Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 102
  • Item
    Thumbnail Image
    Association between hemorrhagic transformation after endovascular therapy and poststroke seizures
    Thevathasan, A ; Naylor, J ; Churilov, L ; Mitchell, PJ ; Dowling, RJ ; Yan, B ; Kwan, P (WILEY, 2018-02-01)
    OBJECTIVE: Endovascular therapy has recently become standard therapy for select patients with acute ischemic stroke. Infarcted brain tissue may undergo hemorrhagic transformation (HT) after endovascular therapy. We investigated the association between HT and occurrence of poststroke seizures in patients treated with endovascular therapy. METHODS: Consecutive patients treated with endovascular therapy for acute anterior circulation ischemic stroke were included. HT was assessed with computed tomography/magnetic resonance imaging (CT/MRI) at 24 h after stroke onset. Patients were followed for up to 2 years for seizure occurrence. RESULTS: A total of 205 (57.1% male) patients were analyzed. Median age was 69 years (interquartile range [IQR] 57-78). Among patients with HT, 17.9% (10/56) developed poststroke seizures compared with 4.0% (6/149) among those without HT (hazard ratio [HR] 5.52; 95% confidence interval [CI] 2.00-15.22; P = .001). The association remained significant after adjustment for cortical involvement, baseline National Institutes of Health Stroke Scale score, age and use of intravenous tissue plasminogen activator and clot retrieval (HR 4.85; 95% CI 1.60-14.76; P = .005). In patients who developed seizures within the follow-up period, median time to first seizure was 111 days (IQR 28-369) in patients with HT and 36 days (IQR 0.5-183) in patients without HT. SIGNIFICANCE: A patient who develops HT following endovascular therapy for acute ischemic stroke had a nearly 5 times higher rate of developing poststroke seizures within 2 years. HT may be used as an imaging biomarker for poststroke seizures.
  • Item
    Thumbnail Image
    Pedunculopontine Nucleus Deep Brain Stimulation in Parkinson's Disease: A Clinical Review
    Thevathasan, W ; Debu, B ; Aziz, T ; Bloem, BR ; Blahak, C ; Butson, C ; Czernecki, V ; Foltynie, T ; Fraix, V ; Grabli, D ; Joint, C ; Lozano, AM ; Okun, MS ; Ostrem, J ; Pavese, N ; Schrader, C ; Tai, C-H ; Krauss, JK ; Moro, E (WILEY, 2018-01-01)
  • Item
    Thumbnail Image
    Neural Electrodes Based on 3D Organic Electroactive Microfibers
    Marroquin, JB ; Coleman, HA ; Tonta, MA ; Zhou, K ; Winther-Jensen, B ; Fallon, J ; Duffy, NW ; Yan, E ; Abdulwahid, AA ; Jasieniak, JJ ; Forsythe, JS ; Parkington, HC (Wiley, 2018-03-21)
  • Item
    Thumbnail Image
    Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations
    Tang, T ; Xiao, J ; Suh, CY ; Burroughs, A ; Cerminara, NL ; Jia, L ; Marshall, SP ; Wise, AK ; Apps, R ; Sugihara, I ; Lang, EJ (WILEY, 2017-08-01)
    KEY POINTS: Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. ABSTRACT: Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the amplitudes of the SS modulation phases were generally weak. Division of spikelets into likely axonally propagated and non-propagated groups (based on their interspikelet interval) showed that the correlation of spikelet number with SS firing rate primarily reflected a relationship with non-propagated spikelets. In sum, the results show both zebrin-related and non-zebrin-related physiological heterogeneity in SS-CS interactions among PCs, which suggests that the cerebellar cortex is more functionally diverse than is assumed by standard theories of cerebellar function.
  • Item
    Thumbnail Image
    Intensity Discrimination and Speech Recognition of Cochlear Implant Users
    McKay, CM ; Rickard, N ; Henshall, K (SPRINGER, 2018-10-01)
    The relation between speech recognition and within-channel or across-channel (i.e., spectral tilt) intensity discrimination was measured in nine CI users (11 ears). Within-channel intensity difference limens (IDLs) were measured at four electrode locations across the electrode array. Spectral tilt difference limens were measured with (XIDL-J) and without (XIDL) level jitter. Only three subjects could perform the XIDL-J task with the amount of jitter required to limit use of within-channel cues. XIDLs (normalized to %DR) were correlated with speech recognition (r = 0.67, P = 0.019) and were highly correlated with IDLs. XIDLs were on average nearly 3 times larger than IDLs and did not vary consistently with the spatial separation of the two component electrodes. The overall pattern of results was consistent with a common underlying subject-dependent limitation in the two difference limen tasks, hypothesized to be perceptual variance (how the perception of a sound differs on different presentations), which may also underlie the correlation of XIDLs with speech recognition. Evidence that spectral tilt discrimination is more important for speech recognition than within-channel intensity discrimination was not unequivocally shown in this study. However, the results tended to support this proposition, with XIDLs more correlated with speech performance than IDLs, and the ratio XIDL/IDL also being correlated with speech recognition. If supported by further research, the importance of perceptual variance as a limiting factor in speech understanding for CI users has important implications for efforts to improve outcomes for those with poor speech recognition.
