School of Biomedical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Lipopeptide vaccines illustrate the potential role of subtype-crossreactive T cells in the control of highly virulent influenza
    Ng, WC ; Gilbertson, B ; Lim, B ; Zeng, W ; Jackson, DC ; Brown, LE (WILEY, 2009-07)
    BACKGROUND: The best form of protection against influenza is high-titred virus-neutralizing antibody specific for the challenge strain. However, this is not always possible to achieve by vaccination due to the need for predicting the emerging virus, whether it be a drift variant of existing human endemic influenza type A subtypes or the next pandemic virus, for incorporation into the vaccine. By activating additional arms of the immune system to provide heterosubtypic immunity, that is immunity active against all viruses of type A influenza regardless of subtype or strain, it should be possible to provide significant benefit in situations where appropriate antibody responses are not achieved. Although current inactivated vaccines are unable to induce heterosubtypic CD8(+) T cell immunity, we have shown that lipopeptides are particularly efficient in this regard. OBJECTIVES: To examine the role of vaccine-induced CD8(+) T cells in altering the course of disease due to highly virulent H1N1 influenza virus in the mouse model. METHODS: The induction of influenza-specific CD8(+) T cells following intranasal inoculation with lipopeptide vaccine was assessed by intracellular cytokine staining (ICS) and the capacity of these cells to reduce viral loads in the lungs and to protect against death after viral challenge was determined. RESULTS AND CONCLUSIONS: We show that CD8(+) T cells are induced by a single intranasal vaccination with lipopeptide, they remain at substantial levels in the lungs and are efficiently boosted upon challenge with virulent virus to provide late control of pulmonary viral loads. Vaccinated mice are not only protected from death but remain active, indicative of less severe disease despite significant weight loss.
  • Item
    Thumbnail Image
    Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH)
    Chaudhuri, RR ; Allen, AG ; Owen, PJ ; Shalom, G ; Stone, K ; Harrison, M ; Burgis, TA ; Lockyer, M ; Garcia-Lara, J ; Foster, SJ ; Pleasance, SJ ; Peters, SE ; Maskell, DJ ; Charles, IG (BMC, 2009-07-01)
    BACKGROUND: In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. RESULTS: We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. CONCLUSION: We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens.
  • Item
    Thumbnail Image
    Comprehensive Identification of Salmonella enterica Serovar Typhimurium Genes Required for Infection of BALB/c Mice
    Chaudhuri, RR ; Peters, SE ; Pleasance, SJ ; Northen, H ; Willers, C ; Paterson, GK ; Cone, DB ; Allen, AG ; Owen, PJ ; Shalom, G ; Stekel, DJ ; Charles, IG ; Maskell, DJ ; Stebbins, CE (PUBLIC LIBRARY SCIENCE, 2009-07)
    Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH), has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input) with equivalent data produced after passage of the library through mice (output) enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.
  • Item
    Thumbnail Image
    Update on the treatment of diabetic retinopathy
    Wilkinson-Berka, JL ; Miller, AG (HINDAWI LTD, 2008)
    Retinopathy is the most feared complication of diabetes, compromising quality of life in most sufferers. Almost all patients with type 1 diabetes will develop retinopathy over a 15- to 20-year period, and approximately 20-30% will advance to the blinding stage of the disease[1]. Greater than 60% of patients with type 2 diabetes will have retinopathy. This situation is highlighted by the frightening statistic that diabetic retinopathy (DR) remains the most common cause of vision impairment in people of working age in Western society. With the global epidemic of type 2 diabetes, this predicament is set to worsen as over 360 million people are projected to suffer from diabetes and its complications by 2030. Vision loss from diabetes is due to a number of factors, including haemorrhage from new and poorly formed blood vessels, retinal detachment due to contraction of deposited fibrous tissue, and neovascular glaucoma resulting in an increase in intraocular pressure. Diabetic macular oedema is now the principal cause of vision loss in diabetes and involves leakage from a disrupted blood-retinal barrier. In terms of treatment, there is clear evidence that strict metabolic and blood pressure control can lower the risk of developing DR and reduce disease progression. Laser photocoagulation and vitrectomy are effective in preventing severe vision loss in DR, particularly in the most advanced stages of the disease. However, both procedures have limitations. This review examines evidence from preclinical and clinical studies that shows that targeting inhibition of the renin-angiotensin system, vascular endothelial growth factor, corticosteroids, protein kinase C, growth hormone, and advanced glycation end-products are potential treatments for DR.
  • Item
    Thumbnail Image
    Complexity of the Inoculum Determines the Rate of Reversion of SIV Gag CD8 T Cell Mutant Virus and Outcome of Infection
    Loh, L ; Reece, JC ; Fernandez, CS ; Alcantara, S ; Center, R ; Howard, J ; Purcell, DFJ ; Balamurali, M ; Petravic, J ; Davenport, MP ; Kent, SJ ; Ross, S (PUBLIC LIBRARY SCIENCE, 2009-04)
    Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively "fit" compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing > or =10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIV(mn229) viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIV(mac239), demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until > or =8 days after inoculation and took > or =8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection.
