Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 34
  • Item
    Thumbnail Image
    Platinum dissolution and tissue response following long-term electrical stimulation at high charge densities
    Shepherd, RK ; Carter, PM ; Dalrymple, AN ; Enke, YL ; Wise, AK ; Nguyen, T ; Firth, J ; Thompson, A ; Fallon, JB (IOP Publishing Ltd, 2021-04)
    Objective. Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months.Approach. Six cats were bilaterally implanted with Pt electrode arrays and unilaterally stimulated using charge balanced current pulses at a charge density of 267μC cm-2phase-1using a tripolar electrode configuration. Electrochemical measurements were made throughout the implant duration and evoked potentials recorded at the outset and on completion of the stimulation program. Cochleae were examined histologically for particulate Pt, tissue response, and auditory nerve survival; electrodes were examined for surface corrosion; and cochlea, brain, kidney, and liver tissue analysed for trace levels of Pt.Main results. Chronic stimulation resulted in both a significant increase in tissue response and particulate Pt within the tissue capsule surrounding the electrode array compared with implanted, unstimulated control cochleae. Importantly, there was no stimulus-induced loss of auditory neurons (ANs) or increase in evoked potential thresholds. Stimulated electrodes were significantly more corroded compared with unstimulated electrodes. Trace analysis revealed Pt in both stimulated and control cochleae although significantly greater levels were detected within stimulated cochleae. There was no evidence of Pt in brain or liver; however, trace levels of Pt were recorded in the kidneys of two animals. Finally, increased charge storage capacity and charge injection limit reflected the more extensive electrode corrosion associated with stimulated electrodes.Significance. Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the AN population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.
  • Item
    Thumbnail Image
    Guest editorial: Medical bionics: from emerging technologies to clinical practice
    Shepherd, RK (INST ENGINEERING TECHNOLOGY-IET, 2020-06)
  • Item
    Thumbnail Image
    Neurotrophin Gene Therapy for Sustained Neural Preservation after Deafness
    Atkinson, PJ ; Wise, AK ; Flynn, BO ; Nayagam, BA ; Hume, CR ; O'Leary, SJ ; Shepherd, RK ; Richardson, RT ; Kirchmair, R (PUBLIC LIBRARY SCIENCE, 2012-12-17)
    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.
  • Item
    Thumbnail Image
    Enhanced Auditory Neuron Survival Following Cell-Based BDNF Treatment in the Deaf Guinea Pig
    Pettingill, LN ; Wise, AK ; Geaney, MS ; Shepherd, RK ; Coleman, M (PUBLIC LIBRARY SCIENCE, 2011-04-15)
    Exogenous neurotrophin delivery to the deaf cochlea can prevent deafness-induced auditory neuron degeneration, however, we have previously reported that these survival effects are rapidly lost if the treatment stops. In addition, there are concerns that current experimental techniques are not safe enough to be used clinically. Therefore, for such treatments to be clinically transferable, methods of neurotrophin treatment that are safe, biocompatible and can support long-term auditory neuron survival are necessary. Cell transplantation and gene transfer, combined with encapsulation technologies, have the potential to address these issues. This study investigated the survival-promoting effects of encapsulated BDNF over-expressing Schwann cells on auditory neurons in the deaf guinea pig. In comparison to control (empty) capsules, there was significantly greater auditory neuron survival following the cell-based BDNF treatment. Concurrent use of a cochlear implant is expected to result in even greater auditory neuron survival, and provide a clinically relevant method to support auditory neuron survival that may lead to improved speech perception and language outcomes for cochlear implant patients.
  • Item
    Thumbnail Image
    An objective in vivo diagnostic method for inflammatory bowel disease
    Payne, SC ; Shepherd, RK ; Sedo, A ; Fallon, JB ; Furness, JB (ROYAL SOC, 2018-03)
    Inflammatory damage to the bowel, as occurs in inflammatory bowel disease (IBD), is debilitating to patients. In both patients and animal experimental models, histological analyses of biopsies and endoscopic examinations are used to evaluate the disease state. However, such measurements often have delays and are invasive, while endoscopy is not quantitatively objective. Therefore, a real-time quantitative method to assess compromised mucosal barrier function is advantageous. We investigated the correlation of in vivo changes in electrical transmural impedance with histological measures of inflammation. Four platinum (Pt) ball electrodes were placed in the lumen of the rat small intestine, with a return electrode under the skin. Electrodes placed within the non-inflamed intestine generated stable impedances during the 3 h testing period. Following an intraluminal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), an established animal model of IBD, impedances in the inflamed region significantly decreased relative to a region not exposed to TNBS (p < 0.05). Changes in intestinal transmural impedance were correlated (p < 0.05) with histologically assessed damage to the mucosa and increases in neutrophil, eosinophil and T-cell populations at 3 h compared with tissue from control regions. This quantitative, real-time assay may have application in the diagnosis and clinical management of IBD.
