School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    Cross-Spectra Over the Sea from Observations and Mesoscale Modelling
    Vincent, CL ; Larsen, XG ; Larsen, SE ; Sorensen, P (SPRINGER, 2013-02)
  • Item
    No Preview Available
    Himawari-8 GeoCat 1.0.3 Australian Domain Level 1 v1.0
    Lopez-Bravo, C ; Vincent, C ; Huang, Y ( 2021-03-15)
  • Item
    Thumbnail Image
    Short-Term Wind Power Forecasting at the Wind Farm Scale Using Long-Range Doppler LiDAR
    Pichault, M ; Vincent, C ; Skidmore, G ; Monty, J (MDPI, 2021-05)
    It remains unclear to what extent remote sensing instruments can effectively improve the accuracy of short-term wind power forecasts. This work seeks to address this issue by developing and testing two novel forecasting methodologies, based on measurements from a state-of-the-art long-range scanning Doppler LiDAR. Both approaches aim to predict the total power generated at the wind farm scale with a five minute lead time and use successive low-elevation sector scans as input. The first approach is physically based and adapts the solar short-term forecasting approach referred to as “smart-persistence” to wind power forecasting. The second approaches the same short-term forecasting problem using convolutional neural networks. The two methods were tested over a 72 day assessment period at a large wind farm site in Victoria, Australia, and a novel adaptive scanning strategy was implemented to retrieve high-resolution LiDAR measurements. Forecast performances during ramp events and under various stability conditions are presented. Results showed that both LiDAR-based forecasts outperformed the persistence and ARIMA benchmarks in terms of mean absolute error and root-mean-squared error. This study is therefore a proof-of-concept demonstrating the potential offered by remote sensing instruments for short-term wind power forecasting applications.
  • Item
    No Preview Available
    A Differential Approach for Rain Field Tomographic Reconstruction Using Microwave Signals from Leo Satellites
    Shen, X ; Huang, DD ; Vincent, C ; Wang, W ; Togneri, R (IEEE, 2020-01-01)
    A differential approach is proposed for tomographic rain field reconstruction using the estimated signal-to-noise ratio of microwave signals from low earth orbit satellites at the ground receivers, with the unknown baseline values eliminated before using least squares to reconstruct the attenuation field. Simulations are done when the baseline is modelled by an autoregressive process and when the baseline is assumed fixed. Comparisons between the reconstruction results for the differential and non-differential approaches suggest that the differential approach performs better in both scenarios. For high correlation coefficient and low model noise in the autoregressive process, the differential approach surpasses the non-differential approach significantly.
  • Item
    Thumbnail Image
    Characterisation of intra-hourly wind power ramps at the wind farm scale and associated processes
    Pichault, M ; Vincent, C ; Skidmore, G ; Monty, J (COPERNICUS GESELLSCHAFT MBH, 2021-01-19)
    One of the main factors contributing to wind power forecast inaccuracies is the occurrence of large changes in wind power output over a short amount of time, also called “ramp events”. In this paper, we assess the behaviour and causality of 1183 ramp events at a large wind farm site located in Victoria (southeast Australia). We address the relative importance of primary engineering and meteorological processes inducing ramps through an automatic ramp categorisation scheme. Ramp features such as ramp amplitude, shape, diurnal cycle and seasonality are further discussed, and several case studies are presented. It is shown that ramps at the study site are mostly associated with frontal activity (46 %) and that wind power fluctuations tend to plateau before and after the ramps. The research further demonstrates the wide range of temporal scales and behaviours inherent to intra-hourly wind power ramps at the wind farm scale.
  • Item
    Thumbnail Image
    Locally forced convection in sub‐kilometre scale simulations with the Unified Model and WRF
    Jucker, M ; Lane, TP ; Vincent, CL ; Webster, S ; Wales, SA ; Louf, V (Wiley, 2020)
    This study evaluates the performance and benefits of kilometre and sub‐kilometre scale convection permitting simulations over tropical Australia. Focusing on an extended Monsoon break period we can directly compare Unified Model (UM) and Weather Research and Forecasting model (WRF) simulations to CPOL radar observations and soundings. We show that the two models have different behaviour, and both are different to observations. Whereas WRF produces daily squall lines whether or not they occurred in observations, the UM primarily generates small but intense storms. The UM and WRF produce qualitatively different surface density currents at different times in the diurnal cycle. Once the density currents are present, the models also show different behaviour in relation to convective initiation. While higher resolution helps in the distribution of total precipitation over the domain, most characteristics do not change with higher resolutions, and model difference are always larger than resolution differences. While CAPE/CIN does not seem to be important to explain model differences, our findings point to the evolution of density currents in the boundary layer as most important source of model errors and differences.
