Centre for Youth Mental Health - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Brain Aging in Major Depressive Disorder: Results From the ENIGMA MDD Consortium
    Schmaal, L ; Han, L ; Dinga, R ; Thompson, P ; Veltman, D ; Penninx, B (ELSEVIER SCIENCE INC, 2018-05-01)
    Background: Major Depressive Disorder has been associated with accelerated biological aging. From a brain perspective, normal aging is associated with significant loss of grey matter and depression may have an accelerating effect on age-related brain atrophy. Here, data on brain aging in MDD from the ENIGMA MDD Working Group will be presented. Methods: A normative model of brain-based age was devel- oped in 4708 healthy controls by applying a Gaussian Process Regression analysis with 10-fold cross-validation to estimate chronological age from structural MRI scans, separately for males and females. This model was then applied to 2924 MDD individuals to predict their brain-based age. Accelerated brain aging was measured as the difference between predicted brain-based age and actual chronological age (brain age gap). Results: The brain age model explained 92% and 93% of the age variance in female and male healthy controls, respectively. The mean absolute error (MAE) was 6.79 years in females and 6.60 in males. Application of the model to MDD patients showed a mean brain age gap of 0.75 years in females (MAE¼6.82) and 0.64 in males (MAE¼6.68), which were significantly lower than brain age gap estimates in healthy controls in both females (F(1,4379)¼6.10,P¼0.01) and males (F(1,3166)¼4.07,P¼0.04). Our preliminary analysis also showed greater brain age gap associations with various clinical characteristics. Conclusions: We found preliminary evidence for accelerated brain aging in MDD, however, the brains of patients were estimated to be only <1 years older than healthy controls. The impact of different methods, feature selection and potential confounding effects will also be discussed.
  • Item
    No Preview Available
    Deviations From Normative Age-Brain Associations in Over 3,000 Individuals With Major Depressive Disorder
    Schmaal, L ; Han, L ; Bayer, J ; Marquand, A ; Dinga, R ; Cole, J ; Hahn, T ; Penninx, B ; Veltman, D ; Thompson, P (ELSEVIER SCIENCE INC, 2019-05-15)
    Background: Major depressive disorder (MDD) is a complex heterogeneous disorder. Identifying brain alterations as indi- vidual deviations from normative patterns of brain-age asso- ciations, instead of patient group mean differences, can provide important insights into heterogeneous patterns of brain abnormalities observed in MDD. Methods: We estimated normative models of (1) age pre- dicting individual structural brain measures, and (2) structural brain measures predicting age (Brain Age model) using ma- chine learning in healthy individuals (N¼2,515) from the ENIGMA MDD consortium. We applied model parameters to independent samples of healthy individuals (N¼2,513) and MDD patients (N¼3,433) to obtain predicted values of brain structure (model 1) and age (model 2). Z-scores quantifying differences between predictive and true values were calcu- lated, representing individual deviations from the normative range. Results: The estimated normative models showed good model fit in the training sample; e.g. a correlation of R¼0.86 between actual and predicted age for the Brain Age Model, and good generalization to independent healthy and MDD samples. We identified heterogeneous patterns of brain deviations in MDD patients (model 1). Patients with more extreme deviations showed different clinical characteristics compared to patients residing within the normative range. Additionally, patients were estimated on average w1 year older than controls (model 2), but we also observed large between-person variation in brain age gaps. Further ana- lyses showed associations between brain age gap and clinical symptoms. Conclusions: Our work shows substantial heterogeneity in deviations from normal age-related variation in brain structure in individuals with MDD. The impact of and solutions for con- founding effects of scan site will also be discussed.
