School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 47
  • Item
    Thumbnail Image
    Sub-seasonal to seasonal prediction of rainfall extremes in Australia
    King, AD ; Hudson, D ; Lim, E-P ; Marshall, AG ; Hendon, HH ; Lane, TP ; Alves, O (WILEY, 2020-07)
    Abstract Seasonal climate prediction to date has largely focussed on probabilistic forecasts for above‐ and below‐average conditions in climate means. Here, we examine the possibility of making sub‐seasonal to seasonal outlooks for daily‐scale precipitation extremes in Australia. We first use observational data to show that significant relationships exist between climate modes, such as the El Niño–Southern Oscillation, and indices representing rainfall extremes across much of Australia. The strong observed teleconnections between climate modes and daily rainfall extremes suggest the potential for predictability on seasonal scales. The current Australian Bureau of Meteorology seasonal prediction system (ACCESS‐S1) is examined for performance in predicting rainfall extreme indices using a range of measures. Ensemble hindcasts, consisting of 11 members initialised every month during 1990–2012, perform well for some extreme rainfall indices on short lead‐times (up to 1 month). We note that at short lead‐times, forecasts are aided by skilful weather prediction, so forecast performance drops at lead‐times of a week or more. Forecast performance is lower in austral summer than other seasons and greater in the north and interior of the continent, particularly in the dry season, than elsewhere. The ACCESS‐S1 ensemble is overconfident but exhibits some reliability in probabilistic forecasts of above‐ or below‐average number of wet days and intensity of the highest daily maximum precipitation, especially in northern Australia. ACCESS‐S1 captures the broad pattern of relationships between climate modes and rainfall extremes that are observed. For two case‐studies of unusually extreme precipitation, ACCESS‐S exhibits contrasting performance for forecasts of extreme rainfall anomalies beyond the first month. These results suggest that ACCESS‐S1 may be used to produce outlooks for some rainfall indices, such as the number of wet days and the intensity of the wettest day, for the month ahead.
  • Item
    Thumbnail Image
    On the Robustness of Annual Daily Precipitation Maxima Estimates Over Monsoon Asia
    Nguyen, P-L ; Bador, M ; Alexander, LV ; Lane, TP ; Funk, CC (Frontiers Media SA, 2020)
    Understanding precipitation extremes over Monsoon Asia is vital for water resource management and hazard mitigation, but there are many gaps and uncertainties in observations in this region. To better understand observational uncertainties, this study uses a high-resolution validation dataset to assess the consistency of the representation of annual daily precipitation maxima (Rx1day) over land in 13 observational datasets from the Frequent Rainfall Observations on Grids (FROGS) database. The FROGS datasets are grouped into three categories: in situ-based and satellite-based with and without corrections to rain gauges. We also look at three sub-regions: Japan, India, and the Maritime Continent based on their different station density, orography, and coastal complexity. We find broad similarities in spatial and temporal distributions among in situ-based products over Monsoon Asia. Satellite products with correction to rain gauges show better general agreement and less inter-product spread than their uncorrected counterparts. However, this comparison also reveals strong sub-regional differences that can be explained by the quantity and quality of rain gauges. High consistency in spatial and temporal patterns are observed over Japan, which has a dense station network, while large inter-product spread is found over the Maritime Continent and India, which have sparser station density. We also highlight that while corrected satellite products show improvement compared to uncorrected products in regions of high station density (e.g., Japan) they have mixed success over other regions (e.g., India and the Maritime Continent). In addition, the length of record available at each station can also affect the satellite correction over these poorly sampled regions. Results of the additional comparison between all considered datasets and the sub-regional high resolution dataset remain the same, indicating that the overall quality of the station network has implications for the reliability of the in situ-based products derived and also the satellite products that use a correction to in situ data. Given these uncertainties in observations, there is no single best dataset for assessment of Rx1day in Monsoon Asia. In all cases we recommend users understand how each dataset is produced in order to select the most appropriate product to estimate precipitation extremes to fit their purpose.
  • Item
    Thumbnail Image
    Environment and Mechanisms of Severe Turbulence in a Midlatitude Cyclone
    Trier, SB ; Sharman, RD ; Munoz-Esparza, D ; Lane, TP (American Meteorological Society, 2020-11-01)
    A large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370 m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of ~100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5–10-km horizontal wavelengths occurred within layers of gradient Richardson number < 0.25, which promoted Kelvin–Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.
