School of Biomedical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Four-week inhibition of the renin-angiotensin system in spontaneously hypertensive rats results in persistently lower blood pressure with reduced kidney renin and changes in expression of relevant gene networks
    Byars, SG ; Prestes, PR ; Suphapimol, V ; Takeuchi, F ; De Vries, N ; Maier, MC ; Melo, M ; Balding, D ; Samani, N ; Allen, AM ; Kato, N ; Wilkinson-Berka, JL ; Charchar, F ; Harrap, SB (OXFORD UNIV PRESS, 2024-03-19)
    AIMS: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. METHODS: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme (ACE) inhibitor, perindopril (with controls for non-specific effects of lowering BP) on differential RNA expression, DNA methylation and renin immunolabelling in the kidney at 20 weeks of age. RESULTS: RNA sequencing revealed a 6-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 x 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS and the kidneys. CONCLUSIONS: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks.
  • Item
    Thumbnail Image
    Early Depletion of Neutrophils Reduces Retinal Inflammation and Neovascularization in Mice with Oxygen-Induced Retinopathy
    Deliyanti, D ; Suphapimol, V ; Ang, P ; Tang, X ; Jayasimhan, A ; Wilkinson-Berka, JL (MDPI, 2023-11)
    Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.