Centre for Eye Research Australia (CERA) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium
    Verhoeven, VJM ; Hysi, PG ; Saw, S-M ; Vitart, V ; Mirshahi, A ; Guggenheim, JA ; Cotch, MF ; Yamashiro, K ; Baird, PN ; Mackey, DA ; Wojciechowski, R ; Ikram, MK ; Hewitt, AW ; Duggal, P ; Janmahasatian, S ; Khor, C-C ; Fan, Q ; Zhou, X ; Young, TL ; Tai, E-S ; Goh, L-K ; Li, Y-J ; Aung, T ; Vithana, E ; Teo, Y-Y ; Tay, W ; Sim, X ; Rudan, I ; Hayward, C ; Wright, AF ; Polasek, O ; Campbell, H ; Wilson, JF ; Fleck, BW ; Nakata, I ; Yoshimura, N ; Yamada, R ; Matsuda, F ; Ohno-Matsui, K ; Nag, A ; McMahon, G ; St Pourcain, B ; Lu, Y ; Rahi, JS ; Cumberland, PM ; Bhattacharya, S ; Simpson, CL ; Atwood, LD ; Li, X ; Raffel, LJ ; Murgia, F ; Portas, L ; Despriet, DDG ; van Koolwijk, LME ; Wolfram, C ; Lackner, KJ ; Toenjes, A ; Maegi, R ; Lehtimaki, T ; Kahonen, M ; Esko, T ; Metspalu, A ; Rantanen, T ; Parssinen, O ; Klein, BE ; Meitinger, T ; Spector, TD ; Oostra, BA ; Smith, AV ; de Jong, PTVM ; Hofman, A ; Amin, N ; Karssen, LC ; Rivadeneira, F ; Vingerling, JR ; Eiriksdottir, G ; Gudnason, V ; Doering, A ; Bettecken, T ; Uitterlinden, AG ; Williams, C ; Zeller, T ; Castagne, R ; Oexle, K ; van Duijn, CM ; Iyengar, SK ; Mitchell, P ; Wang, JJ ; Hoehn, R ; Pfeiffer, N ; Bailey-Wilson, JE ; Stambolian, D ; Wong, T-Y ; Hammond, CJ ; Klaver, CCW (SPRINGER, 2012-09)
    Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87 × 10(-12) for SNP rs634990 in Caucasians, and 9.65 × 10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20 × 10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95 % CI 1.64, 2.16, P < 0.001) for homozygous carriers of the risk allele at the top SNP rs634990, and OR 1.33 (95 % CI 1.19, 1.49, P < 0.001) for heterozygous carriers. SNPs at locus 15q25 did not replicate significantly (P value 5.81 × 10(-2) for top SNP rs939661). We conclude that common variants at chromosome 15q14 influence susceptibility for myopia in Caucasian and Asian populations world-wide.
