Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Gaze Compensation as a Technique for Improving Hand-Eye Coordination in Prosthetic Vision
    Titchener, SA ; Shivdasani, MN ; Fallon, JB ; Petoe, MA (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2018-01)
    PURPOSE: Shifting the region-of-interest within the input image to compensate for gaze shifts ("gaze compensation") may improve hand-eye coordination in visual prostheses that incorporate an external camera. The present study investigated the effects of eye movement on hand-eye coordination under simulated prosthetic vision (SPV), and measured the coordination benefits of gaze compensation. METHODS: Seven healthy-sighted subjects performed a target localization-pointing task under SPV. Three conditions were tested, modeling: retinally stabilized phosphenes (uncompensated); gaze compensation; and no phosphene movement (center-fixed). The error in pointing was quantified for each condition. RESULTS: Gaze compensation yielded a significantly smaller pointing error than the uncompensated condition for six of seven subjects, and a similar or smaller pointing error than the center-fixed condition for all subjects (two-way ANOVA, P < 0.05). Pointing error eccentricity and gaze eccentricity were moderately correlated in the uncompensated condition (azimuth: R2 = 0.47; elevation: R2 = 0.51) but not in the gaze-compensated condition (azimuth: R2 = 0.01; elevation: R2 = 0.00). Increased variability in gaze at the time of pointing was correlated with greater reduction in pointing error in the center-fixed condition compared with the uncompensated condition (R2 = 0.64). CONCLUSIONS: Eccentric eye position impedes hand-eye coordination in SPV. While limiting eye eccentricity in uncompensated viewing can reduce errors, gaze compensation is effective in improving coordination for subjects unable to maintain fixation. TRANSLATIONAL RELEVANCE: The results highlight the present necessity for suppressing eye movement and support the use of gaze compensation to improve hand-eye coordination and localization performance in prosthetic vision.
  • Item
    Thumbnail Image
    Wireless induction coils embedded in diamond for power transfer in medical implants
    Sikder, MKU ; Fallon, J ; Shivdasani, MN ; Ganesan, K ; Seligman, P ; Garrett, DJ (SPRINGER, 2017-12)
    Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
  • Item
    Thumbnail Image
    Virtual Electrodes by Current Steering in Retinal Prostheses
    Dumm, G ; Fallon, JB ; Williams, CE ; Shivdasani, MN (ASSOC RESEARCH VISION OPHTHALMOLOGY INC, 2014-12)
    PURPOSE: Retinal prostheses are an approved treatment for vision restoration in retinal degenerative diseases; however, present implants have limited resolution and simply increasing the number of electrodes is limited by design issues. In cochlear implants, virtual electrodes can be created by simultaneous stimulation of adjacent physical electrodes (current steering). The present study assessed whether this type of current steering can be adapted for retinal implants. METHODS: Suprachoroidal electrode arrays were implanted in four normally sighted cat eyes. Electrode pairs were driven simultaneously at different current levels and current ratios. Multiunit spiking activity in the visual cortex was recorded. Spike distribution across channels enabled generation of cortical activation maps and calculation of centroid positions. For each current configuration, centroid shifts between two virtual electrodes were compared to shifts obtained from physical electrode stimulation. RESULTS: Using current steering, virtual electrodes with different cortical activation maps could be created. Cortical centroids were found to shift as a function of the current ratio used for virtual electrodes and were similar to the centroid shifts seen when using physical electrodes. In addition, the cortical response to stimulation of a physical electrode could be reproduced by applying current steering to electrodes on either side of the physical electrode. CONCLUSIONS: These results suggest that current steering can alter activation patterns in the visual cortex and could enhance visual perception in retinal implants by eliciting phosphene percepts intermediate between those elicited by physical electrodes. These results inform development of new electrode arrays that can take advantage of current steering.
  • Item
    Thumbnail Image
    Suprachoroidal electrical stimulation: effects of stimulus pulse parameters on visual cortical responses
    John, SE ; Shivdasani, MN ; Williams, CE ; Morley, JW ; Shepherd, RK ; Rathbone, GD ; Fallon, JB (IOP PUBLISHING LTD, 2013-10)
    OBJECTIVE: Neural responses to biphasic constant current pulses depend on stimulus pulse parameters such as polarity, duration, amplitude and interphase gap. The objective of this study was to systematically evaluate and optimize stimulus pulse parameters for a suprachoroidal retinal prosthesis. APPROACH: Normally sighted cats were acutely implanted with platinum electrode arrays in the suprachoroidal space. Monopolar stimulation comprised of monophasic and biphasic constant current pulses with varying polarity, pulse duration and interphase gap. Multiunit responses to electrical stimulation were recorded in the visual cortex. MAIN RESULTS: Anodal stimulation elicited cortical responses with shorter latencies and required lower charge per phase than cathodal stimulation. Clinically relevant retinal stimulation required relatively larger charge per phase compared with other neural prostheses. Increasing the interphase gap of biphasic pulses reduced the threshold of activation; however, the benefits of using an interphase gap need to be considered in light of the pulse duration and polarity used and other stimulation constraints. Based on our results, anodal first biphasic pulses between 300-1200 µs are recommended for suprachoroidal retinal stimulation. SIGNIFICANCE: These results provide insights into the efficacy of different pulse parameters for suprachoroidal retinal stimulation and have implications for the design of safe and clinically relevant stimulators for retinal prostheses.
  • Item
    Thumbnail Image
    Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study
    Nayagam, DAX ; Williams, RA ; Allen, PJ ; Shivdasani, MN ; Luu, CD ; Salinas-LaRosa, CM ; Finch, S ; Ayton, LN ; Saunders, AL ; McPhedran, M ; McGowan, C ; Villalobos, J ; Fallon, JB ; Wise, AK ; Yeoh, J ; Xu, J ; Feng, H ; Millard, R ; McWade, M ; Thien, PC ; Williams, CE ; Shepherd, RK ; Price, NSC (PUBLIC LIBRARY SCIENCE, 2014-05-22)
    PURPOSE: To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. METHODS: Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. RESULTS: All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. CONCLUSIONS: Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents.
  • Item
    Thumbnail Image
    Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis
    Villalobos, J ; Fallon, JB ; Nayagam, DAX ; Shivdasani, MN ; Luu, CD ; Allen, PJ ; Shepherd, RK ; Williams, CE (IOP PUBLISHING LTD, 2014-08)
    OBJECTIVE: The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. APPROACH: A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. MAIN RESULTS: The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm(-2)). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. SIGNIFICANCE: Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.