School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections
    Nicholls, Z ; Meinshausen, M ; Lewis, J ; Corradi, MR ; Dorheim, K ; Gasser, T ; Gieseke, R ; Hope, AP ; Leach, NJ ; McBride, LA ; Quilcaille, Y ; Rogelj, J ; Salawitch, RJ ; Samset, BH ; Sandstad, M ; Shiklomanov, A ; Skeie, RB ; Smith, CJ ; Smith, SJ ; Su, X ; Tsutsui, J ; Vega-Westhoff, B ; Woodard, DL (AMER GEOPHYSICAL UNION, 2021-06)
    Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state-of-the-art knowledge in an internally self-consistent modeling framework are the increasingly complex fully coupled Earth System Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain-specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark ranges from specialized research communities. Unsurprisingly, but crucially, we find that models which have been constrained to reflect the key benchmarks better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850-1900, using an observationally based historical warming estimate of 0.8°C between 1850-1900 and 1995-2014). Further developing methodologies to constrain these projection uncertainties seems paramount given the international community's goal to contain warming to below 1.5°C above preindustrial in the long-term. Our findings suggest that users of RCMs should carefully evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks either from ESM results or other assessments to reduce divergence in future projections.
  • Item
    Thumbnail Image
    Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
    Tebaldi, C ; Debeire, K ; Eyring, V ; Fischer, E ; Fyfe, J ; Friedlingstein, P ; Knutti, R ; Lowe, J ; O'Neill, B ; Sanderson, B ; van Vuuren, D ; Riahi, K ; Meinshausen, M ; Nicholls, Z ; Tokarska, KB ; Hurtt, G ; Kriegler, E ; Lamarque, J-F ; Meehl, G ; Moss, R ; Bauer, SE ; Boucher, O ; Brovkin, V ; Byun, Y-H ; Dix, M ; Gualdi, S ; Guo, H ; John, JG ; Kharin, S ; Kim, Y ; Koshiro, T ; Ma, L ; Olivie, D ; Panickal, S ; Qiao, F ; Rong, X ; Rosenbloom, N ; Schupfner, M ; Seferian, R ; Sellar, A ; Semmler, T ; Shi, X ; Song, Z ; Steger, C ; Stouffer, R ; Swart, N ; Tachiiri, K ; Tang, Q ; Tatebe, H ; Voldoire, A ; Volodin, E ; Wyser, K ; Xin, X ; Yang, S ; Yu, Y ; Ziehn, T (COPERNICUS GESELLSCHAFT MBH, 2021-03-01)
    Abstract. The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models. We limit our scope to the analysis of strictly geophysical outcomes: mainly global averages and spatial patterns of change for surface air temperature and precipitation. We also compare CMIP6 projections to CMIP5 results, especially for those scenarios that were designed to provide continuity across the CMIP phases, at the same time highlighting important differences in forcing composition, as well as in results. The range of future temperature and precipitation changes by the end of the century (2081–2100) encompassing the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range of outcomes compared to CMIP5, due to higher warming (by close to 1.5 ∘C) reached at the upper end of the 5 %–95 % envelope of the highest scenario (SSP5-8.5). This is due to both the wider range of radiative forcing that the new scenarios cover and the higher climate sensitivities in some of the new models compared to their CMIP5 predecessors. Spatial patterns of change for temperature and precipitation averaged over models and scenarios have familiar features, and an analysis of their variations confirms model structural differences to be the dominant source of uncertainty. Models also differ with respect to the size and evolution of internal variability as measured by individual models' initial condition ensemble spreads, according to a set of initial condition ensemble simulations available under SSP3-7.0. These experiments suggest a tendency for internal variability to decrease along the course of the century in this scenario, a result that will benefit from further analysis over a larger set of models. Benefits of mitigation, all else being equal in terms of societal drivers, appear clearly when comparing scenarios developed under the same SSP but to which different degrees of mitigation have been applied. It is also found that a mild overshoot in temperature of a few decades around mid-century, as represented in SSP5-3.4OS, does not affect the end outcome of temperature and precipitation changes by 2100, which return to the same levels as those reached by the gradually increasing SSP4-3.4 (not erasing the possibility, however, that other aspects of the system may not be as easily reversible). Central estimates of the time at which the ensemble means of the different scenarios reach a given warming level might be biased by the inclusion of models that have shown faster warming in the historical period than the observed. Those estimates show all scenarios reaching 1.5 ∘C of warming compared to the 1850–1900 baseline in the second half of the current decade, with the time span between slow and fast warming covering between 20 and 27 years from present. The warming level of 2 ∘C of warming is reached as early as 2039 by the ensemble mean under SSP5-8.5 but as late as the mid-2060s under SSP1-2.6. The highest warming level considered (5 ∘C) is reached by the ensemble mean only under SSP5-8.5 and not until the mid-2090s.
  • Item
    Thumbnail Image
    The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
    Meinshausen, M ; Nicholls, ZRJ ; Lewis, J ; Gidden, MJ ; Vogel, E ; Freund, M ; Beyerle, U ; Gessner, C ; Nauels, A ; Bauer, N ; Canadell, JG ; Daniel, JS ; John, A ; Krummel, PB ; Luderer, G ; Meinshausen, N ; Montzka, SA ; Rayner, PJ ; Reimann, S ; Smith, SJ ; van den Berg, M ; Velders, GJM ; Vollmer, MK ; Wang, RHJ (COPERNICUS GESELLSCHAFT MBH, 2020-08-13)
    Abstract. Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a “hockey-stick” upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.