  • Item
    Thumbnail Image
    The Sensitivity of Atmospheric River Identification to Integrated Water Vapor Transport Threshold, Resolution, and Regridding Method
    Reid, KJ ; King, AD ; Lane, TP ; Short, E (AMER GEOPHYSICAL UNION, 2020-10-27)
    Atmospheric rivers (ARs) are elongated narrow bands of enhanced water vapor that can cause intense rainfall and flooding. ARs only appeared in the literature the last 30 years, and there has been much debate about how to define ARs and how to identify them. As a result, a wide range of AR identification algorithms have been produced with variations in the conditions required for an object to be classified as an AR and differences in the input data. One of the key conditions in most AR identification algorithms is a minimum threshold of water vapor flux, along with geometric criteria. The aim of this study is to explore uncertainties in global AR identification based on a single integrated water vapor transport (IVT)-based identification method. We conduct a sensitivity analysis under one algorithmic framework to explore the effects of different IVT thresholds, input data resolutions, and regridding methods during the Years of Tropical Convection operational analysis (May 2008 to April 2010). We found that the resolution and regridding method affects the number of ARs identified but the seasonal cycle is maintained. AR identification is highly sensitive to the choice of IVT threshold; importantly, the commonly used 250 kg m−1 s−1 IVT threshold is not appropriate for global studies with detection methods that also include a restrictive geometric condition as this combination can lead to the strongest systems failing to be identified. The uncertainties within a single AR detection method and input data parameters may be as large as uncertainties across AR detection methodologies.
  • Item
    Thumbnail Image
    Global and regional impacts differ between transient and equilibrium warmer worlds
    King, AD ; Lane, TP ; Henley, BJ ; Brown, JR (NATURE PUBLISHING GROUP, 2020-01-01)
    under exclusive licence to Springer Nature Limited. There has recently been interest in understanding the differences between specific levels of global warming, especially the Paris Agreement limits of 1.5 °C and 2 °C above pre-industrial levels. However, different model experiments1–3 have been used in these analyses under varying rates of increase in global-average temperature. Here, we use climate model simulations to show that, for a given global temperature, most land is significantly warmer in a rapidly warming (transient) case than in a quasi-equilibrium climate. This results in more than 90% of the world’s population experiencing a warmer local climate under transient global warming than equilibrium global warming. Relative to differences between the 1.5 °C and 2 °C global warming limits, the differences between transient and quasi-equilibrium states are substantial. For many land regions, the probability of very warm seasons is at least two times greater in a transient climate than in a quasi-equilibrium equivalent. In developing regions, there are sizable differences between transient and quasi-equilibrium climates that underline the importance of explicitly framing projections. Our study highlights the need to better understand differences between future climates under rapid warming and quasi-equilibrium conditions for the development of climate change adaptation policies. Yet, current multi-model experiments1,4 are not designed for this purpose.
  • Item
    Thumbnail Image
    Locally forced convection in sub‐kilometre scale simulations with the Unified Model and WRF
    Jucker, M ; Lane, TP ; Vincent, CL ; Webster, S ; Wales, SA ; Louf, V (Wiley, 2020)
    This study evaluates the performance and benefits of kilometre and sub‐kilometre scale convection permitting simulations over tropical Australia. Focusing on an extended Monsoon break period we can directly compare Unified Model (UM) and Weather Research and Forecasting model (WRF) simulations to CPOL radar observations and soundings. We show that the two models have different behaviour, and both are different to observations. Whereas WRF produces daily squall lines whether or not they occurred in observations, the UM primarily generates small but intense storms. The UM and WRF produce qualitatively different surface density currents at different times in the diurnal cycle. Once the density currents are present, the models also show different behaviour in relation to convective initiation. While higher resolution helps in the distribution of total precipitation over the domain, most characteristics do not change with higher resolutions, and model difference are always larger than resolution differences. While CAPE/CIN does not seem to be important to explain model differences, our findings point to the evolution of density currents in the boundary layer as most important source of model errors and differences.
  • Item
    Thumbnail Image
    Shear-Parallel Tropical Convective Systems: Importance of Cold Pools and Wind Shear
    Grant, LD ; Moncrieff, MW ; Lane, TP ; van den Heever, SC (American Geophysical Union, 2020-06-28)
    The impact of cold pools on line-orientated convective systems is assessed using idealized simulations of tropical oceanic convection under weak, moderate, and strong wind shear regimes. Cold pools are weakened by suppressing evaporation in the shallow subcloud layer. Analysis of objectively identified convective systems reveals that the convection with weaker cold pools is more often oriented parallel, rather than perpendicular, to the wind shear. The cold pool-induced orientation changes are most pronounced in the strong shear environment. Interactions between convective orientation and the tropical atmosphere are assessed. Simulations with shear-parallel convection demonstrate more top-of-atmosphere upwelling longwave radiation and less reflected shortwave radiation due to changes in convective anvils, faster-propagating larger-scale gravity waves, narrower cross-shear moisture distributions, and differences in convective momentum fluxes. The results highlight critical interactions across convective scales, mesoscales, and climate scales, as well as avenues for parameterizing structural modes of mesoscale-organized convection in global models.