  • Item
    Thumbnail Image
    Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques
    Mankowski, JL ; Queen, SE ; Fernandez, CS ; Tarwater, PM ; Karper, JM ; Adams, RJ ; Kent, SJ ; Sommer, P (PUBLIC LIBRARY SCIENCE, 2008-11-03)
    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.
  • Item
    Thumbnail Image
    (Pro)renin Receptor: A Treatment Target for Diabetic Retinopathy?
    Wilkinson-Berka, JL ; Campbell, DJ (AMER DIABETES ASSOC, 2009-07)
  • Item
    Thumbnail Image
    Control of viremia and prevention of AIDS following immunotherapy of SIV-infected macaques with peptide-pulsed blood
    De Rose, R ; Fernandez, CS ; Smith, MZ ; Batten, CJ ; Alcantara, S ; Peut, V ; Rollman, E ; Loh, L ; Mason, RD ; Wilson, K ; Law, MG ; Handley, AJ ; Kent, SJ ; Koup, RA (PUBLIC LIBRARY SCIENCE, 2008-05)
    Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIV(mac251) replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably approximately 10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.
  • Item
    No Preview Available
    Differential expression of mesotocin receptors in the uterus and ovary of the pregnant tammar wallaby
    Siebel, AL ; Bathgate, RAD ; Parry, LJ (BIO SCIENTIFICA LTD, 2005-05)
    Mesotocin, an oxytocin-like peptide, is released in highest concentrations during parturition in macropodid marsupials. In late pregnant wallabies, uterine sensitivity to mesotocin increases markedly in the myometrium of the gravid uterus. This coincides with a significant increase in myometrial mesotocin receptor concentrations 3-4 days before term. To date, there is no information on mesotocin receptor gene expression in female wallaby reproductive tissues. This study aimed to examine mesotocin receptor gene expression in the uterus and ovaries of pregnant tammar wallabies, and to localise mesotocin receptors within the uterus. An RT-PCR strategy produced a consensus nucleotide sequence of 834 bp, which encoded 278 amino acids of transmembrane domains I to VI. This protein sequence has approximately 80% homology with the bovine and rat oxytocin receptor exon 2 region. Only one mesotocin receptor was detected in the tammar genome. The myometrium and mammary gland both expressed a 4.1 kb mesotocin receptor gene transcript. Myometrial mesotocin receptor gene expression increased on day 22 of the 26-day gestation and was significantly higher in the gravid than the non-gravid uterus in late pregnancy. This pattern of mesotocin receptor gene expression paralleled mesotocin receptor concentrations. Mesotocin binding sites were localised only to the myometrium, the highest densities being observed in the gravid uterus. Finally, this study showed high expression of mesotocin receptors in the corpus luteum. The pattern of luteal mesotocin receptor expression differed from the myometrium, with a decrease in mesotocin receptors occurring on the day of expected births.
  • Item
    No Preview Available
    Purification and characterization of relaxin from the tammar wallaby (Macropus eugenii):: Bioactivity and expression in the corpus luteum
    Bathgate, RAD ; Siebel, AL ; Tovote, P ; Claasz, A ; Macris, M ; Tregear, GW ; Parry, LJ (SOC STUDY REPRODUCTION, 2002-07)
    The objective of this study was to isolate and purify prorelaxin or mature relaxin from the tammar wallaby corpus luteum (CL), determine their structure and bioactivity, and test the hypothesis that enzymatic cleavage of prorelaxin occurs in late gestation. Tammar relaxin peptides were extracted from pooled corpora lutea of late pregnant tammars using a combination of HPLC methods, and they were identified using Western blotting with a human (H2) relaxin antisera and matrix-assisted laser desorption ionization time of flight mass spectrometry. Although no prorelaxin was identified, multiple 6-kDa peptides were detected, which corresponded to the predicted mature tammar relaxin amino acid sequence, with an A chain of 24 amino acids, and different B chain lengths of 28, 29, 30, and 32 amino acids. Tammar relaxin bound with high affinity to rat cortical relaxin receptors and stimulated cAMP production in the human monocytic cell line, THP-1, which expresses the relaxin receptor. Analysis of individual CL indicated that equivalent amounts of mature relaxin peptides were present throughout gestation and also in unmated tammars at equivalent stages of the luteal phase in the nonpregnant cycle. Immunoreactive relaxin was localized specifically to the luteal cells of the CL and the intensity of immunostaining did not vary between gestational stages. These data show that the CL of both pregnant and unmated tammar wallabies produces mature relaxin and suggests that relaxin expression in this species is not influenced by the conceptus. Moreover, the presence of mature relaxin throughout gestation implies that prohormone cleavage is not limited to the later stages of pregnancy