Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces
    Eiber, CD ; Payne, SC ; Biscola, NP ; Havton, LA ; Keast, JR ; Osborne, PB ; Fallon, JB (IOP Publishing Ltd, 2021-12-01)
    Objective.Neuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.Approach.We developed a hybrid computational pipeline,VisceralNerveEnsembleRecording andStimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons. Anatomical properties of fascicles and axons in rat pelvic and vagus nerves were measured or obtained from public datasets. To validate ViNERS, we simulated pelvic nerve stimulation and recording with an experimental four-electrode planar array.Main results.Axon diameters measured from pelvic nerve were used to model a population of myelinated and unmyelinated axons and simulate recordings of electrically evoked single-unit field potentials (SUFPs). Across visceral nerve fascicles of increasing size, our simulations predicted an increase in stimulation threshold and a decrease in SUFP amplitude. Simulated threshold changes were dominated by changes in perineurium thickness, which correlates with fascicle diameter. We also demonstrated that ViNERS could simulate recordings of electrically-evoked compound action potentials (ECAPs) that were qualitatively similar to pelvic nerve recording made with the array used for simulation.Significance.We introduce ViNERS as a new open-source computational tool for modelling large-scale stimulation and recording from visceral nerves. ViNERS predicts how neuroanatomical variation in rat pelvic nerve affects stimulation and recording with an experimental planar electrode array. We show ViNERS can simulate ECAPS that capture features of our recordings, but our results suggest the underlying NEURON models need to be further refined and specifically adapted to accurately simulate visceral nerve axons.
  • Item
    Thumbnail Image
    An objective in vivo diagnostic method for inflammatory bowel disease
    Payne, SC ; Shepherd, RK ; Sedo, A ; Fallon, JB ; Furness, JB (ROYAL SOC, 2018-03-01)
    Inflammatory damage to the bowel, as occurs in inflammatory bowel disease (IBD), is debilitating to patients. In both patients and animal experimental models, histological analyses of biopsies and endoscopic examinations are used to evaluate the disease state. However, such measurements often have delays and are invasive, while endoscopy is not quantitatively objective. Therefore, a real-time quantitative method to assess compromised mucosal barrier function is advantageous. We investigated the correlation of in vivo changes in electrical transmural impedance with histological measures of inflammation. Four platinum (Pt) ball electrodes were placed in the lumen of the rat small intestine, with a return electrode under the skin. Electrodes placed within the non-inflamed intestine generated stable impedances during the 3 h testing period. Following an intraluminal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS), an established animal model of IBD, impedances in the inflamed region significantly decreased relative to a region not exposed to TNBS (p < 0.05). Changes in intestinal transmural impedance were correlated (p < 0.05) with histologically assessed damage to the mucosa and increases in neutrophil, eosinophil and T-cell populations at 3 h compared with tissue from control regions. This quantitative, real-time assay may have application in the diagnosis and clinical management of IBD.
  • Item
    Thumbnail Image
    Transmural impedance detects graded changes of inflammation in experimental colitis
    Payne, SC ; Alexandrovics, J ; Thomas, R ; Shepherd, RK ; Furness, JB ; Fallon, JB (ROYAL SOC, 2020-02-19)
    Ulcerative colitis is a chronic disease in which the mucosa of the colon or rectum becomes inflamed. An objective biomarker of inflammation will provide quantitative measures to support qualitative assessment during an endoscopic examination. Previous studies show that transmural electrical impedance is a quantifiable biomarker of inflammation. Here, we hypothesize that impedance detects spatially restricted areas of inflammation, thereby allowing the distinction between regions that differ in their severity of inflammation. A platinum ball electrode was placed into minimally inflamed (i.e. normal) or 2,4,6-trinitrobenzene sulphonic acid (TNBS)-inflamed colonic regions of rats and impedance measurements obtained by passing current between the intraluminal and subcutaneous return electrode. Histology of the colon was correlated with impedance measurements. The impedance of minimally inflamed (normal) tissue was 1.5-1.9 kΩ. Following TNBS injection, impedance significantly decreased within the inflammatory penumbra (p < 0.05), and decreased more in the inflammatory epicentre (p = 0.02). Histological damage correlated with impedance values (p < 0.05). Thus, impedance values of 1.5-1.9, 1.3-1.4 and 0.9-1.1 kΩ corresponded to minimally inflamed, mildly inflamed and moderately inflamed tissue, respectively. In conclusion, transmural impedance is an objective, spatially localized biomarker of mucosal integrity, and distinguishes between severities of intestinal inflammation.
  • Item
    Thumbnail Image
    Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation
    Payne, SC ; Furness, JB ; Burns, O ; Sedo, A ; Flyakumurat, T ; Shepherd, RK ; Fallon, JB (FRONTIERS MEDIA SA, 2019-05-08)
    Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≥ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≥ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≥ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal-Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans.
  • Item
    Thumbnail Image
    Differential effects of vagus nerve stimulation strategies on glycemia and pancreatic secretions
    Payne, SC ; Ward, G ; MacIsaac, RJ ; Hyakumura, T ; Fallon, JB ; Villalobos, J (WILEY, 2020-06-01)
    Despite advancements in pharmacotherapies, glycemia is poorly controlled in type 2 diabetic patients. As the vagus nerve regulates energy metabolism, here we evaluated the effect various electrical vagus nerve stimulation strategies have on glycemia and glucose-regulating hormones, as a first step to developing a novel therapy of type 2 diabetes. Sprague-Dawley rats were anesthetized, the abdominal (anterior) vagus nerve implanted, and various stimulation strategies applied to the nerve: (a) 15 Hz; (b) 4 kHz, or 40 kHz and; (c) a combination of 15 Hz and 40 kHz to directionally activate afferent or efferent vagal fibers. Following a glucose bolus (500 mg/kg, I.V.), stimulation strategies were applied (60 min) and serial blood samples taken. No stimulation was used as a crossover control sequence. Applying 15 Hz stimulation significantly increased glucose (+2.9 ± 0.2 mM·hr, p = .015) and glucagon (+17.1 ± 8.0 pg·hr/ml, p = .022), compared to no stimulation. Application of 4 kHz stimulation also significantly increased glucose levels (+1.5 ± 0.5 mM·hr, p = .049), while 40 kHz frequency stimulation resulted in no changes to glucose levels but did significantly lower glucagon (-12.3 ± 1.1 pg·hr/ml, p = .0009). Directional afferent stimulation increased glucose (+2.4 ± 1.5 mM·hr) and glucagon levels (+39.5 ± 15.0 pg·hr/ml). Despite hyperglycemia resulting when VNS, aVNS, and 4 kHz stimulation strategies were applied, the changes in insulin levels were not significant (p ≥ .05). In summary, vagus nerve stimulation modulates glycemia by effecting glucagon and insulin secretions, and high-frequency 40 kHz stimulation may have potential application for the treatment of type 2 diabetes.