School of Biomedical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Characterization of the role of the antioxidant proteins metallothioneins 1 and 2 in an animal model of Alzheimer's disease
    Manso, Y ; Carrasco, J ; Comes, G ; Adlard, PA ; Bush, AI ; Hidalgo, J (SPRINGER BASEL AG, 2012-11)
    Alzheimer's disease (AD) is by far the most commonly diagnosed dementia, and despite multiple efforts, there are still no effective drugs available for its treatment. One strategy that deserves to be pursued is to alter the expression and/or physiological action of endogenous proteins instead of administering exogenous factors. In this study, we intend to characterize the roles of the antioxidant, anti-inflammatory, and heavy-metal binding proteins, metallothionein-1 + 2 (MT1 + 2), in a mouse model of Alzheimer's disease, Tg2576 mice. Contrary to expectations, MT1 + 2-deficiency rescued partially the human amyloid precursor protein-induced changes in mortality and body weight in a gender-dependent manner. On the other hand, amyloid plaque burden was decreased in the cortex and hippocampus in both sexes, while the amyloid cascade, neuroinflammation, and behavior were affected in the absence of MT1 + 2 in a complex manner. These results highlight that the control of the endogenous production and/or action of MT1 + 2 could represent a powerful therapeutic target in AD.
  • Item
    Thumbnail Image
    Rapid Decline in Episodic Memory in Healthy Older Adults with High Amyloid-β
    Lim, YY ; Pietrzak, RH ; Ellis, KA ; Jaeger, J ; Harrington, K ; Ashwood, T ; Szoeke, C ; Martins, RN ; Bush, AI ; Masters, CL ; Rowe, CC ; Villemagne, VL ; Ames, D ; Darby, D ; Maruff, P (IOS PRESS, 2013)
    High levels of amyloid-β (Aβ) have been associated with greater rates of decline in episodic memory over 18 months in healthy older adults. Serial assessments over shorter time intervals may facilitate earlier detection of Aβ-related memory decline in healthy older adults. In forty-four healthy older adults enrolled in the Australian Imaging, Biomarkers and Lifestyle Rate of Change Sub-Study, we compared rates of change in cognition over six months in healthy older adults with high and low levels of Aβ. High Aβ was associated with greater decline in episodic memory measures over 6 months in healthy older adults.
  • Item
    Thumbnail Image
    Characterization of the role of metallothionein-3 in an animal model of Alzheimer's disease
    Manso, Y ; Carrasco, J ; Comes, G ; Meloni, G ; Adlard, PA ; Bush, AI ; Vasak, M ; Hidalgo, J (SPRINGER BASEL AG, 2012-11)
    Among the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn(7)MT-3 increased soluble Aβ40 and Aβ42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD.
  • Item
    Thumbnail Image
    Biological metals and metal-targeting compounds in major neurodegenerative diseases
    Barnham, KJ ; Bush, AI (ROYAL SOC CHEMISTRY, 2014)
    Multiple abnormalities occur in the homeostasis of essential endogenous brain biometals in age-related neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. As a result, metals both accumulate in microscopic proteinopathies, and can be deficient in cells or cellular compartments. Therefore, bulk measurement of metal content in brain tissue samples reveal only the "tip of the iceberg", with most of the important changes occurring on a microscopic and biochemical level. Each of the major proteins implicated in these disorders interacts with biological transition metals. Tau and the amyloid protein precursor have important roles in normal neuronal iron homeostasis. Changes in metal distribution, cellular deficiencies, or sequestration in proteinopathies all present abnormalities that can be corrected in animal models by small molecules. These biochemical targets are more complex than the simple excess of metals that are targeted by chelators. In this review we illustrate some of the richness in the science that has developed in the study of metals in neurodegeneration, and explore its novel pharmacology.