Conclusion

This paper has shown how the moments of the integral-of the square-root process may
be computed. Of the three methods shown, the the recursive method (Theorem 3.2) is the
fastest to execute, and its programming poses no problem. The paper also showed some
regularly properties of the density of the integral.

Further work will consider expressing the density of Y; as an infinite Laguerre series, as
was done for the density of the integral of geometric Brownian motion in Dufresne (2001).
The coefficients of the Laguerre polynomials are combinations of moments of the variable,
and this is where the recursive equations of Section 3 will be essential, as they generate the
moments much faster than differentiating the Laplace transform. A finite number of terms
of the series would then serve as an approximation for the density. The same approach
may be used for options on integrated squared volatility, or for options on average interest
rates.
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APPENDIX

We give another proof of formula (5.8). First, we derive a slight extension of Weber’s
integral (Lebedev, 1972, p.132)

[o, ¢} bV 2
/ e L pm)e e = e/, ab>0, Re(v) > -1
0

Leave a,b > 0, but now suppose v < —1 (the case of complex v with Re(v) < —1 remains
to be explored). Consider

* —a2z? (_1)n(b$/2)u+2n v+1
/0 ¢ [J,,(b:c) B Z AT +nt+l) |° de
0<nl—v—1

— Z (__|1)n(b/2)u+2n *® e—a2z2x2u+2n+1 dz
il nllllv+n+1) Jy

_ (_1)n(b/2)y+2n1 —2u—2n—2/oo —u l/+n:
N Z nI'(v+n+1) 2¢ 0 e U du

n>—-v-—1
— Z (_l)n(b/z)u+2n —1*0,_2”—2’"'—2
!
n>-—-v—1 n: 2
L R Y e "
(et ocng—y—1 ™\ 40

From this formula, we obtain

TROVEL S ey - 3 SR D g,

(22 + y2)u/2 o= nT(n+v+1)

/Oo dx |:Ju(b$) - Z (_1)n(b.’12/2)"+2n] vl o /‘°° dt e_t_a2(z2+y2)/4t
0 0

1 +1 +1
o0<ne -1 nil'(n+v+1) 2u e

at /°° dt o—t—a’y? /4t /oo dor e—0 %" /4t [J,,(ba:) . Z (—1)ntb$/2)y+2n]xu+1
0 0

+1 +1 !
21 tH O0<nemy1 n'(n+v+1)

al"‘ oo dt e—t—a2y2/4t by e—bzt/az _ Z _1_ _— b_2_E .
il [ et (a2/2t)v+1 n! a?

0<n<~-v—-1

2u—pau—2u—2bu * dt e—-—t—a2y2/4t—b2t/a2 _ Z i _ _112_ "o dt e——t—a2y2/4t
0 th—v n! a2 0 tp—v—n )

0<n<—v—1

v (Ve + B\ b 1 b2\ ™ '
——'<“——————> Kyvr(yva? +0%) = —y > 2} Kuovn-1(ay).

n p—v-1 o\ 9
a y y 0<n<—v—1 a
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