Anatomy and Neuroscience - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    A study of depression in Huntington's disease
    Pang, Terence Yeow-Chwen ( 2008)
    Huntington’s disease (HD) is an inherited neurodegenerative disorder that is caused by a mutation of a single gene, huntingtin. The disease is more commonly known for the characteristic choreiform movements that develop in the later, more advanced stages of the disease. However, cognitive deficits and psychiatric symptoms are frequently observed prior to the onset of the motor symptoms. Little is known about the pathological bases for the neuropsychiatric features which include increased irritability and heightened aggression. Depression affects 30-50% of HD patients and is the most commonly diagnosed psychiatric symptom. This is proportionally higher than in the general population and it is possible that inherent pathological changes in the HD brain render a HD-gene positive individual more susceptible to depression. Using a variety of behavioural tests, the R6/1 transgenic mouse model of HD was found to display altered responses reflective of depression-related behaviour, indicating that the HD mutation confers a genetic susceptibility for developing depression. The behavioural alterations were more robust in female HD mice reflecting a possible sex-dependent manifestation of the depression symptoms in the human HD population that has yet to be investigated. The onset and rate of progression of HD is strongly influenced by the environment and the development of depression is similarly impacted upon by environmental factors (e.g. stress, negative life events). The experimental paradigms of environmental enrichment and wheel-running slow the development of motor and cognitive symptoms in R6/1 HD mice and the present study reports that both paradigms also correct the depression-related behavioural phenotype. This study also found that HD mice had muted responses to two common classes of antidepressant drugs, highlighting the need for a detailed examination of the efficacy of drug treatments in HD patients. Depression susceptibility is linked to genetic variance in the human population and studies of gene candidates in mutant mice report the detection of behavioural phenotypes similar to the present study. The depression-related behavioural phenotype of the R6/1 HD model was found to be associated with early down-regulations in mRNA levels of the ii serotonin (5-HT) 1A and 5-HT 1B receptors in the cortex and the hippocampus. Additionally, female HD mice had reduced cortical 5-HT transporter gene expression. Collectively, these findings indicate that a disruption of serotonergic signaling in the HD brain contributes to the development of depression in HD. Brain-derived neurotrophic factor (BDNF) gene expression is down-regulated in the HD brain, however the expression pattern of exon-specific splice variants was previously unknown. This study reports that BDNF mRNA levels are reduced in the hippocampus by an early age but also reports that individual exon-specific transcripts are differentially down-regulated in males and females, although the functional relevance of this remains to be investigated. Overall, this study has demonstrated that the R6/1 transgenic mouse model of HD is ideal for further investigating the occurrence of depression in pre-motor symptomatic HD. It has also identified alterations in gene expression of key components of neuronal signaling which might be linked to the molecular basis of depression.