Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Retinal Changes in an ATP-Induced Model of Retinal Degeneration
    Aplin, FP ; Vessey, KA ; Luu, CD ; Guymer, RH ; Shepherd, RK ; Fletcher, EL (FRONTIERS MEDIA SA, 2016-04-29)
    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.
  • Item
    Thumbnail Image
    Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration
    Aplin, FP ; Fletcher, EL ; Luu, CD ; Vessey, KA ; Allen, PJ ; Guymer, RH ; Shepherd, RK ; Shivdasani, MN (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2016-10)
    PURPOSE: Retinal prostheses have emerged as a promising technology to restore vision in patients with severe photoreceptor degeneration. To better understand how neural degeneration affects the efficacy of electronic implants, we investigated the function of a suprachoroidal retinal implant in a feline model. METHODS: Unilateral retinal degeneration was induced in four adult felines by intravitreal injection of adenosine triphosphate (ATP). Twelve weeks post injection, animals received suprachoroidal electrode array implants in each eye, and responses to electrical stimulation were obtained using multiunit recordings from the visual cortex. Histologic measurements of neural and glial changes in the retina at the implant site were correlated with cortical thresholds from individual stimulating electrodes. RESULTS: Adenosine triphosphate-injected eyes displayed changes consistent with mid-to-late stage retinal degeneration and remodeling. A significant increase in electrical charge was required to induce a cortical response from stimulation of the degenerated retina compared to that in the fellow control eye. Spatial and temporal characteristics of the electrically evoked cortical responses were no different between eyes. Individual electrode thresholds varied in both the control and the ATP-injected eyes and were correlated with ganglion cell density. In ATP-injected eyes, cortical threshold was also independently correlated with an increase in the extent of retinal gliosis. CONCLUSIONS: These data suggest that even when ganglion cell density remains unaffected, glial changes in the retina following degeneration can influence the efficacy of suprachoroidal electrical stimulation. A better understanding of how glial change impacts retinal prosthesis function may help to further the optimization of retinal implants.
  • Item
    Thumbnail Image
    ATP-Induced Photoreceptor Death in a Feline Model of Retinal Degeneration
    Aplin, FP ; Luu, CD ; Vessey, KA ; Guymer, RH ; Shepherd, RK ; Fletcher, EL (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2014-12)
    PURPOSE: To develop and characterize a feline model of retinal degeneration induced by intravitreal injection of adenosine triphosphate (ATP). METHODS: Nineteen normally sighted adult cats received 100 μL intravitreal injections of ATP with a final concentration of 11, 22, or 55 mM at the retina. Four animals were euthanized 30 hours after injection and retinal sections examined for apoptosis using a TUNEL cell death assay. In the remaining animals, structural and functional changes were characterized over a 3-month period using a combination of electroretinography (ERG) and optical coherence tomography (OCT). RESULTS: Using a TUNEL cell death assay, we detected widespread photoreceptor death 30 hours after injection with 55 mM intravitreal ATP. All concentrations of ATP caused loss of retinal function and gross changes in retinal structure within 2 weeks of injection. Intravitreal injection of ATP led to a rapid loss of rod photoreceptor function and a gradual loss of cone photoreceptor function within 3 months. Outer nuclear layer thickness was globally reduced by 3 months, with the inner nuclear layer including the retinal nerve fiber layer remaining intact. Structural abnormalities were observed, including focal retinal detachment with evidence of both intravitreal and intraretinal inflammation in some eyes. CONCLUSIONS: Development of an ATP-induced feline model of retinal degeneration provides a rapid and effective large-eyed animal model for research into vision restoration.
  • Item
    Thumbnail Image
    Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis
    Saunders, AL ; Williams, CE ; Heriot, W ; Briggs, R ; Yeoh, J ; Nayagam, DAX ; McCombe, M ; Villalobos, J ; Burns, O ; Luu, CD ; Ayton, LN ; McPhedran, M ; Opie, NL ; McGowan, C ; Shepherd, RK ; Guymer, R ; Allen, PJ (WILEY, 2014)
    BACKGROUND: Current surgical techniques for retinal prosthetic implantation require long and complicated surgery, which can increase the risk of complications and adverse outcomes. METHOD: The suprachoroidal position is known to be an easier location to access surgically, and so this study aimed to develop a surgical procedure for implanting a prototype suprachoroidal retinal prosthesis. The array implantation procedure was developed in 14 enucleated eyes. A full-thickness scleral incision was made parallel to the intermuscular septum and superotemporal to the lateral rectus muscle. A pocket was created in the suprachoroidal space, and the moulded electrode array was inserted. The scleral incision was closed and scleral anchor point sutured. In 9 of the 14 eyes examined, the device insertion was obstructed by the posterior ciliary neurovascular bundle. Subsequently, the position of this neurovascular bundle in 10 eyes was characterized. Implantation and lead routing procedure was then developed in six human cadavers. The array was tunnelled forward from behind the pinna to the orbit. Next, a lateral canthotomy was made. Lead fixation was established by creating an orbitotomy drilled in the frontal process of the zygomatic bone. The lateral rectus muscle was detached, and implantation was carried out. Finally, pinna to lateral canthus measurements were taken on 61 patients in order to determine optimal lead length. RESULTS: These results identified potential anatomical obstructions and informed the anatomical fitting of the suprachoroidal retinal prosthesis. CONCLUSION: As a result of this work, a straightforward surgical approach for accurate anatomical suprachoroidal array and lead placement was developed for clinical application.
