School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    A new global gridded data set of CO2 emissions from fossil fuel combustion: methodology and evaluation
    Rayner, P. J. ; Raupach, M. R. ; Paget, M. ; Peylin, P. ; Koffi, E. (American Geophysical Union, 2010)
    We describe a system for constraining the spatial distribution of fossil fuel emissions of CO2. The system is based on a modified Kaya identity which expresses emissions as a product of areal population density, per capita economic activity, energy intensity of the economy, and carbon intensity of energy. We apply the methodology of data assimilation to constrain such a model with various observations, notably, the statistics of national emissions and data on the distribution of nightlights and population. We hence produce a global, annual emission field at 0.25° resolution. Our distribution of emissions is smoother than that of the population downscaling traditionally used to describe emissions. Comparison with the Vulcan inventory suggests that the assimilated product performs better than downscaling for distributions of either population or nightlights alone for describing the spatial structure of emissions over the United States. We describe the complex structure of uncertainty that arises from combining pointwise and area-integrated constraints. Uncertainties can be as high as 50% at the pixel level and are not spatially independent. We describe the use of 14CO2 measurements to further constrain national emissions. Their value is greatest over large countries with heterogeneous emissions. Generated fields may be found online (http://ffdas.org/).
  • Item
    Thumbnail Image
    Atmospheric constraints on gross primary productivity and net ecosystem productivity: results from a carbon-cycle data assimilation system
    Koffi, E. N. ; Rayner, P. J. ; Scholze, M. ; Beer, C. (American Geophysical Union, 2012)
    This paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO2 observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 ± 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO2 observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.