Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    neuroBi: A Highly Configurable Neurostimulator for a Retinal Prosthesis and Other Applications
    Slater, KD ; Sinclair, NC ; Nelson, TS ; Blamey, PJ ; McDermott, HJ (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2015)
    To evaluate the efficacy of a suprachoroidal retinal prosthesis, a highly configurable external neurostimulator is required. In order to meet functional and safety specifications, it was necessary to develop a custom device. A system is presented which can deliver charge-balanced, constant-current biphasic pulses, with widely adjustable parameters, to arbitrary configurations of output electrodes. This system is shown to be effective in eliciting visual percepts in a patient with approximately 20 years of light perception vision only due to retinitis pigmentosa, using an electrode array implanted in the suprachoroidal space of the eye. The flexibility of the system also makes it suitable for use in a number of other emerging clinical neurostimulation applications, including epileptic seizure suppression and closed-loop deep brain stimulation. Clinical trial registration number NCT01603576 (www.clinicaltrials.gov).
  • Item
    Thumbnail Image
    Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time
    Lazard, DS ; Vincent, C ; Venail, F ; Van de Heyning, P ; Truy, E ; Sterkers, O ; Skarzynski, PH ; Skarzynski, H ; Schauwers, K ; O'Leary, S ; Mawman, D ; Maat, B ; Kleine-Punte, A ; Huber, AM ; Green, K ; Govaerts, PJ ; Fraysse, B ; Dowell, R ; Dillier, N ; Burke, E ; Beynon, A ; Bergeron, F ; Baskent, D ; Artieres, F ; Blamey, PJ ; Malmierca, MS (PUBLIC LIBRARY SCIENCE, 2012-11-09)
    OBJECTIVE: To test the influence of multiple factors on cochlear implant (CI) speech performance in quiet and in noise for postlinguistically deaf adults, and to design a model of predicted auditory performance with a CI as a function of the significant factors. STUDY DESIGN: Retrospective multi-centre study. METHODS: Data from 2251 patients implanted since 2003 in 15 international centres were collected. Speech scores in quiet and in noise were converted into percentile ranks to remove differences between centres. The influence of 15 pre-, per- and postoperative factors, such as the duration of moderate hearing loss (mHL), the surgical approach (cochleostomy or round window approach), the angle of insertion, the percentage of active electrodes, and the brand of device were tested. The usual factors, duration of profound HL (pHL), age, etiology, duration of CI experience, that are already known to have an influence, were included in the statistical analyses. RESULTS: The significant factors were: the pure tone average threshold of the better ear, the brand of device, the percentage of active electrodes, the use of hearing aids (HAs) during the period of pHL, and the duration of mHL. CONCLUSIONS: A new model was designed showing a decrease of performance that started during the period of mHL, and became faster during the period of pHL. The use of bilateral HAs slowed down the related central reorganization that is the likely cause of the decreased performance.
  • Item
    Thumbnail Image
    The Effect of Visual Cues on Difficulty Ratings for Segregation of Musical Streams in Listeners with Impaired Hearing
    Innes-Brown, H ; Marozeau, J ; Blamey, P ; Goldreich, D (PUBLIC LIBRARY SCIENCE, 2011-12-15)
    BACKGROUND: Enjoyment of music is an important part of life that may be degraded for people with hearing impairments, especially those using cochlear implants. The ability to follow separate lines of melody is an important factor in music appreciation. This ability relies on effective auditory streaming, which is much reduced in people with hearing impairment, contributing to difficulties in music appreciation. The aim of this study was to assess whether visual cues could reduce the subjective difficulty of segregating a melody from interleaved background notes in normally hearing listeners, those using hearing aids, and those using cochlear implants. METHODOLOGY/PRINCIPAL FINDINGS: Normally hearing listeners (N = 20), hearing aid users (N = 10), and cochlear implant users (N = 11) were asked to rate the difficulty of segregating a repeating four-note melody from random interleaved distracter notes. The pitch of the background notes was gradually increased or decreased throughout blocks, providing a range of difficulty from easy (with a large pitch separation between melody and distracter) to impossible (with the melody and distracter completely overlapping). Visual cues were provided on half the blocks, and difficulty ratings for blocks with and without visual cues were compared between groups. Visual cues reduced the subjective difficulty of extracting the melody from the distracter notes for normally hearing listeners and cochlear implant users, but not hearing aid users. CONCLUSION/SIGNIFICANCE: Simple visual cues may improve the ability of cochlear implant users to segregate lines of music, thus potentially increasing their enjoyment of music. More research is needed to determine what type of acoustic cues to encode visually in order to optimise the benefits they may provide.
  • Item
    Thumbnail Image
    Advances in implantable bionic devices for blindness: a review
    Lewis, PM ; Ayton, LN ; Guymer, RH ; Lowery, AJ ; Blamey, PJ ; Allen, PJ ; Luu, CD ; Rosenfeld, JV (WILEY, 2016-09)
    Since the 1950s, vision researchers have been working towards the ambitious goal of restoring a functional level of vision to the blind via electrical stimulation of the visual pathways. Groups based in Australia, USA, Germany, France and Japan report progress in the translation of retinal visual prosthetics from the experimental to clinical domains, with two retinal visual prostheses having recently received regulatory approval for clinical use. Regulatory approval for cortical visual prostheses is yet to be obtained; however, several groups report plans to conduct clinical trials in the near future, building upon the seminal clinical studies of Brindley and Dobelle. In this review, we discuss the general principles of visual prostheses employing electrical stimulation of the visual pathways, focusing on the retina and visual cortex as the two most extensively studied stimulation sites. We also discuss the surgical and functional outcomes reported to date for retinal and cortical prostheses, concluding with a brief discussion of novel developments in this field and an outlook for the future.
