Florey Department of Neuroscience and Mental Health - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Studies on the mechanism of binding and activation of relaxin family peptide receptors
    Hoare, Bradley Lawrence ( 2020)
    The peptide hormone relaxin is involved in reproductive processes but has also been investigated for several decades as a treatment for a range of disease states such as scleroderma, acute heart failure, and fibrotic conditions. The receptor for relaxin, RXFP1, is an integral membrane protein belonging to the G protein coupled receptor (GPCR) family. RXFP1 is therefore a therapeutically tractable target for which a thorough understanding of its mechanism of binding and activation is required to develop better relaxin-like drugs. The aims of these studies are to investigate the mechanism by which relaxin binds and activates RXFP1 using a variety of molecular pharmacology approaches in a HEK293T cell model system recombinantly expressing RXFP1 in various forms. Specifically, a hypothesis was tested that a homodimer of RXFP1 might be the minimal functional unit required for receptor activation. GPCR dimers are postulated to interact via their transmembrane helices, so initial investigations aimed to disrupt RXFP1 homodimerisation by incorporation of peptides representing single transmembrane segments of RXFP1 as well as recombinant expression of RXFP1 transmembrane domains. There was no evidence that RXFP1 homodimerisation is required for receptor activation. Following this, the evidence for RXFP1 homodimerisation was re-evaluated in the development of two methods which utilise principles of Bioluminescence Resonance Energy Transfer (BRET). Firstly, split Nanoluciferase was used to tag cell surface localised RXFP1 receptors in combination with mCitrine-tagged RXFP1 and BRET was measured to assess relative receptor proximity. This indicated that RXFP1 is unlikely to be a stable homodimer, intracellularly localised receptors predominate, and there is no change in receptor:receptor proximity upon relaxin stimulation. Secondly, Nanoluciferase-tagged RXFP1 receptors were used in combination with fluorescently labelled relaxin and BRET was measured to track relaxin:RXFP1 binding interactions. This allowed sensitive, real time measurements of the relaxin:RXFP1 binding interactions, demonstrating a multi-step mechanism of relaxin binding in which the linker domain of RXFP1 is critical for high-affinity interactions. Furthermore, there was no evidence of negative co-operativity of relaxin binding, contrary to previous reports which were used as evidence of RXFP1 homodimerisation. Overall, these studies indicate that relaxin does not activate RXFP1 via a mechanism involving a receptor homodimer. Several molecular tools were developed which will be useful for future investigations into RXFP1 pharmacology. This work adds incremental detail to the understanding of how relaxin activates RXFP1, hopefully leading to the development of novel therapeutically useful relaxin-like molecules in future.