  • Item
    Thumbnail Image
    Transmural impedance detects graded changes of inflammation in experimental colitis
    Payne, SC ; Alexandrovics, J ; Thomas, R ; Shepherd, RK ; Furness, JB ; Fallon, JB (ROYAL SOC, 2020-02-19)
    Ulcerative colitis is a chronic disease in which the mucosa of the colon or rectum becomes inflamed. An objective biomarker of inflammation will provide quantitative measures to support qualitative assessment during an endoscopic examination. Previous studies show that transmural electrical impedance is a quantifiable biomarker of inflammation. Here, we hypothesize that impedance detects spatially restricted areas of inflammation, thereby allowing the distinction between regions that differ in their severity of inflammation. A platinum ball electrode was placed into minimally inflamed (i.e. normal) or 2,4,6-trinitrobenzene sulphonic acid (TNBS)-inflamed colonic regions of rats and impedance measurements obtained by passing current between the intraluminal and subcutaneous return electrode. Histology of the colon was correlated with impedance measurements. The impedance of minimally inflamed (normal) tissue was 1.5-1.9 kΩ. Following TNBS injection, impedance significantly decreased within the inflammatory penumbra (p < 0.05), and decreased more in the inflammatory epicentre (p = 0.02). Histological damage correlated with impedance values (p < 0.05). Thus, impedance values of 1.5-1.9, 1.3-1.4 and 0.9-1.1 kΩ corresponded to minimally inflamed, mildly inflamed and moderately inflamed tissue, respectively. In conclusion, transmural impedance is an objective, spatially localized biomarker of mucosal integrity, and distinguishes between severities of intestinal inflammation.
  • Item
    Thumbnail Image
    Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation
    Payne, SC ; Furness, JB ; Burns, O ; Sedo, A ; Flyakumurat, T ; Shepherd, RK ; Fallon, JB (FRONTIERS MEDIA SA, 2019-05-08)
    Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≥ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≥ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≥ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal-Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans.
  • Item
    Thumbnail Image
    Gel-Mediated Electrospray Assembly of Silica Supraparticles for Sustained Drug Delivery
    Ma, Y ; Bjoernmalm, M ; Wise, AK ; Cortez-Jugo, C ; Revalor, E ; Ju, Y ; Feeney, OM ; Richardson, RT ; Hanssen, E ; Shepherd, RK ; Porter, CJH ; Caruso, F (AMER CHEMICAL SOC, 2018-09-19)
    Supraparticles (SPs) composed of smaller colloidal particles provide a platform for the long-term, controlled release of therapeutics in biomedical applications. However, current synthesis methods used to achieve high drug loading and those involving biocompatible materials are often tedious and low throughput, thereby limiting the translation of SPs to diverse applications. Herein, we present a simple, effective, and automatable alginate-mediated electrospray technique for the assembly of robust spherical silica SPs (Si-SPs) for long-term (>4 months) drug delivery. The Si-SPs are composed of either porous or nonporous primary Si particles within a decomposable alginate matrix. The size and shape of the Si-SPs can be tailored by controlling the concentrations of alginate and silica primary particles used and key electrospraying parameters, such as flow rate, voltage, and collector distance. Furthermore, the performance (including drug loading kinetics, loading capacity, loading efficiency, and drug release) of the Si-SPs can be tuned by changing the porosity of the primary particles and through the retention or removal (via calcination) of the alginate matrix. The structure and morphology of the Si-SPs were characterized by electron microscopy, dynamic light scattering, N2 adsorption-desorption analysis, and X-ray photoelectron spectroscopy. The cytotoxicity and degradability of the Si-SPs were also examined. Drug loading kinetics and loading capacity for six different types of Si-SPs, using a model protein drug (fluorescently labeled lysozyme), demonstrate that Si-SPs prepared from primary silica particles with large pores can load significant amounts of lysozyme (∼10 μg per SP) and exhibit sustained, long-term release of more than 150 days. Our experiments show that Si-SPs can be produced through a gel-mediated electrospray technique that is robust and automatable (important for clinical translation and commercialization) and that they present a promising platform for long-term drug delivery.
  • Item
    Thumbnail Image
    Retinal Changes in an ATP-Induced Model of Retinal Degeneration
    Aplin, FP ; Vessey, KA ; Luu, CD ; Guymer, RH ; Shepherd, RK ; Fletcher, EL (FRONTIERS MEDIA SA, 2016-04-29)
    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.
  • Item
    Thumbnail Image
    Techniques for Processing Eyes Implanted with a Retinal Prosthesis for Localized Histopathological Analysis: Part 2 Epiretinal Implants with Retinal Tacks
    Nayagam, DAX ; Durmo, I ; McGowan, C ; Williams, RA ; Shepherd, RK (JOURNAL OF VISUALIZED EXPERIMENTS, 2015-02)
    Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histological processes, particularly in consideration for the delicate nature of the surrounding tissue. Here we describe techniques for assessing the health of the eye directly adjacent to a retinal implant secured epiretinally with a metal tack. Retinal prostheses feature electrode arrays in contact with eye tissue. The most commonly used location for implantation is the epiretinal location (posterior chamber of the eye), where the implant is secured to the retina with a metal tack that penetrates all the layers of the eye. Previous methods have not been able to assess the proximal ocular tissue with the tack in situ, due to the inability of traditional histological techniques to cut metal objects. Consequently, it has been difficult to assess localized damage, if present, caused by tack insertion. Therefore, we developed a technique for visualizing the tissue around a retinal tack and implant. We have modified an established technique, used for processing and visualizing hard bony tissue around a cochlear implant, for the soft delicate tissues of the eye. We orientated and embedded the fixed eye tissue, including the implant and retinal tack, in epoxy resin, to stabilise and protect the structure of the sample. Embedded samples were then ground, polished, stained, and imaged under various magnifications at incremental depths through the sample. This technique allowed the reliable assessment of eye tissue integrity and cytoarchitecture adjacent to the metal tack.