  • Item
    Thumbnail Image
    Gravity Wave Influences On Mesoscale Divergence: An Observational Case Study
    Stephan, CC ; Lane, TP ; Jakob, C (American Geophysical Union, 2020-01-16)
    Characteristics of tropospheric low-frequency gravity waves are diagnosed in radiosonde soundings from the TropicalWarm Pool-International Cloud Experiment near Darwin, Australia. The waves have typical vertical wavelengths of about 4 km, horizontal wavelengths of about 600 km, and intrinsic periods of about 12 hr. These scales match those of the vertical, horizontal, and temporal variability found in area-averaged horizontal wind divergence over the same domain. Vertical profiles of divergence show wave-like structures with variability of the order of 2 × 10−5 s−1 in the free troposphere. The results for Darwin are similar to previously reported observed mesoscale patterns of divergence/convergence over the tropical Atlantic. The findings imply that tropical divergence on spatial scales of a few hundred kilometers, which is known to influence the organization of convection, may be forced by gravity waves.
  • Item
    Thumbnail Image
    Rapidly Evolving Cirrus Clouds Modulated by Convectively Generated Gravity Waves
    Prasad, AA ; Sherwood, SC ; Reeder, MJ ; Lane, TP (AMER GEOPHYSICAL UNION, 2019-07-16)
    Cirrus clouds can strongly affect Earth's radiation balance, but questions remain about their growth mechanisms and rates. Here we show that gravity (buoyancy) waves generated by a storm in Northern Australia on 13 November 2015 caused an observable rippling effect on cirrus clouds up to 1,000 km away, as seen by the recently launched Himawari-8/9 geostationary satellite. Regional model simulations reproduce the propagation speed of the wave, which agrees with theoretical predictions, and show that the wave amplitude and timing near the tropopause can account for the cirrus modulation. The observed cirrus reach peak optical depths of order 0.3–1.0 and appear roughly in phase with the arrival of the relative humidity maximum, providing new evidence that cirrus clouds can respond rapidly (<30 min) to environmental lifting. Moreover, the edge of a thick anvil cloud attached to the storm itself is observed to expand at the same speed as the wave, showing that the lifting mechanism can also apply to optically thicker ice clouds close to convective centers.
  • Item
    Thumbnail Image
    A first evaluation of the contribution of aeolian sand transport to lagoon island accretion in the Maldives
    Hilton, MJ ; Borrie, DR ; Konlechner, TM ; Wakes, SJ ; Lane, TP ; Kench, PS ; Kennedy, DM ; Aslam, M (Elsevier, 2019-08-01)
    Aeolian sedimentation and dune development have not been reported from coral atolls at equatorial latitudes. This study presents high-frequency measurements of incident and near surface wind flow and aeolian sand transport on a lagoon sand cay (Maaodegalaa) in the Maldives. Sonic anemometers and Wenglor™ particle counters were operated at 1 Hz for 8 days during the Iruvai monsoon in February 2018. Sand traps were deployed to estimate sand flux and island topography and vegetation cover were surveyed using UAV (un-manned aerial vehicle) photogrammetry and a laser level (in 2017 and 2018). Flow over beach scarps is 10 modelled using computational fluid dynamics. Maaodegalaa sand cay reaches just 0.9m above the highest spring high tides. Nebkha, between 0.10 and 0.40 m high, are widespread and are associated with Scaevola taccada and Cyperus conglomeratus. Between 2017 and 2018 the eastern section of the sand cay accreted 0.3 m following Cyperus colonisation. Reptation and aeolian ripple development occurred during fieldwork when near-surface flows exceeded 6 ms-1. Saltation occurred at higher wind speeds (8 ms-1). The highest rates of sand transport occurred during north-east incident winds of 12 ms-1 (at 6 m), that were probably generated by surface-based density currents under cumulonimbus clouds. Spatially, higher rates of sand transport were recorded downwind of a beach scarp, probably forced by flow acceleration. We propose a conceptual model of lagoon island formation, with both over-wash and aeolian sedimentation contributing to island accretion. A period of aeolian sedimentation may be critical to the emergence of sand cays.