  • Item
    Thumbnail Image
    Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium
    Li, Q ; Wojciechowski, R ; Simpson, CL ; Hysi, PG ; Verhoeven, VJM ; Ikram, MK ; Hoehn, R ; Vitart, V ; Hewitt, AW ; Oexle, K ; Makela, K-M ; MacGregor, S ; Pirastu, M ; Fan, Q ; Cheng, C-Y ; St Pourcain, B ; McMahon, G ; Kemp, JP ; Northstone, K ; Rahi, JS ; Cumberland, PM ; Martin, NG ; Sanfilippo, PG ; Lu, Y ; Wang, YX ; Hayward, C ; Polasek, O ; Campbell, H ; Bencic, G ; Wright, AF ; Wedenoja, J ; Zeller, T ; Schillert, A ; Mirshahi, A ; Lackner, K ; Yip, SP ; Yap, MKH ; Ried, JS ; Gieger, C ; Murgia, F ; Wilson, JF ; Fleck, B ; Yazar, S ; Vingerling, JR ; Hofman, A ; Uitterlinden, A ; Rivadeneira, F ; Amin, N ; Karssen, L ; Oostra, BA ; Zhou, X ; Teo, Y-Y ; Tai, ES ; Vithana, E ; Barathi, V ; Zheng, Y ; Siantar, RG ; Neelam, K ; Shin, Y ; Lam, J ; Yonova-Doing, E ; Venturini, C ; Hosseini, SM ; Wong, H-S ; Lehtimaki, T ; Kahonen, M ; Raitakari, O ; Timpson, NJ ; Evans, DM ; Khor, C-C ; Aung, T ; Young, TL ; Mitchell, P ; Klein, B ; van Duijn, CM ; Meitinger, T ; Jonas, JB ; Baird, PN ; Mackey, DA ; Wong, TY ; Saw, S-M ; Parssinen, O ; Stambolian, D ; Hammond, CJ ; Klaver, CCW ; Williams, C ; Paterson, AD ; Bailey-Wilson, JE ; Guggenheim, JA (SPRINGER, 2015-02)
    To identify genetic variants associated with refractive astigmatism in the general population, meta-analyses of genome-wide association studies were performed for: White Europeans aged at least 25 years (20 cohorts, N = 31,968); Asian subjects aged at least 25 years (7 cohorts, N = 9,295); White Europeans aged <25 years (4 cohorts, N = 5,640); and all independent individuals from the above three samples combined with a sample of Chinese subjects aged <25 years (N = 45,931). Participants were classified as cases with refractive astigmatism if the average cylinder power in their two eyes was at least 1.00 diopter and as controls otherwise. Genome-wide association analysis was carried out for each cohort separately using logistic regression. Meta-analysis was conducted using a fixed effects model. In the older European group the most strongly associated marker was downstream of the neurexin-1 (NRXN1) gene (rs1401327, P = 3.92E-8). No other region reached genome-wide significance, and association signals were lower for the younger European group and Asian group. In the meta-analysis of all cohorts, no marker reached genome-wide significance: The most strongly associated regions were, NRXN1 (rs1401327, P = 2.93E-07), TOX (rs7823467, P = 3.47E-07) and LINC00340 (rs12212674, P = 1.49E-06). For 34 markers identified in prior GWAS for spherical equivalent refractive error, the beta coefficients for genotype versus spherical equivalent, and genotype versus refractive astigmatism, were highly correlated (r = -0.59, P = 2.10E-04). This work revealed no consistent or strong genetic signals for refractive astigmatism; however, the TOX gene region previously identified in GWAS for spherical equivalent refractive error was the second most strongly associated region. Analysis of additional markers provided evidence supporting widespread genetic co-susceptibility for spherical and astigmatic refractive errors.
  • Item
    No Preview Available
    Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci
    Simpson, CL ; Wojciechowski, R ; Oexle, K ; Murgia, F ; Portas, L ; Li, X ; Verhoeven, VJM ; Vitart, V ; Schache, M ; Hosseini, SM ; Hysi, PG ; Raffel, LJ ; Cotch, MF ; Chew, E ; Klein, BEK ; Klein, R ; Wong, TY ; Van Duijn, CM ; Mitchell, P ; Saw, SM ; Fossarello, M ; Wang, JJ ; Polasek, O ; Campbell, H ; Rudan, I ; Oostra, BA ; Uitterlinden, AG ; Hofman, A ; Rivadeneira, F ; Amin, N ; Karssen, LC ; Vingerling, JR ; Doering, A ; Bettecken, T ; Bencic, G ; Gieger, C ; Wichmann, H-E ; Wilson, JF ; Venturini, C ; Fleck, B ; Cumberland, PM ; Rahi, JS ; Hammond, CJ ; Hayward, C ; Wright, AF ; Paterson, AD ; Baird, PN ; Klaver, CCW ; Rotter, JI ; Pirastu, M ; Meitinger, T ; Bailey-Wilson, JE ; Stambolian, D ; Miao, X (PUBLIC LIBRARY SCIENCE, 2014-09-18)
    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
  • Item
    No Preview Available
    Genetic Loci for Retinal Arteriolar Microcirculation
    Sim, X ; Jensen, RA ; Ikram, MK ; Cotch, MF ; Li, X ; MacGregor, S ; Xie, J ; Smith, AV ; Boerwinkle, E ; Mitchell, P ; Klein, R ; Klein, BEK ; Glazer, NL ; Lumley, T ; McKnight, B ; Psaty, BM ; de Jong, PTVM ; Hofman, A ; Rivadeneira, F ; Uitterlinden, AG ; van Duijn, CM ; Aspelund, T ; Eiriksdottir, G ; Harris, TB ; Jonasson, F ; Launer, LJ ; Attia, J ; Baird, PN ; Harrap, S ; Holliday, EG ; Inouye, M ; Rochtchina, E ; Scott, RJ ; Viswanathan, A ; Li, G ; Smith, NL ; Wiggins, KL ; Kuo, JZ ; Taylor, KD ; Hewitt, AW ; Martin, NG ; Montgomery, GW ; Sun, C ; Young, TL ; Mackey, DA ; van Zuydam, NR ; Doney, ASF ; Palmer, CNA ; Morris, AD ; Rotter, JI ; Tai, ES ; Gudnason, V ; Vingerling, JR ; Siscovick, DS ; Wang, JJ ; Wong, TY ; Wallace, GR (PUBLIC LIBRARY SCIENCE, 2013-06-12)
    Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.
  • Item
    No Preview Available
    Genome-Wide Association Study of Retinopathy in Individuals without Diabetes
    Jensen, RA ; Sim, X ; Li, X ; Cotch, MF ; Ikram, MK ; Holliday, EG ; Eiriksdottir, G ; Harris, TB ; Jonasson, F ; Klein, BEK ; Launer, LJ ; Smith, AV ; Boerwinkle, E ; Cheung, N ; Hewitt, AW ; Liew, G ; Mitchell, P ; Wang, JJ ; Attia, J ; Scott, R ; Glazer, NL ; Lumley, T ; McKnight, B ; Psaty, BM ; Taylor, K ; Hofman, A ; de Jong, PTVM ; Rivadeneira, F ; Uitterlinden, AG ; Tay, W-T ; Teo, YY ; Seielstad, M ; Liu, J ; Cheng, C-Y ; Saw, S-M ; Aung, T ; Ganesh, SK ; O'Donnell, CJ ; Nalls, MA ; Wiggins, KL ; Kuo, JZ ; van Duijn, CM ; Gudnason, V ; Klein, R ; Siscovick, DS ; Rotter, JI ; Tai, ES ; Vingerling, J ; Wong, TY ; Mittal, B (PUBLIC LIBRARY SCIENCE, 2013-02-05)
    BACKGROUND: Mild retinopathy (microaneurysms or dot-blot hemorrhages) is observed in persons without diabetes or hypertension and may reflect microvascular disease in other organs. We conducted a genome-wide association study (GWAS) of mild retinopathy in persons without diabetes. METHODS: A working group agreed on phenotype harmonization, covariate selection and analytic plans for within-cohort GWAS. An inverse-variance weighted fixed effects meta-analysis was performed with GWAS results from six cohorts of 19,411 Caucasians. The primary analysis included individuals without diabetes and secondary analyses were stratified by hypertension status. We also singled out the results from single nucleotide polymorphisms (SNPs) previously shown to be associated with diabetes and hypertension, the two most common causes of retinopathy. RESULTS: No SNPs reached genome-wide significance in the primary analysis or the secondary analysis of participants with hypertension. SNP, rs12155400, in the histone deacetylase 9 gene (HDAC9) on chromosome 7, was associated with retinopathy in analysis of participants without hypertension, -1.3±0.23 (beta ± standard error), p = 6.6×10(-9). Evidence suggests this was a false positive finding. The minor allele frequency was low (∼2%), the quality of the imputation was moderate (r(2) ∼0.7), and no other common variants in the HDAC9 gene were associated with the outcome. SNPs found to be associated with diabetes and hypertension in other GWAS were not associated with retinopathy in persons without diabetes or in subgroups with or without hypertension. CONCLUSIONS: This GWAS of retinopathy in individuals without diabetes showed little evidence of genetic associations. Further studies are needed to identify genes associated with these signs in order to help unravel novel pathways and determinants of microvascular diseases.
  • Item
    No Preview Available
    Seven new loci associated with age-related macular degeneration
    Fritsche, LG ; Chen, W ; Schu, M ; Yaspan, BL ; Yu, Y ; Thorleifsson, G ; Zack, DJ ; Arakawa, S ; Cipriani, V ; Ripke, S ; Igo, RP ; Buitendijk, GHS ; Sim, X ; Weeks, DE ; Guymer, RH ; Merriam, JE ; Francis, PJ ; Hannum, G ; Agarwal, A ; Armbrecht, AM ; Audo, I ; Aung, T ; Barile, GR ; Benchaboune, M ; Bird, AC ; Bishop, PN ; Branham, KE ; Brooks, M ; Brucker, AJ ; Cade, WH ; Cain, MS ; Campochiaroll, PA ; Chan, C-C ; Cheng, C-Y ; Chew, EY ; Chin, KA ; Chowers, I ; Clayton, DG ; Cojocaru, R ; Conley, YP ; Cornes, BK ; Daly, MJ ; Dhillon, B ; Edwards, A ; Evangelou, E ; Fagemess, J ; Ferreyra, HA ; Friedman, JS ; Geirsdottir, A ; George, RJ ; Gieger, C ; Gupta, N ; Hagstrom, SA ; Harding, SP ; Haritoglou, C ; Heckenlively, JR ; Hoz, FG ; Hughes, G ; Ioannidis, JPA ; Ishibashi, T ; Joseph, P ; Jun, G ; Kamatani, Y ; Katsanis, N ; Keilhauer, CN ; Khan, JC ; Kim, IK ; Kiyohara, Y ; Klein, BEK ; Klein, R ; Kovach, JL ; Kozak, I ; Lee, CJ ; Lee, KE ; Lichtner, P ; Lotery, AJ ; Meitinger, T ; Mitchell, P ; Mohand-Saied, S ; Moore, AT ; Morgan, DJ ; Morrison, MA ; Myers, CE ; Naj, AC ; Nakamura, Y ; Okada, Y ; Orlin, A ; Ortube, MC ; Othman, MI ; Pappas, C ; Park, KH ; Pauer, GJT ; Peachey, NS ; Poch, O ; Priya, RR ; Reynolds, R ; Richardson, AJ ; Ripp, R ; Rudolph, G ; Ryu, E ; Sahel, J-A ; Schaumberg, DA ; Scholl, HPN ; Schwartz, SG ; Scott, WK ; Shahid, H ; Sigurdsson, H ; Silvestri, G ; Sivakumaran, TA ; Smith, RT ; Sobrin, L ; Souied, EH ; Stambolian, DE ; Stefansson, H ; Sturgill-Short, GM ; Takahashi, A ; Tosakulwong, N ; Truitt, BJ ; Tsironi, EE ; Uitterlinden, AG ; van Duijn, CM ; Vijaya, L ; Vingerling, JR ; Vithana, EN ; Webster, AR ; Wichmann, H-E ; Winkler, TW ; Wong, TY ; Wright, AF ; Zelenika, D ; Zhang, M ; Zhao, L ; Zhang, K ; Klein, ML ; Hageman, GS ; Lathrop, GM ; Stefansson, K ; Allikmets, R ; Baird, PN ; Gorin, MB ; Wang, JJ ; Klaver, CCW ; Seddon, JM ; Pericak-Vance, MA ; Iyengar, SK ; Yates, JRW ; Swaroop, A ; Weber, BHF ; Kubo, M ; DeAngelis, MM ; Leveillard, T ; Thorsteinsdottir, U ; Haines, JL ; Farrer, LA ; Heid, IM ; Abecasis, GR (NATURE PORTFOLIO, 2013-04)
    Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P < 5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
  • Item
    No Preview Available
    Short Sleep Duration Is Associated with Risk of Future Diabetes but Not Cardiovascular Disease: a Prospective Study and Meta-Analysis
    Holliday, EG ; Magee, CA ; Kritharides, L ; Banks, E ; Attia, J ; Miao, X-P (PUBLIC LIBRARY SCIENCE, 2013-11-25)
    Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10(-31)) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10(-24)) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10(-6)) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10(-6)) and upstream of GLI2 (rs6721654; P = 6.5×10(-6)), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10(-6)), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.
  • Item
    Thumbnail Image
    Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process
    Springelkamp, H ; Hoehn, R ; Mishra, A ; Hysi, PG ; Khor, C-C ; Loomis, SJ ; Bailey, JNC ; Gibson, J ; Thorleifsson, G ; Janssen, SF ; Luo, X ; Ramdas, WD ; Vithana, E ; Nongpiur, ME ; Montgomery, G ; Xu, L ; Mountain, JE ; Gharahkhani, P ; Lu, Y ; Amin, N ; Karssen, LC ; Sim, K-S ; van Leeuwen, EM ; Iglesias, AI ; Verhoeven, VJM ; Hauser, MA ; Loon, S-C ; Despriet, DDG ; Nag, A ; Venturini, C ; Sanfilippo, PG ; Schillert, A ; Kang, JH ; Landers, J ; Jonasson, F ; Cree, AJ ; van Koolwijk, LME ; Rivadeneira, F ; Souzeau, E ; Jonsson, V ; Menon, G ; Weinreb, RN ; de Jong, PTVM ; Oostra, BA ; Uitterlinden, AG ; Hofman, A ; Ennis, S ; Thorsteinsdottir, U ; Burdon, KP ; Spector, TD ; Mirshahi, A ; Saw, S-M ; Vingerling, JR ; Teo, Y-Y ; Haines, JL ; Wolfs, RCW ; Lemij, HG ; Tai, E-S ; Jansonius, NM ; Jonas, JB ; Cheng, C-Y ; Aung, T ; Viswanathan, AC ; Klaver, CCW ; Craig, JE ; Macgregor, S ; Mackey, DA ; Lotery, AJ ; Stefansson, K ; Bergen, AAB ; Young, TL ; Wiggs, JL ; Pfeiffer, N ; Wong, T-Y ; Pasquale, LR ; Hewitt, AW ; van Duijn, CM ; Hammond, CJ (NATURE PORTFOLIO, 2014-09)
    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition.
  • Item
    Thumbnail Image
    Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium
    Fan, Q ; Guo, X ; Tideman, JWL ; Williams, KM ; Yazar, S ; Hosseini, SM ; Howe, LD ; St Pourcain, B ; Evans, DM ; Timpson, NJ ; McMahon, G ; Hysi, PG ; Krapohl, E ; Wang, YX ; Jonas, JB ; Baird, PN ; Wang, JJ ; Cheng, C-Y ; Teo, Y-Y ; Wong, T-Y ; Ding, X ; Wojciechowski, R ; Young, TL ; Parssinen, O ; Oexle, K ; Pfeiffer, N ; Bailey-Wilson, JE ; Paterson, AD ; Klaver, CCW ; Plomin, R ; Hammond, CJ ; Mackey, DA ; He, M ; Saw, S-M ; Williams, C ; Guggenheim, JA (NATURE PORTFOLIO, 2016-05-13)
    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).
