Anatomy and Neuroscience - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Using induced pluripotent stem cells to model primary open-angle glaucoma
    Daniszewski, Maciej Stanislaw ( 2019)
    Glaucoma is a group of optic neuropathies that may be characterized by gradual degeneration of retinal ganglion cells (RGCs) and their axons leading to irreversible vision loss [1, 2]. Glaucoma is the second leading cause of blindness worldwide [3-5] and it is estimated that the number of people affected by the disease will reach 80 million by 2020, while more than 11 millions will be bilaterally blind [6]. In this project I focus on primary open-angle glaucoma (POAG), as it accounts for the majority of glaucoma cases worldwide. So far, multiple risk factors for glaucoma have been identified; however, the exact mechanism causing RGC loss in patients remains elusive. Furthermore, examination of RGCs affected in POAG is difficult pre-mortem due to their anatomical location. To overcome this problem, somatic cells can be reprogrammed into patient-specific induced pluripotent stem cells (iPSCs), which can be then differentiated into cell type of interest, i.e. RGCs. This PhD project consisted of several steps. First, I assessed the feasibility of transferring the iPSC culture into the automated platform. Using automation was essential to generate large number of samples required for analysis. The transition to automation was successful, as evidenced by maintenance of iPSC morphology, expression of pluripotency markers and ability to differentiate into derivatives of three germ layers. I also demonstrated that incorporating automation into human (h) iPSC culture allows standardization of maintenance and passaging procedures reducing inter-sample variability and human error. I subsequently used the platform to generate over 300 hiPSC lines for POAG modelling. In parallel, I optimized RGC differentiation protocol to obtain sufficient number of cells for their examination with single cell RNA sequencing (scRNA-seq). Next, iPSC-derived RGCs were subjected to scRNA-seq to gain in-depth information about transcriptomic differences between healthy controls and POAG patients. Understanding mechanisms underlying RGC function, maintenance of homeostasis and those conferring susceptibility to POAG is crucial to discover new therapeutic targets and commence the process of drug discovery.