School of Biomedical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 56
  • Item
    Thumbnail Image
    Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition
    Atkinson, SC ; Dogovski, C ; Downton, MT ; Czabotar, PE ; Dobson, RCJ ; Gerrard, JA ; Wagner, J ; Perugini, MA (SPRINGER, 2013-03)
    Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
  • Item
    Thumbnail Image
    From Knock-Out Phenotype to Three-Dimensional Structure of a Promising Antibiotic Target from Streptococcus pneumoniae
    Dogovski, C ; Gorman, MA ; Ketaren, NE ; Praszkier, J ; Zammit, LM ; Mertens, HD ; Bryant, G ; Yang, J ; Griffin, MDW ; Pearce, FG ; Gerrard, JA ; Jameson, GB ; Parker, MW ; Robins-Browne, RM ; Perugini, MA ; Taylor, P (PUBLIC LIBRARY SCIENCE, 2013-12-13)
    Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
  • Item
    Thumbnail Image
    A method for quantifying pulmonary Legionella pneumophila infection in mouse lungs by flow cytometry.
    Ang, DKY ; Ong, SY ; Brown, AS ; Hartland, EL ; van Driel, IR (Springer Science and Business Media LLC, 2012-08-20)
    BACKGROUND: Pulmonary load of Legionella pneumophila in mice is normally determined by counting serial dilutions of bacterial colony forming units (CFU) on agar plates. This process is often tedious and time consuming. We describe a novel, rapid and versatile flow cytometric method that detects bacteria phagocytosed by neutrophils. FINDINGS: Mice were infected with L. pneumophila via intratracheal or intranasal administration. At various times after bacteria inoculation, mouse lungs were harvested and analysed concurrently for bacterial load by colony counting and flow cytometry analysis. The number of L. pneumophila-containing neutrophils correlated strongly with CFU obtained by bacteriological culture. CONCLUSIONS: This technique can be utilised to determine pulmonary bacterial load and may be used in conjunction with other flow cytometric based analyses of the resulting immune response.
  • Item
    Thumbnail Image
    Crystal, Solution and In silico Structural Studies of Dihydrodipicolinate Synthase from the Common Grapevine
    Atkinson, SC ; Dogovski, C ; Downton, MT ; Pearce, FG ; Reboul, CF ; Buckle, AM ; Gerrard, JA ; Dobson, RCJ ; Wagner, J ; Perugini, MA ; Kursula, P (PUBLIC LIBRARY SCIENCE, 2012-06-25)
    Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
  • Item
    Thumbnail Image
    Inhibition of Breast Cancer Resistance Protein (ABCG2) in Human Myeloid Dendritic Cells Induces Potent Tolerogenic Functions during LPS Stimulation
    Jin, J-O ; Zhang, W ; Wong, K-W ; Kwak, M ; van Driel, IR ; Yu, Q ; Wu, Y (PUBLIC LIBRARY SCIENCE, 2014-08-11)
    Breast cancer resistance protein (ABCG2), a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR) in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs). ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs) abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg) cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.
  • Item
    Thumbnail Image
    Whole Genome Comparisons Suggest Random Distribution of Mycobacterium ulcerans Genotypes in a Buruli Ulcer Endemic Region of Ghana
    Ablordey, AS ; Vandelannoote, K ; Frimpong, IA ; Ahortor, EK ; Amissah, NA ; Eddyani, M ; Durnez, L ; Portaels, F ; de Jong, BC ; Leirs, H ; Porter, JL ; Mangas, KM ; Lam, MMC ; Buultjens, A ; Seemann, T ; Tobias, NJ ; Stinear, TP ; Johnson, C (PUBLIC LIBRARY SCIENCE, 2015-03)
    Efforts to control the spread of Buruli ulcer--an emerging ulcerative skin infection caused by Mycobacterium ulcerans--have been hampered by our poor understanding of reservoirs and transmission. To help address this issue, we compared whole genomes from 18 clinical M. ulcerans isolates from a 30 km2 region within the Asante Akim North District, Ashanti region, Ghana, with 15 other M. ulcerans isolates from elsewhere in Ghana and the surrounding countries of Ivory Coast, Togo, Benin and Nigeria. Contrary to our expectations of finding minor DNA sequence variations among isolates representing a single M. ulcerans circulating genotype, we found instead two distinct genotypes. One genotype was closely related to isolates from neighbouring regions of Amansie West and Densu, consistent with the predicted local endemic clone, but the second genotype (separated by 138 single nucleotide polymorphisms [SNPs] from other Ghanaian strains) most closely matched M. ulcerans from Nigeria, suggesting another introduction of M. ulcerans to Ghana, perhaps from that country. Both the exotic genotype and the local Ghanaian genotype displayed highly restricted intra-strain genetic variation, with less than 50 SNP differences across a 5.2 Mbp core genome within each genotype. Interestingly, there was no discernible spatial clustering of genotypes at the local village scale. Interviews revealed no obvious epidemiological links among BU patients who had been infected with identical M. ulcerans genotypes but lived in geographically separate villages. We conclude that M. ulcerans is spread widely across the region, with multiple genotypes present in any one area. These data give us new perspectives on the behaviour of possible reservoirs and subsequent transmission mechanisms of M. ulcerans. These observations also show for the first time that M. ulcerans can be mobilized, introduced to a new area and then spread within a population. Potential reservoirs of M. ulcerans thus might include humans, or perhaps M. ulcerans-infected animals such as livestock that move regularly between countries.
  • Item
    Thumbnail Image
    Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species.
    Sulpice, R ; Ishihara, H ; Schlereth, A ; Cawthray, GR ; Encke, B ; Giavalisco, P ; Ivakov, A ; Arrivault, S ; Jost, R ; Krohn, N ; Kuo, J ; Laliberté, E ; Pearse, SJ ; Raven, JA ; Scheible, W-R ; Teste, F ; Veneklaas, EJ ; Stitt, M ; Lambers, H (Wiley, 2014-06)
    Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.
  • Item
    Thumbnail Image
    Dose planning objectives in anal canal cancer IMRT: the TROG ANROTAT experience
    Brown, E ; Cray, A ; Haworth, A ; Chander, S ; Lin, R ; Subramanian, B ; Ng, M (WILEY-BLACKWELL, 2015-06)
    INTRODUCTION: Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. METHODS: Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by two different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose-volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. RESULTS: All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). CONCLUSION: The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.
  • Item
    Thumbnail Image
    Plant cell shape: modulators and measurements
    Ivakov, A ; Persson, S (FRONTIERS MEDIA SA, 2013-11-19)
    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation.
  • Item
    Thumbnail Image
    FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy
    Deliyanti, D ; Zhang, Y ; Khong, F ; Berka, DR ; Stapleton, DI ; Kelly, DJ ; Wilkinson-Berka, JL ; Boulton, ME (PUBLIC LIBRARY SCIENCE, 2015-07-29)
    Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 μM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 μM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach.