Centre for Youth Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    No Preview Available
    Network-Based Spreading of Gray Matter Changes Across Different Stages of Psychosis
    Chopra, S ; Segal, A ; Oldham, S ; Holmes, A ; Sabaroedin, K ; Orchard, ER ; Francey, SM ; O'Donoghue, B ; Cropley, V ; Nelson, B ; Graham, J ; Baldwin, L ; Tiego, J ; Yuen, HP ; Allott, K ; Alvarez-Jimenez, M ; Harrigan, S ; Fulcher, BD ; Aquino, K ; Pantelis, C ; Wood, SJ ; Bellgrove, M ; McGorry, PD ; Fornito, A (American Medical Association, 2023-12)
    IMPORTANCE: Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. OBJECTIVE: To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. DESIGN, SETTINGS, AND PARTICIPANTS: This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. MAIN OUTCOMES AND MEASURES: Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. RESULTS: Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. CONCLUSION AND RELEVANCE: These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.
  • Item
    Thumbnail Image
    Functional Connectivity in Antipsychotic-Treated and Antipsychotic-Naive Patients With First-Episode Psychosis and Low Risk of Self-harm or Aggression A Secondary Analysis of a Randomized Clinical Trial
    Chopra, S ; Francey, SM ; O'Donoghue, B ; Sabaroedin, K ; Arnatkeviciute, A ; Cropley, V ; Nelson, B ; Graham, J ; Baldwin, L ; Tahtalian, S ; Yuen, HP ; Allott, K ; Alvarez-Jimenez, M ; Harrigan, S ; Pantelis, C ; Wood, SJ ; McGorry, P ; Fornito, A (AMER MEDICAL ASSOC, 2021-09)
    IMPORTANCE: Altered functional connectivity (FC) is a common finding in resting-state functional magnetic resonance imaging (rs-fMRI) studies of people with psychosis, yet how FC disturbances evolve in the early stages of illness, and how antipsychotic treatment influences these disturbances, remains unknown. OBJECTIVE: To investigate longitudinal FC changes in antipsychotic-naive and antipsychotic-treated patients with first-episode psychosis (FEP). DESIGN, SETTING, AND PARTICIPANTS: This secondary analysis of a triple-blind, randomized clinical trial was conducted over a 5-year recruitment period between April 2008 and December 2016 with 59 antipsychotic-naive patients with FEP receiving either a second-generation antipsychotic or a placebo pill over a treatment period of 6 months. Participants were required to have low suicidality and aggression, to have a duration of untreated psychosis of less than 6 months, and to be living in stable accommodations with social support. Both FEP groups received intensive psychosocial therapy. A healthy control group was also recruited. Participants completed rs-fMRI scans at baseline, 3 months, and 12 months. Data were analyzed from May 2019 to August 2020. INTERVENTIONS: Resting-state functional MRI was used to probe brain FC. Patients received either a second-generation antipsychotic or a matched placebo tablet. Both patient groups received a manualized psychosocial intervention. MAIN OUTCOMES AND MEASURES: The primary outcomes of this analysis were to investigate (1) FC differences between patients and controls at baseline; (2) FC changes in medicated and unmedicated patients between baseline and 3 months; and (3) associations between longitudinal FC changes and clinical outcomes. An additional aim was to investigate long-term FC changes at 12 months after baseline. These outcomes were not preregistered. RESULTS: Data were analyzed for 59 patients (antipsychotic medication plus psychosocial treatment: 28 [47.5%]; mean [SD] age, 19.5 [3.0] years; 15 men [53.6%]; placebo plus psychosocial treatment: 31 [52.5%]; mean [SD] age, 18.8 [2.7]; 16 men [51.6%]) and 27 control individuals (mean [SD] age, 21.9 [1.9] years). At baseline, patients showed widespread functional dysconnectivity compared with controls, with reductions predominantly affecting interactions between the default mode network, limbic systems, and the rest of the brain. From baseline to 3 months, patients receiving placebo showed increased FC principally within the same systems; some of these changes correlated with improved clinical outcomes (canonical correlation analysis R = 0.901; familywise error-corrected P = .005). Antipsychotic exposure was associated with increased FC primarily between the thalamus and the rest of the brain. CONCLUSIONS AND RELEVANCE: In this secondary analysis of a clinical trial, antipsychotic-naive patients with FEP showed widespread functional dysconnectivity at baseline, followed by an early normalization of default mode network and cortical limbic dysfunction in patients receiving placebo and psychosocial intervention. Antipsychotic exposure was associated with FC changes concentrated on thalamocortical networks. TRIAL REGISTRATION: ACTRN12607000608460.
  • Item
    Thumbnail Image
    Differentiating the effect of antipsychotic medication and illness on brain volume reductions in first-episode psychosis: A Longitudinal, Randomised, Triple-blind, Placebo-controlled MRI Study
    Chopra, S ; Fornito, A ; Francey, SM ; O'Donoghue, B ; Cropley, V ; Nelson, B ; Graham, J ; Baldwin, L ; Tahtalian, S ; Yuen, HP ; Allott, K ; Alvarez-Jimenez, M ; Harrigan, S ; Sabaroedin, K ; Pantelis, C ; Wood, SJ ; McGorry, P (SPRINGERNATURE, 2021-07)
    Changes in brain volume are a common finding in Magnetic Resonance Imaging (MRI) studies of people with psychosis and numerous longitudinal studies suggest that volume deficits progress with illness duration. However, a major unresolved question concerns whether these changes are driven by the underlying illness or represent iatrogenic effects of antipsychotic medication. In this study, 62 antipsychotic-naïve patients with first-episode psychosis (FEP) received either a second-generation antipsychotic (risperidone or paliperidone) or a placebo pill over a treatment period of 6 months. Both FEP groups received intensive psychosocial therapy. A healthy control group (n = 27) was also recruited. Structural MRI scans were obtained at baseline, 3 months and 12 months. Our primary aim was to differentiate illness-related brain volume changes from medication-related changes within the first 3 months of treatment. We secondarily investigated long-term effects at the 12-month timepoint. From baseline to 3 months, we observed a significant group x time interaction in the pallidum (p < 0.05 FWE-corrected), such that patients receiving antipsychotic medication showed increased volume, patients on placebo showed decreased volume, and healthy controls showed no change. Across the entire patient sample, a greater increase in pallidal grey matter volume over 3 months was associated with a greater reduction in symptom severity. Our findings indicate that psychotic illness and antipsychotic exposure exert distinct and spatially distributed effects on brain volume. Our results align with prior work in suggesting that the therapeutic efficacy of antipsychotic medications may be primarily mediated through their effects on the basal ganglia.
  • Item
    Thumbnail Image
    S166. EFFECTIVE CONNECTIVITY OF FRONTOSTRIATAL SYSTEMS IN FIRST-EPISODE PSYCHOSIS
    Sabaroedin, K ; Razi, A ; Aquino, K ; Chopra, S ; Finlay, A ; Nelson, B ; Allott, K ; Alvarez-Jimenez, M ; Graham, J ; Baldwin, L ; Tahtalian, S ; Yuen, HP ; Harrigan, S ; Cropley, V ; Pantelis, C ; Wood, S ; O’Donoghue, B ; Francey, S ; McGorry, P ; Fornito, A (Oxford University Press (OUP), 2020-05-18)
    Abstract Background Neuroimaging studies have found dysconnectivity of frontostriatal circuits across a broad spectrum of psychotic symptoms. However, it is unknown whether dysconnectivity within frontostriatal circuits originates from disrupted bottom-up or top-down control signaling within these systems. Here, we used dynamic causal modelling (DCM) to examine the effective connectivity of frontostriatal systems in first-episode psychosis (FEP). Methods A total of 55 FEP patients (26 males; mean [SD] age = 19.24 [2.89]) and 24 healthy controls (15 males; mean [SD] age = 21.83 [1.93]) underwent a resting-state functional magnetic resonance imaging protocol. Biologically plausible connections between eight left hemisphere regions encompassing the dorsal and ventral frontostriatal systems were modelled using spectral DCM. The regions comprise dorsolateral prefrontal cortex, ventromedial prefrontal cortex, anterior hippocampus, amygdala, dorsal caudate, nucleus accumbens, thalamus, and the midbrain. Effective connectivity between groups were assessed using a parametric Bayesian model. Associations between effective connectivity parameters and positive symptoms, measured by the Brief Psychiatric Rating Scale positive subscale, was assessed in the patient group in a separate Bayesian general linear model. Results DCM shows evidence for differences in effective connectivity between patients and healthy controls, namely in the bottom-down connections distributed in the frontostriatal system encompassing the hippocampus, amygdala, striatum, and midbrain. Compared to healthy controls, patients also demonstrated increased disinhibition of the midbrain. In patients, positive symptoms are associated with increased top-down connections to the midbrain. Outgoing connection from the midbrain to the nucleus accumbens is also increased in association with positive symptoms. Discussion Aberrant top-down connectivity in the frontostriatal system in patients is consistent with top-down dysregulation of dopamine function in FEP, as dopaminergic activity in the midbrain is proposed to be under the control of higher brain areas. In patients, increased self-inhibition of the midbrain, as well as symptom associations in both ingoing and outgoing connections of this region, are congruous with hyperactivity of the midbrain as proposed by the dopamine dysregulation hypothesis. Here, we demonstrate that mathematical models of brain imaging signals can be used to identify the key disruptions driving brain circuit dysfunction, identifying new targets for treatment.
  • Item
    Thumbnail Image
    Cognitive ability and metabolic physical health in first-episode psychosis
    Whitson, S ; O'Donoghue, B ; Hester, R ; Baldwin, L ; Harrigan, S ; Francey, S ; Graham, J ; Nelson, B ; Ratheesh, A ; Alvarez-Jimenez, M ; Fornito, A ; Pantelis, C ; Yuen, HP ; Thompson, A ; Kerr, M ; Berk, M ; Wood, SJ ; McGorry, P ; Allott, K (ELSEVIER, 2021-06)
    Cognitive impairments are a core feature of first-episode psychosis (FEP), arising before illness onset and antipsychotic exposure. Individuals with chronic psychosis experience poorer physical health while taking antipsychotic medication, but health disparities may be evident at FEP onset, prior to antipsychotic exposure. Given the links between cognition and physical health in healthy populations, the aim was to explore whether cognition and physical health are associated in FEP, which could inform early physical health interventions for cognition in FEP. Participants were aged 15 to 25 and included 86 individuals experiencing FEP with limited antipsychotic exposure and duration of untreated psychosis of ≤six months, and 43 age- and sex-matched controls. Individuals with FEP performed significantly poorer than controls in most cognitive domains (Cohen's d = 0.38 to 1.59). Groups were similar in metabolic health measures, excluding a significantly faster heart rate in FEP (d = 0.68). Through hierarchical regression analyses, we found that in the overall sample, BMI was negatively related to current IQ after controlling for education and group (FEP/control). Relationships between BMI and cognition were consistent across the FEP and healthy control groups. In FEP, current IQ and working memory were negatively correlated with lipid profiles. Findings suggest that in FEP, impaired cognition is exhibited earlier than physical health problems, and that compared to controls, similar relationships with cognition are demonstrated. Causal pathways and trajectories of relationships between health and cognition in FEP require investigation, especially as antipsychotic medications are introduced. The findings have implications for cognitive and health interventions.
  • Item
    Thumbnail Image
    Psychosocial Intervention With or Without Antipsychotic Medication for First-Episode Psychosis: A Randomized Noninferiority Clinical Trial
    Francey, SM ; O’Donoghue, B ; Nelson, B ; Graham, J ; Baldwin, L ; Yuen, HP ; Kerr, MJ ; Ratheesh, A ; Allott, K ; Alvarez-Jimenez, M ; Fornito, A ; Harrigan, S ; Thompson, AD ; Wood, S ; Berk, M ; McGorry, PD (Oxford University Press (OUP), 2020-01-01)
    Abstract This triple-blind (participants, clinicians, and researchers) randomized controlled noninferiority trial examined whether intensive psychosocial intervention (cognitive-behavioral case management, CBCM) for first-episode psychosis (FEP) in 15–25 year-olds managed in a specialized early intervention for psychosis service was noninferior to usual treatment of antipsychotic medication plus CBCM delivered during the first 6 months of treatment. To maximize safety, participants were required to have low levels of suicidality and aggression, a duration of untreated psychosis (DUP) of less than 6 months, and be living in stable accommodation with social support. The primary outcome was level of functioning as assessed by the Social and Occupational Functioning Scale (SOFAS) at 6 months. Ninety young people were randomized by computer, 46 to placebo, and 44 antipsychotic medication and 33% of those who commenced trial medication completed the entire 6-month trial period. On the SOFAS, both groups improved, and group differences were small and clinically trivial, indicating that treatment with placebo medication was no less effective than conventional antipsychotic treatment (mean difference = −0.2, 2-sided 95% confidence interval = −7.5 to 7.0, t = 0.060, P = .95). Within the context of a specialized early intervention service, and with a short DUP, the immediate introduction of antipsychotic medication may not be required for all cases of FEP in order to see functional improvement. However, this finding can only be generalized to a very small proportion of FEP cases at this stage, and a larger trial is required to clarify whether antipsychotic-free treatment can be recommended for specific subgroups of those with FEP. Trial Registration: ACTRN12607000608460 (www.anzctr.org.au).