School of Biomedical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Targeting antigen to bone marrow stromal cell-2 expressed by conventional and plasmacytoid dendritic cells elicits efficient antigen presentation
    Moffat, JM ; Segura, E ; Khoury, G ; Caminschi, I ; Cameron, PU ; Lewin, SR ; Villadangos, JA ; Mintern, JD (WILEY-BLACKWELL, 2013-03-01)
    Bone marrow stromal cell-2 (BST-2) has major roles in viral tethering and modulation of interferon production. Here we investigate BST-2 as a receptor for the delivery of antigen to dendritic cells (DCs). We show that BST-2 is expressed by a panel of mouse and human DC subsets, particularly under inflammatory conditions. The outcome of delivering antigen to BST-2 expressed by steady state and activated plasmacytoid DC (pDC) or conventional CD8(+) and CD8(-) DCs was determined. T-cell responses were measured for both MHC class I (MHCI) and MHC class II (MHCII) antigen presentation pathways in vitro. Delivering antigen via BST-2 was compared with that via receptors DEC205 or Siglec-H. We show that despite a higher antigen load and faster receptor internalisation, when antigen is delivered to steady state or activated pDC via BST-2, BST-2-targeted activated conventional DCs present antigen more efficiently. Relative to DEC205, BST-2 was inferior in its capacity to deliver antigen to the MHCI cross-presentation pathway. In contrast, BST-2 was superior to Siglec-H at initiating either MHCI or MHCII antigen presentation. In summary, BST-2 is a useful receptor to target with antigen, given its broad expression pattern and ability to access both MHCI and MHCII presentation pathways with relative efficiency.
  • Item
    Thumbnail Image
    Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells
    Moffat, JM ; Cheong, W-S ; Villadangos, JA ; Mintern, JD ; Netter, HJ (ELSEVIER SCI LTD, 2013-04-26)
    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs.
  • Item
    Thumbnail Image
    Rapid Deletion and Inactivation of CTLs upon Recognition of a Number of Target Cells over a Critical Threshold
    Prato, S ; Zhan, Y ; Mintern, JD ; Villadangos, JA (AMER ASSOC IMMUNOLOGISTS, 2013-10-01)
    Initiation of CTL responses against foreign pathogens also primes anti-self CTLs. Mechanisms of CTL inactivation inhibit anti-self CTLs to prevent tissue damage. These mechanisms are exploited by pathogens and tumors to evade the immune response, and present a major hurdle to adoptive CTL therapies. It is unclear whether CTL inactivation is Ag specific and, if so, which APCs are involved. Potential candidates include the target cells themselves, dendritic cells, myeloid-derived suppressor cells, and macrophages. In this study, we show that lymphoma-specific CTLs are rapidly deleted in an Ag-specific manner after adoptive transfer into lymphoma-bearing mice, and the surviving CTLs are functionally impaired. The only APCs responsible were the target cells directly presenting Ag, notwithstanding the presence of myeloid-derived suppressor cells, and CD8(+) dendritic cells cross-presenting tumor Ag. The capacity to inactivate CTLs critically depended on the number of tumor/target cells; small numbers of targets were readily killed, but a large number caused quick deletion and functional inactivation of the CTLs. Application of mild, noninflammatory, and nonlymphoablative chemotherapy to specifically reduce tumor burden before CTL injection prevented CTL deletion and inactivation and allowed eradication of tumor. Our results advocate the use of adoptive CTL therapy soon after mild chemotherapy. They also suggest a simple mechanism for Ag-specific impairment of anti-self CTLs in the face of an active anti-foreign CTL response.