  • Item
    No Preview Available
    Meta-Analysis of Hippocampal Subfields: Results From the ENIGMA-MDD Working Group
    Saemann, P ; Czisch, M ; Jahanshad, N ; Whelan, CD ; van Velzen, L ; Hibar, D ; Han, L ; Veer, IM ; Walter, H ; Veltman, D ; Schmaal, L (ELSEVIER SCIENCE INC, 2019-05-15)
    Background Hippocampal volume reductions in major depressive disorder (MDD) represent a robust finding in retrospective meta-analyses. Subregional specificity of this finding has been suspected from several smaller previous studies. Given the complex role of the hippocampus both for stress response regulation and its vulnerability to chronic disease, we aim at finer mapping of this result using FreeSurfer based, automated subfield segmentation. Methods Twenty-three centers with MDD/control samples contributed. Results reported here stem from 2522 patients and 4244 controls. After segmentation and standardized QC, local statistical were run for 25 models in total. Key models were: Cases vs. controls (covarying for age, age squared, sex-by-age, sex-by-age-squared, ICV and scanner/site); recurrent vs. controls, first episode vs. controls, early onset (EO, <22 years) vs. controls, late onset (LO) vs. controls. Eventually, inverse variance-weighted random-effect meta-analysis model in R (metafor package) with FDR correction for 14 phenotypes was performed. Results Regional specificity of volume deficits were detected in MDD as a whole (2522 patients, 4244 controls) (CA3>whole>CA1>GC.ML.DG>CA4>molecular layer). No robust effects were found in first episode patients (743 patients, 3812 controls) except for nominal effects. In recurrent MDD, only CA1 effects were robust. EO depression showed unexpectedly strong effects (836 patients, 3472 controls). Similarly, patients with current AD treatment showed strong effects, similarly distributed as in MDD except for CA1. No correlation with depression severity was detected. Conclusions Hippocampal structural changes in MDD show subregion specificity. While first episode status seems less critical and first/recurrent episode patients are similar, early onset appears as key predictor of structural abnormalities.
  • Item
  • Item
    Thumbnail Image
    Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium
    van Erp, TGM ; Walton, E ; Hibar, DP ; Schmaal, L ; Jiang, W ; Glahn, DC ; Pearlson, GD ; Yao, N ; Fukunaga, M ; Hashimoto, R ; Okada, N ; Yamamori, H ; Bustillo, JR ; Clark, VP ; Agartz, I ; Mueller, BA ; Cahn, W ; de Zwarte, SMC ; Pol, HEH ; Kahn, RS ; Ophoff, RA ; van Haren, NEM ; Andreassen, OA ; Dale, AM ; Nhat, TD ; Gurholt, TP ; Hartberg, CB ; Haukvik, UK ; Jorgensen, KN ; Lagerberg, T ; Melle, I ; Westlye, LT ; Gruber, O ; Kraemer, B ; Richter, A ; Zilles, D ; Calhoun, VD ; Crespo-Facorro, B ; Roiz-Santianez, R ; Tordesillas-Gutierrez, D ; Loughland, C ; Carr, VJ ; Catts, S ; Cropley, VL ; Fullerton, JM ; Green, MJ ; Henskens, FA ; Jablensky, A ; Lenroot, RK ; Mowry, BJ ; Michie, PT ; Pantelis, C ; Quide, Y ; Schall, U ; Scott, RJ ; Cairns, MJ ; Seal, M ; Tooney, PA ; Rasser, PE ; Cooper, G ; Weickert, CS ; Weickert, TW ; Morris, DW ; Hong, E ; Kochunov, P ; Beard, LM ; Gur, RE ; Gur, RC ; Satterthwaite, TD ; Wolf, DH ; Belger, A ; Brown, GG ; Ford, JM ; Macciardi, F ; Mathalon, DH ; O'Leary, DS ; Potkin, SG ; Preda, A ; Voyvodic, J ; Lim, KO ; McEwen, S ; Yang, F ; Tan, Y ; Tan, S ; Wang, Z ; Fan, F ; Chen, J ; Xiang, H ; Tang, S ; Guo, H ; Wan, P ; Wei, D ; Bockholt, HJ ; Ehrlich, S ; Wolthusen, RPF ; King, MD ; Shoemaker, JM ; Sponheim, SR ; De Haan, L ; Koenders, L ; Machielsen, MW ; van Amelsvoort, T ; Veltman, DJ ; Assogna, F ; Banaj, N ; de Rossi, P ; Iorio, M ; Piras, F ; Spalletta, G ; McKenna, PJ ; Pomarol-Clotet, E ; Salvador, R ; Corvin, A ; Donohoe, G ; Kelly, S ; Whelan, CD ; Dickie, EW ; Rotenberg, D ; Voineskos, AN ; Ciufolini, S ; Radua, J ; Dazzan, P ; Murray, R ; Marques, TR ; Simmons, A ; Borgwardt, S ; Egloff, L ; Harrisberger, F ; Riecher-Roessler, A ; Smieskova, R ; Alpert, K ; Wang, L ; Jonsson, EG ; Koops, S ; Sommer, IEC ; Bertolino, A ; Bonvino, A ; Di Giorgio, A ; Neilson, E ; Mayer, AR ; Stephen, JM ; Kwon, JS ; Yun, J-Y ; Cannon, DM ; McDonald, C ; Lebedeva, I ; Tomyshev, AS ; Akhadov, T ; Kaleda, V ; Fatouros-Bergman, H ; Flyckt, L ; Busatto, GF ; Rosa, PGP ; Serpa, MH ; Zanetti, M ; Hoschl, C ; Skoch, A ; Spaniel, F ; Tomecek, D ; Hagenaars, SP ; McIntosh, AM ; Whalley, HC ; Lawrie, SM ; Knoechel, C ; Oertel-Knoechel, V ; Staeblein, M ; Howells, FM ; Stein, DJ ; Temmingh, HS ; Uhlmann, A ; Lopez-Jaramillo, C ; Dima, D ; McMahon, A ; Faskowitz, J ; Gutman, BA ; Jahanshad, N ; Thompson, PM ; Turner, JA (ELSEVIER SCIENCE INC, 2018-11-01)
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia.
  • Item
    Thumbnail Image
    Structural and Functional Brain Abnormalities Associated With Exposure to Different Childhood Trauma Subtypes: A Systematic Review of Neuroimaging Findings
    Cassiers, LLM ; Sabbe, BGC ; Schmaal, L ; Veltman, DJ ; Penninx, BWJH ; Van den Eede, F (FRONTIERS MEDIA SA, 2018-08-03)
    Background: Childhood trauma subtypes sexual abuse, physical abuse, emotional maltreatment, and neglect may have differential effects on the brain that persist into adulthood. A systematic review of neuroimaging findings supporting these differential effects is as yet lacking. Objectives: The present systematic review aims to summarize the findings of controlled neuroimaging trials regarding long-term differential effects of trauma subtypes on the human brain. Methods: A systematic literature search was performed using the PubMed and PsycINFO databases from January 2017 up to and including January 2018. Additional papers were identified by a manual search in the reference lists of selected papers and of relevant review articles retrieved by the initial database search. Studies were then assessed for eligibility by the first author. Only original human studies directly comparing neuroimaging findings of exposed and unexposed individuals to well-defined emotional, physical or sexual childhood maltreatment while controlling for the effects of other subtypes were included. A visual summary of extracted data was made for neuroimaging modalities for which comparison between trauma subtypes was feasible, taking the studies' numbers and sample sizes into account. Results: The systematic literature search yielded 25 publications. Sexual abuse was associated with structural deficits in the reward circuit and genitosensory cortex and amygdalar hyperreactivity during sad autobiographic memory recall. Emotional maltreatment correlated with abnormalities in fronto-limbic socioemotional networks. In neglected individuals, white matter integrity and connectivity were disturbed in several brain networks involved in a variety of functions. Other abnormalities, such as reduced frontal cortical volume, were common to all maltreatment types. Conclusions: There is some evidence for long-term differential effects of trauma subtypes on the human brain. The observed alterations may result from both protective adaptation of and damage to the brain following exposure to threatening life events. Though promising, the current evidence is incomplete, with few brain regions and neuroimaging modalities having been investigated in all subtypes. The comparability of the available evidence is further limited by the heterogeneity of study populations regarding gender, age and comorbid psychopathology. Future neuroimaging studies should take this potentially differential role of childhood trauma subtypes into account.