  • Item
    Thumbnail Image
    Characterization of aerosols over the Great Barrier Reef: The influence of transported continental sources
    Chen, Z ; Schofield, R ; Rayner, P ; Zhang, T ; Liu, C ; Vincent, C ; Fiddes, S ; Ryan, RG ; Alroe, J ; Ristovski, ZD ; Humphries, RS ; Keywood, MD ; Ward, J ; Paton-Walsh, C ; Naylor, T ; Shu, X (ELSEVIER, 2019-11-10)
    The rapid environmental changes in Australia prompt a more thorough investigation of the influence of transportation, local emissions, and optical-chemical properties on aerosol production across the region. A month-long intensive measurement campaign was conducted during spring 2016 at Mission Beach, a remote coastal site west of the Great Barrier Reef (GBR) on the north-east coast of Australia. One aerosol pollution episode was investigated in early October. This event was governed by meteorological conditions and characterized by the increase in black carbon (BC) mass concentration (averaged value of 0.35 ± 0.20 μg m-3). Under the influence of the continental transportation, a new layer of nucleation-mode aerosols with an initial size diameter of 20 nm was observed and aerosol number concentrations reached the peak of 6733 cm-3 at a diameter of 29 nm. The averaged aerosol extinction coefficient at the height of 2 km was 150 Mm-1, with a small depolarized ratio (3.5-5%). Simultaneously, the boundary layer height presented a fall-rise trend in the presence of these enhanced aerosol concentrations and became stable in a later stage of the episode. We did not observe clear boundary layer height diurnal variations from the LiDAR observations or from the Weather Research and Forecasting (WRF) model outputs, except in an earlier stage of the aerosol episode for the former. Although the sea breeze may have been responsible for these particles, on the balance of available data, we suggest that the aerosol properties at the GBR surface during this period are more likely influenced by regional transportation of continental sources, including biomass-burning aerosols.
  • Item
    No Preview Available
    The Australian Northwest Cloudband: Climatology, Mechanisms, and Association with Precipitation
    Reid, KJ ; Simmonds, I ; Vincent, CL ; King, AD (AMER METEOROLOGICAL SOC, 2019-10-01)
    Australian northwest cloudbands (NWCBs) are continental-scale bands of continuous cloud that stretch from northwest to southeast Australia. In earlier studies, where the characteristics of NWCBs and their relationship with precipitation were identified from satellite imagery, there was considerable uncertainty in the results due to limited quality and availability of data. The present study identifies NWCBs from 31 years of satellite data using a pattern-matching algorithm. This new climatology is the longest record based entirely on observations. Our findings include a strong annual cycle in NWCB frequency, with a summer maximum and winter minimum, and a statistically significant increase in annual NWCB days over the period 1984–2014. Physical mechanisms responsible for NWCB occurrences are explored to determine whether there is a fundamental difference between summer and winter NWCBs as hypothesized in earlier studies. Composite analyses are used to reveal that a key difference between these is their genesis mechanisms. Whereas summer NWCBs are triggered by cyclonic disturbances, winter NWCBs tend to form when meridional sea surface temperature gradients trigger baroclinic instability. It was also found that while precipitation is enhanced over parts of Australia during a cloudband day, it is reduced in other regions. During a cloudband day, precipitation extremes are more likely over northwest, central, and southeast Australia, while the probability of extreme precipitation decreases in northeast and southwest Australia. Additionally, cold fronts and NWCBs can interact, leading to enhanced rainfall over Australia.
  • Item
    No Preview Available
    Diurnal Cycle of Surface Winds in the Maritime Continent Observed through Satellite Scatterometry
    Short, E ; Vincent, CL ; Lane, TP (AMER METEOROLOGICAL SOC, 2019-06)
    Abstract The diurnal cycle of surface winds throughout the Maritime Continent plays a significant role in the formation of precipitation over the islands of the region and over the surrounding seas. This study investigates the connection between the diurnal cycles of surface wind and offshore precipitation using data from four satellite scatterometer instruments and two satellite precipitation radar instruments. For the first time, data from three scatterometer instruments are combined to yield a more temporally complete picture of the surface wind diurnal cycles over the Maritime Continent’s surrounding seas. The results indicate that land–sea breezes typically propagate over 400 km offshore, produce mean wind perturbations of between 1 and 5 m s−1, and propagate as gravity waves at 25–30 m s−1. Diurnal precipitation cycles are affected through gravity wave propagation processes associated with the land–sea breezes, and through the convergence of land breezes from nearby islands. These observational results are then compared with previous mesoscale modeling results. It is shown that land–sea breezes occur too early, and are too intense in these modeling results, and this may partly explain why these modeling results also exhibit an early, overly intense diurnal precipitation cycle. This study also investigates variations in the diurnal cycle of surface winds at seasonal and intraseasonal time scales. Previous work has suggested that seasonal and intraseasonal variations in surface heating affect the land–sea breeze circulation and diurnal precipitation cycles; we argue that variations in background winds also play a defining role in modulating coastally influenced local winds.
  • Item
    Thumbnail Image
    Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia
    Lestari, S ; King, A ; Vincent, C ; Karoly, D ; Protat, A (Elsevier, 2019)
    This study investigates the interannual, seasonal, and intraseasonal variation in rainfall extremes (REs) in Jakarta and surroundings. We used datasets of daily rainfall at three sites at coastal, inland and mountainous environments during 1974–2016 (42 years), Sea Surface Temperature, 850-hPa zonal and meridional winds, and Outgoing Longwave Radiation during 1979–2016 (37 years). The results show that intensity and frequency of REs, and their relative contribution to the total rainfall, have strong relationships with the Indian Ocean Dipole and El Niño Southern Oscillation in the dry season (Jun–Nov) but weak relationships in the wet season (Dec–May) at all sites. During active Madden-Julian Oscillation (MJO) period, the daily average rainfall and the number of RE days relative to all days show strong variation between MJO phases at all sites and the MJO signature differs between the three stations. At the coastal and inland sites, there is a less marked variation of the number of RE events relative to all days with MJO phases. Compared to lower altitudes, the high-altitude station has a greater number of RE events relative to all days in the wet season and a lower intensity of REs relative to total rainfall amount in the dry season. The results of the study suggest that the REs vary in each station due to highly localised differences in responses to large-scale conditions.