Centre for Youth Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Effects of NRG1 and DAOA genetic variation on transition to psychosis in individuals at ultra-high risk for psychosis
    Bousman, CA ; Yung, AR ; Pantelis, C ; Ellis, JA ; Chavez, RA ; Nelson, B ; Lin, A ; Wood, SJ ; Amminger, GP ; Velakoulis, D ; McGorry, PD ; Everall, IP ; Foley, DL (NATURE PUBLISHING GROUP, 2013-04)
    Prospective studies have suggested genetic variation in the neuregulin 1 (NRG1) and D-amino-acid oxidase activator (DAOA) genes may assist in differentiating high-risk individuals who will or will not transition to psychosis. In a prospective cohort (follow-up=2.4-14.9 years) of 225 individuals at ultra-high risk (UHR) for psychosis, we assessed haplotype-tagging single-nucleotide polymorphisms (htSNPs) spanning NRG1 and DAOA for their association with transition to psychosis, using Cox regression analysis. Two NRG1 htSNPs (rs12155594 and rs4281084) predicted transition to psychosis. Carriers of the rs12155594 T/T or T/C genotype had a 2.34 (95% confidence interval (CI)=1.37-4.00) times greater risk of transition compared with C/C carriers. For every rs4281084 A-allele the risk of transition increased by 1.55 (95% CI=1.05-2.27). For every additional rs4281084-A and/or rs12155594-T allele carried the risk increased ∼1.5-fold, with 71.4% of those carrying a combination of 3 of these alleles transitioning to psychosis. None of the assessed DAOA htSNPs were associated with transition. Our findings suggest NRG1 genetic variation may improve our ability to identify UHR individuals at risk for transition to psychosis.
  • Item
    Thumbnail Image
    PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia
    Di Biase, MA ; Zalesky, A ; O'keefe, G ; Laskaris, L ; Baune, BT ; Weickert, CS ; Olver, J ; McGorry, PD ; Amminger, GP ; Nelson, B ; Scott, AM ; Hickie, I ; Banati, R ; Turkheimer, F ; Yaqub, M ; Everall, IP ; Pantelis, C ; Cropley, V (NATURE PUBLISHING GROUP, 2017-08-29)
    We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.
  • Item
    No Preview Available
    Can antipsychotic dose reduction lead to better functional recovery in first-episode psychosis? A randomized controlled-trial of antipsychotic dose reduction. The reduce trial: Study protocol
    Weller, A ; Gleeson, J ; Alvarez-Jimenez, M ; McGorry, P ; Nelson, B ; Allott, K ; Bendall, S ; Bartholomeusz, C ; Koval, P ; Harrigan, S ; O'Donoghue, B ; Fornito, A ; Pantelis, C ; Amminger, GP ; Ratheesh, A ; Polari, A ; Wood, SJ ; van der El, K ; Ellinghaus, C ; Gates, J ; O'Connell, J ; Mueller, M ; Wunderink, L ; Killackey, E (WILEY, 2019-12)
    UNLABELLED: Antipsychotic medication has been the mainstay of treatment for psychotic illnesses for over 60 years. This has been associated with improvements in positive psychotic symptoms and a reduction in relapse rates. However, there has been little improvement in functional outcomes for people with psychosis. At the same time there is increasing evidence that medications contribute to life shortening metabolic and cardiovascular illnesses. There is also uncertainty as to the role played by antipsychotic medication in brain volume changes. AIM: The primary aim of the study is, in a population of young people with first-episode psychosis, to compare functional outcomes between an antipsychotic dose reduction strategy with evidence-based intensive recovery treatment (EBIRT) group (DRS+) and an antipsychotic maintenance treatment with EBIRT group (AMTx+) at 24-months follow-up. METHODS: Our single-blind randomized controlled trial, within a specialist early psychosis treatment setting, will test the whether the DRS+ group leads to better vocational and social recovery than, the AMTx+ group over a 2-year period in 180 remitted first-episode psychosis patients. Additionally, we will examine the effect of DRS+ vs AMTx+ on physical health, brain volume and cognitive functioning. This study will also determine whether the group receiving DRS+ will be no worse off in terms of psychotic relapses over 2 years follow-up. RESULTS: This paper presents the protocol, rationale and hypotheses for this study which commenced recruitment in July 2017. CONCLUSION: This study will provide evidence as to whether an antipsychotic dose-reduction recovery treatment leads to improved functioning and safer outcomes in first-episode psychosis patients. In addition, it will be the first-controlled experiment of the effect of exposure to antipsychotic maintenance treatment on brain volume changes in this population.
  • Item
    Thumbnail Image
    White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids
    Vijayakumar, N ; Bartholomeusz, C ; Whitford, T ; Hermens, DF ; Nelson, B ; Rice, S ; Whittle, S ; Pantelis, C ; McGorry, P ; Schafer, MR ; Amminger, GP (BMC, 2016-08-11)
    BACKGROUND: Schizophrenia is thought to be a neurodevelopmental disorder with pathophysiological processes beginning in the brain prior to the emergence of clinical symptoms. Recent evidence from neuroimaging studies using techniques such as diffusion tensor imaging has identified white matter abnormalities that are suggestive of disrupted brain myelination and neuronal connectivity. Identifying whether such effects exist in individuals at high risk for developing psychosis may help with prevention and early intervention strategies. In addition, there is preliminary evidence for a role of lipid biology in the onset of psychosis, along with well-established evidence of its role in myelination of white matter tracts. As such, this article synthesises the literature on polyunsaturated fatty acids (PUFAs) in myelination and schizophrenia, hypothesizing that white matter abnormalities may potentially mediate the relationship between PUFAs and schizophrenia. METHODS: Diffusion tensor imaging studies were identified through a systematic search of existing literature. Studies examined white matter integrity in ultra-high risk (UHR) samples, as assessed using structured diagnostic interviews. Data was extracted and summarised as a narrative review. RESULTS: Twelve studies met inclusion criteria, and findings identified reduced fractional anisotropy and higher diffusivity. Although the exact location of abnormalities remains uncertain, fronto-temporal and fronto-limbic connections, including the superior longitudinal and uncinate fasiculus, cingulum, and corpus callosum appear to be implicated. Because of preliminary evidence suggesting lipid biology may be relevant for the onset of psychosis, a discussion is provided of the role of polyunsaturated fatty acids (PUFAs) in myelination and risk for psychosis. CONCLUSIONS: While the function of PUFAs in myelination is well-established, there is growing evidence of reduced PUFA concentration in UHR samples, highlighting the need for research to examine the relationship between PUFA and white matter integrity in high-risk samples and age-matched healthy controls. Such investigations will help to better understand the pathophysiology of the disorder, and potentially assist in the development of novel treatment and early intervention strategies.