  • Item
    Thumbnail Image
    Collaborative Efforts for Understanding the Human Brain
    Liew, S-L ; Schmaal, L ; Jahanshad, N (FRONTIERS MEDIA SA, 2019-05-29)
  • Item
    Thumbnail Image
    Neurodevelopmental correlates of the emerging adult self
    Davey, CG ; Fornito, AD ; Pujol, J ; Breakspear, M ; Schmaal, L ; Harrison, BJ (ELSEVIER SCI LTD, 2019-04)
    The self-concept - the set of beliefs that a person has about themselves - shows significant development from adolescence to early adulthood, in parallel with brain development over the same period. We sought to investigate how age-related changes in self-appraisal processes corresponded with brain network segregation and integration in healthy adolescents and young adults. We scanned 88 participants (46 female), aged from 15 to 25 years, as they performed a self-appraisal task. We first examined their patterns of activation to self-appraisal, and replicated prior reports of reduced dorsomedial prefrontal cortex activation with older age, with similar reductions in precuneus, right anterior insula/operculum, and a region extending from thalamus to striatum. We used independent component analysis to identify distinct anterior and posterior components of the default mode network (DMN), which were associated with the self-appraisal and rest-fixation parts of the task, respectively. Increasing age was associated with reduced functional connectivity between the two components. Finally, analyses of task-evoked interactions between pairs of nodes within the DMN identified a subnetwork that demonstrated reduced connectivity with increasing age. Decreased network integration within the DMN appears to be an important higher-order maturational process supporting the emerging adult self.
  • Item
    Thumbnail Image
    An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group
    Boedhoe, PSW ; Heymans, MW ; Schmaal, L ; Abe, Y ; Alonso, P ; Ameis, SH ; Anticevic, A ; Arnold, PD ; Batistuzzo, MC ; Benedetti, F ; Beucke, JC ; Bollettini, I ; Bose, A ; Brem, S ; Calvo, A ; Calvo, R ; Cheng, Y ; Cho, KLK ; Ciullo, V ; Dallaspezia, S ; Denys, D ; Feusner, JD ; Fitzgerald, KD ; Fouches, J-P ; Fridgeirsson, EA ; Gruner, P ; Henna, GL ; Hibar, DP ; Hoexter, MQ ; Hu, H ; Huyser, C ; Jahanshad, N ; James, A ; Kathmann, N ; Kaufmann, C ; Koch, K ; Kwon, JS ; Lazaro, L ; Lochner, C ; Marsh, R ; Martinez-Zalacain, I ; Mataix-Cols, D ; Menchon, JM ; Minuzzi, L ; Morer, A ; Nakamae, T ; Nakao, T ; Narayanaswamy, JC ; Nishida, S ; Nurmi, EL ; O'Neill, J ; Piacentini, J ; Piras, F ; Piras, F ; Reddy, YCJ ; Reess, TJ ; Sakai, Y ; Sato, JP ; Simpson, HB ; Soreni, N ; Soriano-Mas, C ; Spalletta, G ; Stevens, MC ; Szeszkos, PP ; Tolin, DF ; van Wingen, GA ; Venkatasubramanian, G ; Walitza, S ; Wang, Z ; Yun, J-Y ; Thompson, PM ; Stein, DJ ; van den Heuvel, OA ; Twisk, JWR (FRONTIERS MEDIA SA, 2019-01-08)
    Objective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data.
  • Item
    Thumbnail Image
    Neuroimaging predictors of onset and course of depression in childhood and adolescence: A systematic review of longitudinal studies
    Toenders, YJ ; van Velzen, LS ; Heideman, IZ ; Harrison, BJ ; Davey, CG ; Schmaal, L (ELSEVIER SCI LTD, 2019-10)
    Major depressive disorder (MDD) often emerges during adolescence with detrimental effects on development as well as lifetime consequences. Identifying neurobiological markers that are associated with the onset or course of this disorder in childhood and adolescence is important for early recognition and intervention and, potentially, for the prevention of illness onset. In this systematic review, 68 longitudinal neuroimaging studies, from 34 unique samples, that examined the association of neuroimaging markers with onset or changes in paediatric depression published up to 1 February 2019 were examined. These studies employed different imaging modalities at baseline; structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) or electroencephalography (EEG). Most consistent evidence across studies was found for blunted reward-related (striatal) activity (fMRI and EEG) as a potential biological marker for both MDD onset and course. With regard to structural brain measures, the results were highly inconsistent, likely caused by insufficient power to detect complex mediating effects of genetic and environmental factors in small sample sizes. Overall, there were a limited number of samples, and confounding factors such as sex and pubertal development were often not considered, whereas these factors are likely to be relevant especially in this age range.