School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Mediterranean warm-core cyclones in a warmer world
    Walsh, K ; Giorgi, F ; Coppola, E (SPRINGER, 2014-02)
  • Item
  • Item
    Thumbnail Image
    Sensitivity of the distribution of thunderstorms to sea surface temperatures in four Australian east coast lows
    Chambers, CRS ; Brassington, GB ; Walsh, K ; Simmonds, I (SPRINGER WIEN, 2015-10)
  • Item
    Thumbnail Image
    Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain
    Diro, GT ; Giorgi, F ; Fuentes-Franco, R ; Walsh, KJE ; Giuliani, G ; Coppola, E (SPRINGER, 2014-07)
  • Item
    Thumbnail Image
    The role of the SST-thermocline relationship in Indian Ocean Dipole skewness and its response to global warming
    Ng, B ; Cai, W ; Walsh, K (NATURE PORTFOLIO, 2014-08-12)
    A positive Indian Ocean Dipole (IOD) tends to have stronger cold sea surface temperature anomalies (SSTAs) over the eastern Indian Ocean with greater impacts than warm SSTAs that occur during its negative phase. Two feedbacks have been suggested as the cause of positive IOD skewness, a positive Bjerknes feedback and a negative SST-cloud-radiation (SCR) feedback, but their relative importance is debated. Using inter-model statistics, we show that the most important process for IOD skewness is an asymmetry in the thermocline feedback, whereby SSTAs respond to thermocline depth anomalies more strongly during the positive phase than negative phase. This asymmetric thermocline feedback drives IOD skewness despite positive IODs receiving greater damping from the SCR feedback. In response to global warming, although the thermocline feedback strengthens, its asymmetry between positive and negative IODs weakens. This behaviour change explains the reduction in IOD skewness that many models display under global warming.
  • Item
    Thumbnail Image
    Nonlinear processes reinforce extreme Indian Ocean Dipole events
    Ng, B ; Cai, W ; Walsh, K ; Santoso, A (NATURE PORTFOLIO, 2015-06-26)
    Under global warming, climate models show an almost three-fold increase in extreme positive Indian Ocean Dipole (pIOD) events by 2100. These extreme pIODs are characterised by a westward extension of cold sea surface temperature anomalies (SSTAs) which push the downstream atmospheric convergence further west. This induces severe drought and flooding in the surrounding countries, but the processes involved in this projected increase have not been fully examined. Here we conduct a detailed heat budget analysis of 19 models from phase 5 of the Coupled Model Intercomparison Project and show that nonlinear zonal and vertical heat advection are important for reinforcing extreme pIODs. Under greenhouse warming, these nonlinear processes do not change significantly in amplitude, but the frequency of occurrences surpassing a threshold increases. This is due to the projected weakening of the Walker circulation, which leads to the western tropical Indian Ocean warming faster than the east. As such, the magnitude of SSTAs required to shift convection westward is relatively smaller, allowing these convection shifts to occur more frequently in the future. The associated changes in wind and ocean current anomalies support the zonal and vertical advection terms in a positive feedback process and consequently, moderate pIODs become more extreme-like.
  • Item
  • Item
    No Preview Available
    Future Australian Severe Thunderstorm Environments. Part II: The Influence of a Strongly Warming Climate on Convective Environments
    Allen, JT ; Karoly, DJ ; Walsh, KJ (AMER METEOROLOGICAL SOC, 2014-05)
    Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.
  • Item
    No Preview Available
    Future Australian Severe Thunderstorm Environments. Part I: A Novel Evaluation and Climatology of Convective Parameters from Two Climate Models for the Late Twentieth Century
    Allen, JT ; Karoly, DJ ; Walsh, KJ (AMER METEOROLOGICAL SOC, 2014-05)
    Abstract The influence of a warming climate on the occurrence of severe thunderstorms over Australia is, as yet, poorly understood. Based on methods used in the development of a climatology of observed severe thunderstorm environments over the continent, two climate models [Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6) and the Cubic-Conformal Atmospheric Model (CCAM)] have been used to produce simulated climatologies of ingredients and environments favorable to severe thunderstorms for the late twentieth century (1980–2000). A novel evaluation of these model climatologies against data from both the ECMWF Interim Re-Analysis (ERA-Interim) and reports of severe thunderstorms from observers is used to analyze the capability of the models to represent convective environments in the current climate. This evaluation examines the representation of thunderstorm-favorable environments in terms of their frequency, seasonal cycle, and spatial distribution, while presenting a framework for future evaluations of climate model convective parameters. Both models showed the capability to explain at least 75% of the spatial variance in both vertical wind shear and convective available potential energy (CAPE). CSIRO Mk3.6 struggled to either represent the diurnal cycle over a large portion of the continent or resolve the annual cycle, while in contrast CCAM showed a tendency to underestimate CAPE and 0–6-km bulk magnitude vertical wind shear (S06). While spatial resolution likely contributes to rendering of features such as coastal moisture and significant topography, the distribution of severe thunderstorm environments is found to have greater sensitivity to model biases. This highlights the need for a consistent approach to evaluating convective parameters and severe thunderstorm environments in present-day climate: an example of which is presented here.
  • Item
    No Preview Available
    HURRICANES AND CLIMATE The US CLIVAR Working Group on Hurricanes
    Walsh, KJE ; Camargo, SJ ; Vecchi, GA ; Daloz, AS ; Elsner, J ; Emanuel, K ; Horn, M ; Lim, Y-K ; Roberts, M ; Patricola, C ; Scoccimarro, E ; Sobel, AH ; Strazzo, S ; Villarini, G ; Wehner, M ; Zhao, M ; Kossin, JP ; LaRow, T ; Oouchi, K ; Schubert, S ; Wang, H ; Bacmeister, J ; Chang, P ; Chauvin, F ; Jablonowski, C ; Kumar, A ; Murakami, H ; Ose, T ; Reed, KA ; Saravanan, R ; Yamada, Y ; Zarzycki, CM ; Vidale, PL ; Jonas, JA ; Henderson, N (AMER METEOROLOGICAL SOC, 2015-06)
    Abstract While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.