  • Item
    Thumbnail Image
    Auditory Stream Segregation and Selective Attention for Cochlear Implant Listeners: Evidence From Behavioral Measures and Event-Related Potentials
    Paredes-Gallardo, A ; Innes-Brown, H ; Madsen, SMK ; Dau, T ; Marozeau, J (FRONTIERS MEDIA SA, 2018-08-21)
    The role of the spatial separation between the stimulating electrodes (electrode separation) in sequential stream segregation was explored in cochlear implant (CI) listeners using a deviant detection task. Twelve CI listeners were instructed to attend to a series of target sounds in the presence of interleaved distractor sounds. A deviant was randomly introduced in the target stream either at the beginning, middle or end of each trial. The listeners were asked to detect sequences that contained a deviant and to report its location within the trial. The perceptual segregation of the streams should, therefore, improve deviant detection performance. The electrode range for the distractor sounds was varied, resulting in different amounts of overlap between the target and the distractor streams. For the largest electrode separation condition, event-related potentials (ERPs) were recorded under active and passive listening conditions. The listeners were asked to perform the behavioral task for the active listening condition and encouraged to watch a muted movie for the passive listening condition. Deviant detection performance improved with increasing electrode separation between the streams, suggesting that larger electrode differences facilitate the segregation of the streams. Deviant detection performance was best for deviants happening late in the sequence, indicating that a segregated percept builds up over time. The analysis of the ERP waveforms revealed that auditory selective attention modulates the ERP responses in CI listeners. Specifically, the responses to the target stream were, overall, larger in the active relative to the passive listening condition. Conversely, the ERP responses to the distractor stream were not affected by selective attention. However, no significant correlation was observed between the behavioral performance and the amount of attentional modulation. Overall, the findings from the present study suggest that CI listeners can use electrode separation to perceptually group sequential sounds. Moreover, selective attention can be deployed on the resulting auditory objects, as reflected by the attentional modulation of the ERPs at the group level.
  • Item
    Thumbnail Image
    Balance control systems in Parkinson's disease and the impact of pedunculopontine area stimulation
    Perera, T ; Tan, JL ; Cole, MH ; Yohanandan, SAC ; Silberstein, P ; Cook, R ; Peppard, R ; Aziz, T ; Coyne, T ; Brown, P ; Silburn, PA ; Thevathasan, W (OXFORD UNIV PRESS, 2018-10-01)
    Impaired balance is a major contributor to falls and diminished quality of life in Parkinson's disease, yet the pathophysiology is poorly understood. Here, we assessed if patients with Parkinson's disease and severe clinical balance impairment have deficits in the intermittent and continuous control systems proposed to maintain upright stance, and furthermore, whether such deficits are potentially reversible, with the experimental therapy of pedunculopontine nucleus deep brain stimulation. Two subject groups were assessed: (i) 13 patients with Parkinson's disease and severe clinical balance impairment, implanted with pedunculopontine nucleus deep brain stimulators; and (ii) 13 healthy control subjects. Patients were assessed in the OFF medication state and blinded to two conditions; off and on pedunculopontine nucleus stimulation. Postural sway data (deviations in centre of pressure) were collected during quiet stance using posturography. Intermittent control of sway was assessed by calculating the frequency of intermittent switching behaviour (discontinuities), derived using a wavelet-based transformation of the sway time series. Continuous control of sway was assessed with a proportional-integral-derivative (PID) controller model using ballistic reaction time as a measure of feedback delay. Clinical balance impairment was assessed using the 'pull test' to rate postural reflexes and by rating attempts to arise from sitting to standing. Patients with Parkinson's disease demonstrated reduced intermittent switching of postural sway compared with healthy controls. Patients also had abnormal feedback gains in postural sway according to the PID model. Pedunculopontine nucleus stimulation improved intermittent switching of postural sway, feedback gains in the PID model and clinical balance impairment. Clinical balance impairment correlated with intermittent switching of postural sway (rho = - 0.705, P < 0.001) and feedback gains in the PID model (rho = 0.619, P = 0.011). These results suggest that dysfunctional intermittent and continuous control systems may contribute to the pathophysiology of clinical balance impairment in Parkinson's disease. Clinical balance impairment and their related control system deficits are potentially reversible, as demonstrated by their improvement with pedunculopontine nucleus deep brain stimulation.