  • Item
    Thumbnail Image
    First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis
    Ayton, LN ; Blamey, PJ ; Guymer, RH ; Luu, CD ; Nayagam, DAX ; Sinclair, NC ; Shivdasani, MN ; Yeoh, J ; McCombe, MF ; Briggs, RJ ; Opie, NL ; Villalobos, J ; Dimitrov, PN ; Varsamidis, M ; Petoe, MA ; McCarthy, CD ; Walker, JG ; Barnes, N ; Burkitt, AN ; Williams, CE ; Shepherd, RK ; Allen, PJ ; Mori, K (PUBLIC LIBRARY SCIENCE, 2014-12-18)
    UNLABELLED: Retinal visual prostheses ("bionic eyes") have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. TRIAL REGISTRATION: Clinicaltrials.gov NCT01603576.
  • Item
    Thumbnail Image
    A Wide-Field Suprachoroidal Retinal Prosthesis Is Stable and Well Tolerated Following Chronic Implantation
    Villalobos, J ; Nayagam, DAX ; Allen, PJ ; McKelvie, P ; Luu, CD ; Ayton, LN ; Freemantle, AL ; McPhedran, M ; Basa, M ; McGowan, CC ; Shepherd, RK ; Williams, CE (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2013-05)
    PURPOSE: The safety of chronic implantation of a retinal prosthesis in the suprachoroidal space has not been established. This study aimed to determine the safety of a wide-field suprachoroidal electrode array following chronic implantation using histopathologic techniques and electroretinography. METHODS: A platinum electrode array in a wide silicone substrate was implanted unilaterally in the suprachoroidal space in adult cats (n = 7). The lead and connector were tunneled out of the orbit and positioned subcutaneously. Postsurgical recovery was assessed using fundus photography and electroretinography (ERG). Following 3 months of passive implantation, the animals were terminated and the eyes assessed for the pathologic response to implantation. RESULTS: The implant was mechanically stable in the suprachoroidal space during the course of the study. The implanted eye showed a transient increase in ERG response amplitude at 2 weeks, which returned to normal by 3 months. Pigmentary changes were observed at the distal end of the implant, near the optic disc. Histopathologic assessment revealed a largely intact retina and a thin fibrous capsule around the suprachoroidal implant cavity. The foreign body response was minimal, with sporadic presence of macrophages and no active inflammation. All implanted eyes were negative for bacterial or fungal infections. A midgrade granuloma and thick fibrous buildup surrounded the extraocular cable. Scleral closure was maintained in six of seven eyes. There were no staphylomas or choroidal incarceration. CONCLUSIONS: A wide-field retinal prosthesis was stable and well tolerated during long-term suprachoroidal implantation in a cat model. The surgical approach was reproducible and overall safe.
  • Item
    Thumbnail Image
    Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study
    Nayagam, DAX ; Williams, RA ; Allen, PJ ; Shivdasani, MN ; Luu, CD ; Salinas-LaRosa, CM ; Finch, S ; Ayton, LN ; Saunders, AL ; McPhedran, M ; McGowan, C ; Villalobos, J ; Fallon, JB ; Wise, AK ; Yeoh, J ; Xu, J ; Feng, H ; Millard, R ; McWade, M ; Thien, PC ; Williams, CE ; Shepherd, RK ; Price, NSC (PUBLIC LIBRARY SCIENCE, 2014-05-22)
    PURPOSE: To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. METHODS: Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. RESULTS: All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. CONCLUSIONS: Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents.
  • Item
    Thumbnail Image
    Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis
    Villalobos, J ; Fallon, JB ; Nayagam, DAX ; Shivdasani, MN ; Luu, CD ; Allen, PJ ; Shepherd, RK ; Williams, CE (IOP PUBLISHING LTD, 2014-08)
    OBJECTIVE: The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. APPROACH: A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. MAIN RESULTS: The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm(-2)). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. SIGNIFICANCE: Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.