Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Cortical Speech Processing in Postlingually Deaf Adult Cochlear Implant Users, as Revealed by Functional Near-Infrared Spectroscopy
    Zhou, X ; Seghouane, A-K ; Shah, A ; Innes-Brown, H ; Cross, W ; Litovsky, R ; McKay, CM (SAGE PUBLICATIONS INC, 2018-07-19)
    An experiment was conducted to investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) to image cortical activity in the language areas of cochlear implant (CI) users and to explore the association between the activity and their speech understanding ability. Using fNIRS, 15 experienced CI users and 14 normal-hearing participants were imaged while presented with either visual speech or auditory speech. Brain activation was measured from the prefrontal, temporal, and parietal lobe in both hemispheres, including the language-associated regions. In response to visual speech, the activation levels of CI users in an a priori region of interest (ROI)-the left superior temporal gyrus or sulcus-were negatively correlated with auditory speech understanding. This result suggests that increased cross-modal activity in the auditory cortex is predictive of poor auditory speech understanding. In another two ROIs, in which CI users showed significantly different mean activation levels in response to auditory speech compared with normal-hearing listeners, activation levels were significantly negatively correlated with CI users' auditory speech understanding. These ROIs were located in the right anterior temporal lobe (including a portion of prefrontal lobe) and the left middle superior temporal lobe. In conclusion, fNIRS successfully revealed activation patterns in CI users associated with their auditory speech understanding.
  • Item
    No Preview Available
    Connectivity in Language Areas of the Brain in Cochlear Implant Users as Revealed by fNIRS
    McKay, CM ; Shah, A ; Seghouane, A-K ; Zhou, X ; Cross, W ; Litovsky, R ; VanDijk, P ; Baskent, D ; Gaudrain, E ; DeKleine, E ; Wagner, A ; Lanting, C (SPRINGER-VERLAG BERLIN, 2016)
    Many studies, using a variety of imaging techniques, have shown that deafness induces functional plasticity in the brain of adults with late-onset deafness, and in children changes the way the auditory brain develops. Cross modal plasticity refers to evidence that stimuli of one modality (e.g. vision) activate neural regions devoted to a different modality (e.g. hearing) that are not normally activated by those stimuli. Other studies have shown that multimodal brain networks (such as those involved in language comprehension, and the default mode network) are altered by deafness, as evidenced by changes in patterns of activation or connectivity within the networks. In this paper, we summarise what is already known about brain plasticity due to deafness and propose that functional near-infra-red spectroscopy (fNIRS) is an imaging method that has potential to provide prognostic and diagnostic information for cochlear implant users. Currently, patient history factors account for only 10 % of the variation in post-implantation speech understanding, and very few post-implantation behavioural measures of hearing ability correlate with speech understanding. As a non-invasive, inexpensive and user-friendly imaging method, fNIRS provides an opportunity to study both pre- and post-implantation brain function. Here, we explain the principle of fNIRS measurements and illustrate its use in studying brain network connectivity and function with example data.