Medical Bionics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 48
  • Item
    Thumbnail Image
    Hybrid optogenetic and electrical stimulation for greater spatial resolution and temporal fidelity of cochlear activation
    Thompson, AC ; Wise, AK ; Hart, WL ; Needham, K ; Fallon, JB ; Gunewardene, N ; Stoddart, PR ; Richardson, RT (IOP PUBLISHING LTD, 2020-10)
    OBJECTIVE: Compared to electrical stimulation, optogenetic stimulation has the potential to improve the spatial precision of neural activation in neuroprostheses, but it requires intense light and has relatively poor temporal kinetics. We tested the effect of hybrid stimulation, which is the combination of subthreshold optical and electrical stimuli, on spectral and temporal fidelity in the cochlea by recording multiunit activity in the inferior colliculus of channelrhodopsin (H134R variant) transgenic mice. APPROACH: Pulsed light or biphasic electrical pulses were delivered to cochlear spiral ganglion neurons of acutely deafened mice, either as individual stimuli or as hybrid stimuli for which the timing of the electrical pulse had a varied delay relative to the start of the optical pulse. Response thresholds, spread of activation and entrainment data were obtained from multi-unit recordings from the auditory midbrain. MAIN RESULTS: Facilitation occurred when subthreshold electrical stimuli were applied at the end of, or up to 3.75 ms after subthreshold optical pulses. The spread of activation resulting from hybrid stimulation was significantly narrower than electrical-only and optical-only stimulation (p < 0.01), measured at equivalent suprathreshold levels of loudness that are relevant to cochlear implant users. Furthermore, temporal fidelity, measured as maximum following rates to 300 ms pulse trains bursts up to 240 Hz, was 2.4-fold greater than optical-only stimulation (p < 0.05). SIGNIFICANCE: By significantly improving spectral resolution of electrical- and optical-only stimulation and the temporal fidelity of optical-only stimulation, hybrid stimulation has the potential to increase the number of perceptually independent stimulating channels in a cochlear implant.
  • Item
    Thumbnail Image
    The effects of aging and musicianship on the use of auditory streaming cues
    Sauve, SA ; Marozeau, J ; Zendel, BR ; Fu, Q-J (PUBLIC LIBRARY SCIENCE, 2022-09-22)
    Auditory stream segregation, or separating sounds into their respective sources and tracking them over time, is a fundamental auditory ability. Previous research has separately explored the impacts of aging and musicianship on the ability to separate and follow auditory streams. The current study evaluated the simultaneous effects of age and musicianship on auditory streaming induced by three physical features: intensity, spectral envelope and temporal envelope. In the first study, older and younger musicians and non-musicians with normal hearing identified deviants in a four-note melody interleaved with distractors that were more or less similar to the melody in terms of intensity, spectral envelope and temporal envelope. In the second study, older and younger musicians and non-musicians participated in a dissimilarity rating paradigm with pairs of melodies that differed along the same three features. Results suggested that auditory streaming skills are maintained in older adults but that older adults rely on intensity more than younger adults while musicianship is associated with increased sensitivity to spectral and temporal envelope, acoustic features that are typically less effective for stream segregation, particularly in older adults.
  • Item
    Thumbnail Image
    Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats
    Payne, SC ; Romas, E ; Hyakumura, T ; Muntz, F ; Fallon, JB (FRONTIERS MEDIA SA, 2022-11-21)
    Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
  • Item
    No Preview Available
    Can brain signals and anatomy refine contact choice for deep brain stimulation in Parkinson's disease?
    Xu, SS ; Lee, W-L ; Perera, T ; Sinclair, NC ; Bulluss, KJ ; McDermott, HJ ; Thevathasan, W (BMJ PUBLISHING GROUP, 2022-12)
    INTRODUCTION: Selecting the ideal contact to apply subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease is time-consuming and reliant on clinical expertise. The aim of this cohort study was to assess whether neuronal signals (beta oscillations and evoked resonant neural activity (ERNA)), and the anatomical location of electrodes, can predict the contacts selected by long-term, expert-clinician programming of STN-DBS. METHODS: We evaluated 92 hemispheres of 47 patients with Parkinson's disease receiving chronic monopolar and bipolar STN-DBS. At each contact, beta oscillations and ERNA were recorded intraoperatively, and anatomical locations were assessed. How these factors, alone and in combination, predicted the contacts clinically selected for chronic deep brain stimulation at 6 months postoperatively was evaluated using a simple-ranking method and machine learning algorithms. RESULTS: The probability that each factor individually predicted the clinician-chosen contact was as follows: ERNA 80%, anatomy 67%, beta oscillations 50%. ERNA performed significantly better than anatomy and beta oscillations. Combining neuronal signal and anatomical data did not improve predictive performance. CONCLUSION: This work supports the development of probability-based algorithms using neuronal signals and anatomical data to assist programming of deep brain stimulation.
  • Item
    No Preview Available
    Paroxysmal fast activity is a biomarker of treatment response in deep brain stimulation for Lennox-Gastaut syndrome
    Dalic, LJ ; Warren, AEL ; Spiegel, C ; Thevathasan, W ; Roten, A ; Bulluss, KJ ; Archer, JS (WILEY, 2022-12)
    OBJECTIVE: Epilepsy treatment trials typically rely on seizure diaries to determine seizure frequency, but these are time-consuming and difficult to maintain accurately. Fast, reliable, and objective biomarkers of treatment response are needed, particularly in Lennox-Gastaut syndrome (LGS), where high seizure frequency and comorbid cognitive and behavioral issues are additional obstacles to accurate diary-keeping. Here, we measured generalized paroxysmal fast activity (GPFA), a key interictal electrographic feature of LGS, and correlated GPFA burden with seizure diaries during a thalamic deep brain stimulation (DBS) treatment trial (Electrical Stimulation of the Thalamus in Epilepsy of Lennox-Gastaut Phenotype [ESTEL]). METHODS: GPFA and electrographic seizure counts from intermittent, 24-h electroencephalograms (EEGs) were compared to 3-month diary-recorded seizure counts in 17 young adults with LGS (mean age ± SD = 24.9 ± 6.6) in the ESTEL study, a randomized clinical trial of DBS lasting 12 months (comprising a 3-month baseline and 9 months of postimplantation follow-up). RESULTS: Baseline median seizures measured by diaries numbered 2.6 (interquartile range [IQR] = 1.4-5) per day, compared to 284 (IQR = 120.5-360) electrographic seizures per day, confirming that diaries capture only a small fraction of seizure burden. Across all patient EEGs, the average number of GPFA discharges per hour of sleep was 138 (IQR =72-258). GPFA duration and frequency, quantified over 2-h windows of sleep EEG, were significantly associated with diary-recorded seizure counts over 3-month intervals (p < .001, η2 p  = .30-.48). For every GPFA discharge, there were 20-25 diary seizures witnessed over 3 months. There was high between-patient variability in the ratio between diary seizure burden and GPFA burden; however, within individual patients, the ratio was similar over time, such that the percentage change from pre-DBS baseline in seizure diaries strongly correlated with the percentage change in GPFA. SIGNIFICANCE: When seeking to optimize treatment in patients with LGS, monitoring changes in GPFA may allow rapid titration of treatment parameters, rather than waiting for feedback from seizure diaries.
  • Item
    Thumbnail Image
    Emerging therapies for human hearing loss
    Ajay, E ; Gunewardene, N ; Richardson, R (TAYLOR & FRANCIS LTD, 2022-06-03)
    INTRODUCTION: More than 5% of the world's population have a disabling hearing loss which can be managed by hearing aids or implanted electrical devices. However, outcomes are highly variable, and the sound perceived by recipients is far from perfect. Sparked by the discovery of progenitor cells in the cochlea and rapid progress in drug delivery to the cochlea, biological and pharmaceutical therapies are currently in development to improve the function of the cochlear implant or eliminate the need for it altogether. AREAS COVERED: This review highlights progress in emerging regenerative strategies to restore hearing and adjunct therapies to augment the cochlear implant. Novel approaches include the reprogramming of progenitor cells to restore the sensory hair cell population in the cochlea, gene therapy, and gene editing to treat hereditary and acquired hearing loss. A detailed review of optogenetics is also presented as a technique that could enable optical stimulation of the spiral ganglion neurons, replacing or complementing electrical stimulation. EXPERT OPINION: Increasing evidence of substantial reversal of hearing loss in animal models, alongside rapid advances in delivery strategies to the cochlea and learnings from clinical trials will amalgamate into a biological or pharmaceutical therapy to replace or complement the cochlear implant.
  • Item
    No Preview Available
    Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes
    Dong, M ; Coleman, HA ; Tonta, MA ; Xiong, Z ; Li, D ; Thomas, S ; Liu, M ; Fallon, JB ; Parkington, HC ; Forsythe, JS (ROYAL SOC CHEMISTRY, 2022-11-03)
    The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.
