School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Seawater recirculation through subducting sediments sustains a deeply buried population of sulfate-reducing bacteria
    Cox, TL ; Gan, HM ; Moreau, JW (WILEY, 2019-03)
    Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment-basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero-tolerant sulfate-reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen-tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51-1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate-reducing bacteria living at ~480 m below subducting seafloor.
  • Item
    Thumbnail Image
    Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate
    Watts, MP ; Spurr, LP ; Gan, HM ; Moreau, JW (SPRINGER, 2017-07)
    Thiocyanate (SCN-) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN- degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN--degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN-, accumulating ammonium (NH4+) and sulphate (SO42-) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN- biodegradation. This study provides a basis for understanding the behaviour of a SCN- degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN- at contemporary gold mines.
  • Item
  • Item
    Thumbnail Image
    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria
    Lin, H ; Ascher, DB ; Myung, Y ; Lamborg, CH ; Hallam, SJ ; Gionfriddo, CM ; Holt, KE ; Moreau, JW (SPRINGERNATURE, 2021-06)
    Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin that accumulates in terrestrial and marine food webs, with potential impacts on human health. This process requires the gene pair hgcAB, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawater, although the microorganisms involved remain poorly understood. In this study, we conducted large-scale multi-omic analyses to search for putative microbial Hg methylators along defined redox gradients in Saanich Inlet, British Columbia, a model natural ecosystem with previously measured Hg and MeHg concentration profiles. Analysis of gene expression profiles along the redoxcline identified several putative Hg methylating microbial groups, including Calditrichaeota, SAR324 and Marinimicrobia, with the last the most active based on hgc transcription levels. Marinimicrobia hgc genes were identified from multiple publicly available marine metagenomes, consistent with a potential key role in marine Hg methylation. Computational homology modelling predicts that Marinimicrobia HgcAB proteins contain the highly conserved amino acid sites and folding structures required for functional Hg methylation. Furthermore, a number of terminal oxidases from aerobic respiratory chains were associated with several putative novel Hg methylators. Our findings thus reveal potential novel marine Hg-methylating microorganisms with a greater oxygen tolerance and broader habitat range than previously recognized.
  • Item
    Thumbnail Image
    The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings
    Shafiei, F ; Watts, MP ; Pajank, L ; Moreau, JW (SPRINGER, 2021-01)
    Bioremediation systems represent an environmentally sustainable approach to degrading industrially generated thiocyanate (SCN-), with low energy demand and operational costs and high efficiency and substrate specificity. However, heavy metals present in mine tailings effluent may hamper process efficiency by poisoning thiocyanate-degrading microbial consortia. Here, we experimentally tested the tolerance of an autotrophic SCN--degrading bacterial consortium enriched from gold mine tailings for Zn, Cu, Ni, Cr, and As. All of the selected metals inhibited SCN- biodegradation to different extents, depending on concentration. At pH of 7.8 and 30 °C, complete inhibition of SCN- biodegradation by Zn, Cu, Ni, and Cr occurred at 20, 5, 10, and 6 mg L-1, respectively. Lower concentrations of these metals decreased the rate of SCN- biodegradation, with relatively long lag times. Interestingly, the microbial consortium tolerated As even at 500 mg L-1, although both the rate and extent of SCN- biodegradation were affected. Potentially, the observed As tolerance could be explained by the origin of our microbial consortium in tailings derived from As-enriched gold ore (arsenopyrite). This study highlights the importance of considering metal co-contamination in bioreactor design and operation for SCN- bioremediation at mine sites. KEY POINTS: • Both the efficiency and rate of SCN- biodegradation were inhibited by heavy metals, to different degrees depending on type and concentration of metal. • The autotrophic microbial consortium was capable of tolerating high concentrations of As, potential having adapted to higher As levels derived from the tailings source.
  • Item
    Thumbnail Image
    Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated natural wetland
    Moreau, JW ; Fournelle, JH ; Banfield, JF (FRONTIERS MEDIA SA, 2013-03-12)
    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.
  • Item
    Thumbnail Image
    Subsurface carbon monoxide oxidation capacity revealed through genome-resolved metagenomics of a carboxydotroph
    Mu, A ; Thomas, BC ; Banfield, JF ; Moreau, JW (WILEY, 2020-10)
    Microbial communities play important roles in the biogeochemical cycling of carbon in the Earth's deep subsurface. Previously, we demonstrated changes to the microbial community structure of a deep aquifer (1.4 km) receiving 150 tons of injected supercritical CO2 (scCO2 ) in a geosequestration experiment. The observed changes support a key role in the aquifer microbiome for the thermophilic CO-utilizing anaerobe Carboxydocella, which decreased in relative abundance post-scCO2 injection. Here, we present results from more detailed metagenomic profiling of this experiment, with genome resolution of the native carboxydotrophic Carboxydocella. We demonstrate a switch in CO-oxidation potential by Carboxydocella through analysis of its carbon monoxide dehydrogenase (CODH) gene before and after the geosequestration experiment. We discuss the potential impacts of scCO2 on subsurface flow of carbon and electrons from oxidation of the metabolic intermediate carbon monoxide (CO).