  • Item
    Thumbnail Image
    The Effect of Visual Cues on Auditory Stream Segregation in Musicians and Non-Musicians
    Marozeau, J ; Innes-Brown, H ; Grayden, DB ; Burkitt, AN ; Blamey, PJ ; Louis, M (PUBLIC LIBRARY SCIENCE, 2010-06-23)
    BACKGROUND: The ability to separate two interleaved melodies is an important factor in music appreciation. This ability is greatly reduced in people with hearing impairment, contributing to difficulties in music appreciation. The aim of this study was to assess whether visual cues, musical training or musical context could have an effect on this ability, and potentially improve music appreciation for the hearing impaired. METHODS: Musicians (N = 18) and non-musicians (N = 19) were asked to rate the difficulty of segregating a four-note repeating melody from interleaved random distracter notes. Visual cues were provided on half the blocks, and two musical contexts were tested, with the overlap between melody and distracter notes either gradually increasing or decreasing. CONCLUSIONS: Visual cues, musical training, and musical context all affected the difficulty of extracting the melody from a background of interleaved random distracter notes. Visual cues were effective in reducing the difficulty of segregating the melody from distracter notes, even in individuals with no musical training. These results are consistent with theories that indicate an important role for central (top-down) processes in auditory streaming mechanisms, and suggest that visual cues may help the hearing-impaired enjoy music.
  • Item
    Thumbnail Image
    Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks
    Saeedi, NE ; Blamey, PJ ; Burkitt, AN ; Grayden, DB ; Battaglia, FP (PUBLIC LIBRARY SCIENCE, 2016-04)
    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.
  • Item
    Thumbnail Image
    Application of a pitch perception model to investigate the effect of stimulation field spread on the pitch ranking abilities of cochlear implant recipients
    Saeedi, NE ; Blamey, PJ ; Burkitt, AN ; Grayden, DB (ELSEVIER SCIENCE BV, 2014-10)
    Although many cochlear implant (CI) recipients perceive speech very well in favorable conditions, they still have difficulty with music, speech in noisy environments, and tonal languages. Studies show that CI users' performance in these tasks are correlated with their ability to perceive pitch. The spread of stimulation field from the electrodes to the auditory nerve is one of the factors affecting performance. This study proposes a model of auditory perception to predict the performance of CI users in pitch ranking tasks using an existing sound processing scheme. The model is then used as a platform to investigate the effect of stimulation field spread on performance.
  • Item
    Thumbnail Image
    First-in-Human Trial of a Novel Suprachoroidal Retinal Prosthesis
    Ayton, LN ; Blamey, PJ ; Guymer, RH ; Luu, CD ; Nayagam, DAX ; Sinclair, NC ; Shivdasani, MN ; Yeoh, J ; McCombe, MF ; Briggs, RJ ; Opie, NL ; Villalobos, J ; Dimitrov, PN ; Varsamidis, M ; Petoe, MA ; McCarthy, CD ; Walker, JG ; Barnes, N ; Burkitt, AN ; Williams, CE ; Shepherd, RK ; Allen, PJ ; Mori, K (PUBLIC LIBRARY SCIENCE, 2014-12-18)
    UNLABELLED: Retinal visual prostheses ("bionic eyes") have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. TRIAL REGISTRATION: Clinicaltrials.gov NCT01603576.
  • Item
    Thumbnail Image
    THE EFFECT OF TIMBRE AND LOUDNESS ON MELODY SEGREGATION
    Marozeau, J ; Innes-Brown, H ; Blamey, PJ (UNIV CALIFORNIA PRESS, 2013-02)
    The aim of this study was to examine the effects of three acoustic parameters on the difficulty of segregating a simple 4-note melody from a background of interleaved distractor notes. Melody segregation difficulty ratings were recorded while three acoustic parameters of the distractor notes were varied separately: intensity, temporal envelope, and spectral envelope. Statistical analyses revealed a significant effect of music training on difficulty rating judgments. For participants with music training, loudness was the most efficient perceptual cue, and no difference was found between the dimensions of timbre influenced by temporal and spectral envelope. For the group of listeners with less music training, both loudness and spectral envelope were the most efficient cues. We speculate that the difference between musicians and nonmusicians may be due to differences in processing the stimuli: musicians may process harmonic sound sequences using brain networks specialized for music, whereas nonmusicians may use speech networks.
  • Item
    Thumbnail Image
    The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant
    Marozeau, J ; Innes-Brown, H ; Blamey, PJ (FRONTIERS MEDIA SA, 2013-11-06)
    Our ability to listen selectively to single sound sources in complex auditory environments is termed "auditory stream segregation."This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody. The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope. Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device) influences the way that listeners use different acoustic cues for segregating interleaved musical streams.