  • Item
    Thumbnail Image
    The Association of HMGB1 Gene with the Prognosis of HCC
    Xiao, J ; Ding, Y ; Huang, J ; Li, Q ; Liu, Y ; Ni, W ; Zhang, Y ; Zhu, Y ; Chen, L ; Chen, B ; Hoshida, Y (PUBLIC LIBRARY SCIENCE, 2014-02-19)
    High-mobility group box 1 protein (HMGB1) is an evolutionarily ancient and critical regulator of cell death and survival. HMGB1 is a chromatin-associated nuclear protein molecule that triggers extracellular damage. The expression of HMGB1 has been reported in many types of cancers, but the role of HMGB1 in hepato cellular carcinoma (HCC) is unknown.The aim of this study was to analyze the roles of HMGB1 in HCC progression using HCC clinical samples. We also investigated the clinical outcomes of HCC samples with a special focus on HMBG1 expression. In an immunohistochemical study conducted on 208 cases of HCC, HMGB1 had high expression in 134 cases(64.4%).The HMGB1 expression level did not correlate with any clinicopathological parameters, except alpha fetoprotein (AFP) (p = 0.041) and CLIP stage (p = 0.007). However, survival analysis showed that the group with HMBG1 overexpression had a significantly shorter overall survival time than the group with a down-regulated expression of HMBG1 (HR = 0.568, CI (0.398, 0.811), p = 0.002). Multivariate analysis showed that HMGB1 expression was a significant and independent prognostic parameter (HR = 0.562, CI (0.388, 0.815), p = 0.002) for HCC patients. The ability of proliferation, migration and invasion of HCC cells was suppressed with the disruption of endogenous HMGB1 using small interfering RNAs. On the other hand, the ability of proliferation, migration and invasion of HCC cells was strengthened when the expression endogenous HMGB1 was enhanced using HMGB1 DNA. HMGB1 expression may be a novel and independent predictor for the prognosis of HCC patients. The overexpression of HMGB1 in HCC could be a novel, effective, and supplementary biomarker for HCC, since it plays a vital role in the progression of HCC.
  • Item
    Thumbnail Image
    Across-frequency combination of interaural time difference in bilateral cochlear implant listeners.
    Ihlefeld, A ; Kan, A ; Litovsky, RY (Frontiers Media SA, 2014)
    The current study examined how cochlear implant (CI) listeners combine temporally interleaved envelope-ITD information across two sites of stimulation. When two cochlear sites jointly transmit ITD information, one possibility is that CI listeners can extract the most reliable ITD cues available. As a result, ITD sensitivity would be sustained or enhanced compared to single-site stimulation. Alternatively, mutual interference across multiple sites of ITD stimulation could worsen dual-site performance compared to listening to the better of two electrode pairs. Two experiments used direct stimulation to examine how CI users can integrate ITDs across two pairs of electrodes. Experiment 1 tested ITD discrimination for two stimulation sites using 100-Hz sinusoidally modulated 1000-pps-carrier pulse trains. Experiment 2 used the same stimuli ramped with 100 ms windows, as a control condition with minimized onset cues. For all stimuli, performance improved monotonically with increasing modulation depth. Results show that when CI listeners are stimulated with electrode pairs at two cochlear sites, sensitivity to ITDs was similar to that seen when only the electrode pair with better sensitivity was activated. None of the listeners showed a decrement in performance from the worse electrode pair. This could be achieved either by listening to the better electrode pair or by truly integrating the information across cochlear sites.
  • Item
    Thumbnail Image
    Temporal Processing in the Auditory System
    McKay, CM ; Lim, HH ; Lenarz, T (SPRINGER, 2013-02-01)
    Central auditory processing in humans was investigated by comparing the perceptual effects of temporal parameters of electrical stimulation in auditory midbrain implant (AMI) and cochlear implant (CI) users. Four experiments were conducted to measure the following: effect of interpulse intervals on detection thresholds and loudness; temporal modulation transfer functions (TMTFs); effect of duration on detection thresholds; and forward masking decay. The CI data were consistent with a phenomenological model that based detection or loudness decisions on the output of a sliding temporal integration window, the input to which was the hypothetical auditory nerve response to each stimulus pulse. To predict the AMI data, the model required changes to both the neural response input (i.e., midbrain activity to AMI stimuli, compared to auditory nerve activity to CI stimuli) and the shape of the integration window. AMI data were consistent with a neural response that decreased more steeply compared to CI stimulation as the pulse rate increased or interpulse interval decreased. For one AMI subject, the data were consistent with a significant adaptation of the neural response for rates above 200 Hz. The AMI model required an integration window that was significantly wider (i.e., decreased temporal resolution) than that for CI data, the latter being well fit using the same integration window shape as derived from normal-hearing data. These models provide a useful way to conceptualize how stimulation of central auditory structures differs from stimulation of the auditory nerve and to better understand why AMI users have difficulty processing temporal cues important for speech understanding.