  • Item
    Thumbnail Image
    Biodegradation of thiocyanate by a native groundwater microbial consortium
    Spurr, LP ; Watts, MP ; Gan, HM ; Moreau, JW (PEERJ INC, 2019-03-26)
    Gold ore processing typically generates large amounts of thiocyanate (SCN-)-contaminated effluent. When this effluent is stored in unlined tailings dams, contamination of the underlying aquifer can occur. The potential for bioremediation of SCN--contaminated groundwater, either in situ or ex situ, remains largely unexplored. This study aimed to enrich and characterise SCN--degrading microorganisms from mining-contaminated groundwater under a range of culturing conditions. Mildly acidic and suboxic groundwater, containing ∼135 mg L-1 SCN-, was collected from an aquifer below an unlined tailings dam. An SCN--degrading consortium was enriched from contaminated groundwater using combinatory amendments of air, glucose and phosphate. Biodegradation occurred in all oxic cultures, except with the sole addition of glucose, but was inhibited by NH4 + and did not occur under anoxic conditions. The SCN--degrading consortium was characterised using 16S and 18S rRNA gene sequencing, identifying a variety of heterotrophic taxa in addition to sulphur-oxidising bacteria. Interestingly, few recognised SCN--degrading taxa were identified in significant abundance. These results provide both proof-of-concept and the required conditions for biostimulation of SCN- degradation in groundwater by native aquifer microorganisms.
  • Item
    Thumbnail Image
    Thermorudis pharmacophila sp nov., a novel member of the class Thermomicrobia isolated from geothermal soil, and emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus
    Houghton, KM ; Morgan, XC ; Lagutin, K ; MacKenzie, AD ; Vyssotskii, M ; Mitchell, KA ; McDonald, IR ; Morgan, HW ; Power, JF ; Moreau, JW ; Hanssen, E ; Stott, MB (SOC GENERAL MICROBIOLOGY, 2015-12)
    An aerobic, thermophilic and cellulolytic bacterium, designated strain WKT50.2T, was isolated from geothermal soil at Waikite, New Zealand. Strain WKT50.2T grew at 53-76 °C and at pH 5.9-8.2. The DNA G+C content was 58.4 mol%. The major fatty acids were 12-methyl C18 : 0 and C18 : 0. Polar lipids were all linked to long-chain 1,2-diols, and comprised 2-acylalkyldiol-1-O-phosphoinositol (diolPI), 2-acylalkyldiol-1-O-phosphoacylmannoside (diolP-acylMan), 2-acylalkyldiol-1-O-phosphoinositol acylmannoside (diolPI-acylMan) and 2-acylalkyldiol-1-O-phosphoinositol mannoside (diolPI-Man). Strain WKT50.2T utilized a range of cellulosic substrates, alcohols and organic acids for growth, but was unable to utilize monosaccharides. Robust growth of WKT50.2T was observed on protein derivatives. WKT50.2T was sensitive to ampicillin, chloramphenicol, kanamycin, neomycin, polymyxin B, streptomycin and vancomycin. Metronidazole, lasalocid A and trimethoprim stimulated growth. Phylogenetic analysis of 16S rRNA gene sequences showed that WKT50.2T belonged to the class Thermomicrobia within the phylum Chloroflexi, and was most closely related to Thermorudis peleae KI4T (99.6% similarity). DNA-DNA hybridization between WKT50.2T and Thermorudis peleae DSM 27169T was 18.0%. Physiological and biochemical tests confirmed the phenotypic and genotypic differentiation of strain WKT50.2T from Thermorudis peleae KI4T and other members of the Thermomicrobia. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain WKT50.2T represents a novel species, for which the name Thermorudis pharmacophila sp. nov. is proposed, with the type strain WKT50.2T ( = DSM 26011T = ICMP 20042T). Emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus are also proposed, and include the description of a novel respiratory quinone, MK-8 2,3-epoxide (23%), in Thermomicrobium roseum.
  • Item
    Thumbnail Image
    The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3
    Moreau, JW ; Gionfriddo, CM ; Krabbenhoft, DP ; Ogorek, JM ; DeWild, JF ; Aiken, GR ; Roden, EE (FRONTIERS MEDIA SA, 2015-12-18)
    Methylation of tracer and ambient mercury ((200)Hg and (202)Hg, respectively) equilibrated with four different natural organic matter (NOM) isolates was investigated in vivo using the Hg-methylating sulfate-reducing bacterium Desulfobulbus propionicus 1pr3. Desulfobulbus cultures grown fermentatively with environmentally representative concentrations of dissolved NOM isolates, Hg[II], and HS(-) were assayed for absolute methylmercury (MeHg) concentration and conversion of Hg(II) to MeHg relative to total unfiltered Hg(II). Results showed the (200)Hg tracer was methylated more efficiently in the presence of hydrophobic NOM isolates than in the presence of transphilic NOM, or in the absence of NOM. Different NOM isolates were associated with variable methylation efficiencies for either the (202)Hg tracer or ambient (200)Hg. One hydrophobic NOM, F1 HpoA derived from dissolved organic matter from the Florida Everglades, was equilibrated for different times with Hg tracer, which resulted in different methylation rates. A 5 day equilibration with F1 HpoA resulted in more MeHg production than either the 4 h or 30 day equilibration periods, suggesting a time dependence for NOM-enhanced Hg bioavailability for methylation.