  • Item
    Thumbnail Image
    Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error
    Fan, Q ; Verhoeven, VJM ; Wojciechowski, R ; Barathi, VA ; Hysi, PG ; Guggenheim, JA ; Hoehn, R ; Vitart, V ; Khawaja, AP ; Yamashiro, K ; Hosseini, SM ; Lehtimaki, T ; Lu, Y ; Haller, T ; Xie, J ; Delcourt, C ; Pirastu, M ; Wedenoja, J ; Gharahkhani, P ; Venturini, C ; Miyake, M ; Hewitt, AW ; Guo, X ; Mazur, J ; Huffman, JE ; Williams, KM ; Polasek, O ; Campbell, H ; Rudan, I ; Vatavuk, Z ; Wilson, JF ; Joshi, PK ; McMahon, G ; St Pourcain, B ; Evans, DM ; Simpson, CL ; Schwantes-An, T-H ; Igo, RP ; Mirshahi, A ; Cougnard-Gregoire, A ; Bellenguez, C ; Blettner, M ; Raitakari, O ; Kaehoenen, M ; Seppala, I ; Zeller, T ; Meitinger, T ; Ried, JS ; Gieger, C ; Portas, L ; van Leeuwen, EM ; Amin, N ; Uitterlinden, AG ; Rivadeneira, F ; Hofman, A ; Vingerling, JR ; Wang, YX ; Wang, X ; Boh, ET-H ; Ikram, MK ; Sabanayagam, C ; Gupta, P ; Tan, V ; Zhou, L ; Ho, CEH ; Lim, W ; Beuerman, RW ; Siantar, R ; Tai, E-S ; Vithana, E ; Mihailov, E ; Khor, C-C ; Hayward, C ; Luben, RN ; Foster, PJ ; Klein, BEK ; Klein, R ; Wong, H-S ; Mitchell, P ; Metspalu, A ; Aung, T ; Young, TL ; He, M ; Paerssinen, O ; van Duijn, CM ; Wang, JJ ; Williams, C ; Jonas, JB ; Teo, Y-Y ; David, AMM ; Oexle, K ; Yoshimura, N ; Paterson, AD ; Pfeiffer, N ; Wong, T-Y ; Baird, PN ; Stambolian, D ; Bailey-Wilson, JE ; Cheng, C-Y ; Hammond, CJ ; Klaver, CCW ; Saw, S-M ; Rahi, JS ; Korobelnik, J-F ; Kemp, JP ; Timpson, NJ ; Smith, GD ; Craig, JE ; Burdon, KP ; Fogarty, RD ; Iyengar, SK ; Chew, E ; Janmahasatian, S ; Martin, NG ; MacGregor, S ; Xu, L ; Schache, M ; Nangia, V ; Panda-Jonas, S ; Wright, AF ; Fondran, JR ; Lass, JH ; Feng, S ; Zhao, JH ; Khaw, K-T ; Wareham, NJ ; Rantanen, T ; Kaprio, J ; Pang, CP ; Chen, LJ ; Tam, PO ; Jhanji, V ; Young, AL ; Doering, A ; Raffel, LJ ; Cotch, M-F ; Li, X ; Yip, SP ; Yap, MKH ; Biino, G ; Vaccargiu, S ; Fossarello, M ; Fleck, B ; Yazar, S ; Tideman, JWL ; Tedja, M ; Deangelis, MM ; Morrison, M ; Farrer, L ; Zhou, X ; Chen, W ; Mizuki, N ; Meguro, A ; Makela, KM (NATURE PUBLISHING GROUP, 2016-04)
    Myopia is the most common human eye disorder and it results from complex genetic and environmental causes. The rapidly increasing prevalence of myopia poses a major public health challenge. Here, the CREAM consortium performs a joint meta-analysis to test single-nucleotide polymorphism (SNP) main effects and SNP × education interaction effects on refractive error in 40,036 adults from 25 studies of European ancestry and 10,315 adults from 9 studies of Asian ancestry. In European ancestry individuals, we identify six novel loci (FAM150B-ACP1, LINC00340, FBN1, DIS3L-MAP2K1, ARID2-SNAT1 and SLC14A2) associated with refractive error. In Asian populations, three genome-wide significant loci AREG, GABRR1 and PDE10A also exhibit strong interactions with education (P<8.5 × 10(-5)), whereas the interactions are less evident in Europeans. The discovery of these loci represents an important advance in understanding how gene and environment interactions contribute to the heterogeneity of myopia.