  • Item
    No Preview Available
    Cognition, adaptive skills and epilepsy disability/severity in patients with Lennox-Gastaut syndrome undergoing deep brain stimulation for epilepsy in the ESTEL trial
    Dalic, LJ ; Warren, AEL ; Malpas, CB ; Thevathasan, W ; Roten, A ; Bulluss, KJ ; Archer, JS (W B SAUNDERS CO LTD, 2022-10)
    PURPOSE: We previously reported seizure and EEG outcomes of the ESTEL study (Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype). To assess potential cognitive and behavioral changes during chronic, duty-cycle stimulation of bilateral thalamic centromedian nucleus, we compared standardized cognitive and behavioral measurements, as well as caregiver assessments of disability/severity, before implantation and after 3-months stimulation. METHODS: Twenty patients with LGS (17-37 years;13 females) were studied; one participant was not randomized due to DBS device removal, with outcomes of 19 remaining participants reported here. Cognitive and behavioral measurements were performed at baseline (i.e., before DBS implantation), at the end of the blinded stimulation phase, and at study exit. Instruments measured cognition (NIH toolbox cognitive battery, NIHTB-CB), adaptive skills (ABAS-3), epilepsy severity (GASE) and disability (GAD), quality of life (QOLIE-31), and depression (PHQ-9). Changes in scores after 3-months of stimulation relative to baseline were explored using Wilcoxon matched-pairs signed rank tests. RESULTS: After 3-months of stimulation, caregiver-reported epilepsy severity (GASE) and disability (GAD) improved (p<0.05). No other instrument showed a significant change from baseline. Measurements that required direct participant involvement, rather than caregivers, was completed by only a subset of higher-functioning individuals (NIHTB-CB, n = 13; QOLIE-31, n = 3; and PHQ-9, n = 6). In addition to cognitive impairments, behavioral and physical limitations were common obstacles to instrument completion. Standardized scores were hindered by 'floor effects'; however, raw scores better reflected clinical impressions of participants' functioning and were more sensitive to caregiver-reported changes following treatment. CONCLUSION: DBS treatment is associated with reduced epilepsy severity and disability in young adults with LGS. Performing cognitive and behavioral outcome measurement in patients with cognitive impairment is challenging but possible and requires careful selection of instruments and modifications of score interpretation to avoid floor effects.
  • Item
    No Preview Available
    Effects of chronic implantation and long-term stimulation of a cochlear implant in the partial hearing cat model
    Fallon, JB ; Dueck, W ; Trang, EP ; Smyth, D ; Wise, AK (ELSEVIER, 2022-12)
    The expansion of criteria for cochlear implantation has resulted in increasing numbers of cochlear implant subjects having some level of residual hearing. The present study examined the effects of implantation surgery and long-term electrical stimulation on residual hearing in a partially deafened cat model. Eighteen animals were partially deafened, implanted and chronically stimulated. Implantation resulted in a pronounced loss evident 2-weeks post implantation of up to 30-40 dB at 4 & 8 kHz which was statistically significant (2-way RM ANOVA (Time, Frequency): p(Time) = 0.001; p(Frequency) < 0.001; p(Time x Frequency) < 0.001)). Chronic stimulation resulted in a significant (RM ANOVA: p(Time) = 0.030) ongoing hearing loss, with 5 animals (∼30%) exhibiting an increase in threshold of 20 dB or more. Different loss profiles were evident with peripheral and central hearing assessments suggests that changes in 'central gain' may be occurring. Despite significant loss of hair cells and spiral ganglion neurons and distinct fibrous tissue growth in the scala tympani following implantation and long-term electrical stimulation, there were no significant correlations with any histological measures and ongoing hearing loss. The partially deafened, chronically stimulated cat model provides a clinically relevant model in which to further investigate the cause of the delayed hearing loss following cochlear implant surgery and use.
  • Item
    No Preview Available
    Effects of an enhanced acoustic environment on residual hearing following chronic cochlear implantation and electrical stimulation in the partially deafened cat
    Wise, AK ; Atkinson, P ; Fallon, JB (ELSEVIER, 2022-12)
    There is an increasing trend to provide cochlear implants for people with useful residual hearing, typically in the low frequency range (<2 kHz). These recipients typically use both electrical stimulation from their implant and acoustic stimulation that has been amplified with a hearing aid to access their residual hearing, so called electro-acoustic stimulation (EAS). However, a significant problem is the loss of residual hearing following implantation that can occur immediately following surgery or delayed over many months. One potential cause of the loss of residual hearing is the over stimulation of remaining hair cells due to the combination of an amplified acoustic input and direct electrical activation. This paper aims to test this hypothesis. Here, we have used a neonatal aminoglycoside-induced partial hearing cat model that resulted in a high frequency hearing loss (>4 kHz). Two separate cohorts of animals were implanted and received unilateral chronic electrical stimulation using clinical stimulators and speech processors over 5 months. To simulate potential over stimulation via a hearing aid, one cohort of animals were also exposed to an enhanced acoustic environment consisting of 80 dB SPL 4-talker babble presented 14 h per day. Hearing thresholds for both stimulated and unstimulated ears were measured throughout the implantation period. Cochleae were collected for histology to measure spiral ganglion neuron survival, hair cell survival and tissue response to chronic implantation and electrical stimulation. Consistent with clinical observations, cochlear implantation and stimulation resulted in an increase in threshold across the population. There was no significant effect of the enhanced acoustic environment on auditory thresholds or histological measures (hair cell survival, neuronal survival) of hearing, indicating that hair cell overstimulation was not a significant driver of loss of residual hearing.